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Schizophrenia (SCZ) is an inherited disease, with the familial risk being among the most
important factors when evaluating an individual’s risk for SCZ. However, robust imaging
biomarkers for the disease that can be used for diagnosis and determination of the
prognosis are lacking. Here, we explore the potential of functional connectivity (FC) for
use as a biomarker for the early detection of high-risk first-degree relatives (FDRs). Thirty-
eight first-episode SCZ patients, 38 healthy controls (HCs), and 33 FDRs were scanned
using resting-state functional magnetic resonance imaging. The subjects’ brains were
parcellated into 200 regions using the Craddock atlas, and the FC between each pair
of regions was used as a classification feature. Multivariate pattern analysis using leave-
one-out cross-validation achieved a correct classification rate of 88.15% [sensitivity
84.06%, specificity 92.18%, and area under the receiver operating characteristic curve
(AUC) 0.93] for differentiating SCZ patients from HCs. FC located within the default
mode, frontal-parietal, auditory, and sensorimotor networks contributed mostly to the
accurate classification. The FC patterns of each FDR were input into each classification
model as test data to obtain a corresponding prediction label (a total of 76 individual
classification scores), and the averaged individual classification score was then used
as a robust measure to characterize whether each FDR showed an SCZ-type or HC-
type FC pattern. A significant negative correlation was found between the average
classification scores of the FDRs and their semantic fluency scores. These findings
suggest that FC combined with a machine learning algorithm could help to predict
whether FDRs are likely to show an SCZ-specific or HC-specific FC pattern.
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INTRODUCTION

Schizophrenia (SCZ) is a devastating neurodevelopmental
disorder with a complex genetic etiology (Lee et al., 2016).
Multiplex family studies have established significant heritability
for SCZ, which is often summarized as 81% (Light et al.,
2014). First-degree relatives (FDRs; i.e., siblings, offspring, and
parents) of patients with SCZ are 10 times more likely to
suffer from SCZ than healthy controls (HCs) (Luykx et al.,
2017). Consequently, when evaluating an individual’s risk for
SCZ, the familial risk is among the most important factors
(Pirjo et al., 2005). To define putative risk criteria for psychosis,
prodromal criteria based on the Comprehensive Assessment of
At Risk Mental States (CAARMS), the Criteria of Prodromal
Syndromes (COPS), and the Bonn Scale for the Assessment
of Basic Symptoms/Schizophrenia Proneness Instrument, Adult
version (BSABS/SPI-A) have been validated in a range of
studies (Yung et al., 2008; Schultze-Lutter, 2009; Woods et al.,
2009). Early clinical intervention in SCZ has recently become
a major objective of mental health services; those interventions
include antipsychotic medications, cognitive behavioral therapy
(CBT), and other novel strategies such as eicosapentaenoic acid
(Addington and Heinssen, 2012). Because early intervention can
help delay and prevent the onset of psychosis, the development
of biomarkers allowing the early identification of individuals at
elevated risk of developing SCZ is of great importance.

A previous large-scale network analysis showed that FDRs of
patients with SCZ demonstrate similar deficits in connectivity
metrics (Delawalla et al., 2008), interhemispheric functional
connectivity (FC) abnormalities (Guo et al., 2014), default-
mode network dysfunction (Meda et al., 2008), and rich
club connectivity impairments, as do their relatives with SCZ
(Zhang et al., 2016). This sharing of disease-specific patterns
indicates that brain network disturbances are likely to show
familial associations, possibly reflecting a vulnerability for SCZ.
Consistent with these results, our previous study using stochastic
dynamic causal modeling found similar anterior cingulate
cortico-hippocampal dysconnectivity in unaffected FDRs and
patients with SCZ (Xi et al., 2016). To date, however, the
results of these studies showed minimal clinical impact for
diagnostic and prognostic purposes, and traditional diagnostic
and prognostic tools are still being used by psychiatrists. The
most important reason is that the differences between FDRs and
controls were reported at the group level, which provided limited
information to make inferences at the level of the individual
(Orrù et al., 2012).

With the continuous innovation of machine learning
technology, pattern classification algorithms have become
widely used in SCZ research. Previous studies showed that
functional brain connectivity patterns can be used not only
to classify patients with SCZ from normal controls but also
to predict the development and prognosis of the disease.
With the use of functional brain networks derived from an
independent component analysis of resting-state functional
magnetic resonance imaging (RS-fMRI), FC patterns reached
an accuracy of 85.5% for distinguishing SCZ patients from HCs
(Jing et al., 2019). Additionally, using a support vector machine

(SVM) algorithm, the accuracy of FC patterns for differentiating
controls from patients can reach 83.8% (Fan et al., 2011). More
importantly, the classification scores obtained from the SVM
could predict the prognosis, with high classification scores being
associated with worse treatment effects.

In the present study, we investigated the classification
efficiency of FC obtained from RS-fMRI for distinguishing SCZ
patients from HCs, applied the classification models to determine
whether FDRs were similar to SCZ patients or HCs, and finally
explored whether the classification scores were able to predict the
cognitive performance of the FDRs.

MATERIALS AND METHODS

Subjects
The current study was approved by the First Affiliated Hospital
(Xijing Hospital) of the Fourth Military Medical University.
Written informed consent forms approved by the local Research
Ethics Committee were signed by all participants. The study
sample consisted of 40 first-episode SCZ patients from early
intervention services within the outpatient clinic and inpatient
department of Xijing Hospital, 36 FDRs of patients with SCZ, and
40 HCs recruited from the local community by advertisements.
Two senior clinical psychiatrists diagnosed SCZ using the
Diagnostic and Statistical Manual of Mental Disorders (Fourth
Edition) (DSM-V) structured clinical interviews (SCIDs). All
SCZ patients had a first episode with exposure to antipsychotic
treatment within 2 weeks. Some patients with <6 months’ illness
duration were diagnosed as FE-SCZ after a 6-month follow-
up according to diagnostic criteria. The severity of symptoms
was assessed using the Positive and Negative Syndrome Scale
(PANSS) (Kay et al., 1987). Exclusion criteria consisted of (1)
other DSM disease; (2) a history of treatment with transcranial
magnetic stimulation, transcranial current stimulation, or
behavioral therapy; (3) substance abuse; (4) other neurological
diseases; and (5) pregnancy or other MRI contraindications.
Additional exclusion criteria for the HCs included a current or
past history of psychiatric illness and the presence of psychosis in
FDRs (Yuan et al., 2018a).

MRI Acquisition
All MRI data were collected on a 3.0-T Siemens Magnetom
Trio Tim scanner at the Department of Radiology of Xijing
Hospital. During data acquisition, participants were asked to
keep their eyes closed, to let their mind wander, and to keep
awake (Liu et al., 2013; Yuan et al., 2017a). A head coil fitted
with foam pads was used to minimize head motion, and earplugs
were used to dampen scanner noise (Liu et al., 2017; Yuan
et al., 2017b). Resting-state functional scans were acquired with
an echo-planar imaging (EPI) sequence using the following
parameters: repetition time (TR), 2,000 ms; echo time (TE),
30 ms; field of view, 220 × 220 mm; matrix, 64 × 64; flip angle,
90◦; number of slices, 33; slice thickness, 4 mm; 240 volumes;
and a total of 7 min. After acquisition of the RS-fMRI, a high-
resolution T1 image was acquired for anatomical reference using
a magnetization-prepared rapid gradient-echo sequence with the
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following parameters: TR, 2,530 ms; TE, 3.5 ms; flip angle, 7◦;
field view, 256 × 256 mm; matrix, 256 × 256; slice thickness,
1 mm; slice gap, 0 mm; slices, 192; resolution, 1 × 1 × 1 mm;
and a total of 6 min 30 s.

Data Preprocessing
Preprocessing of the RS-fMRI data and the calculation of FC
measures were performed in a similar manner to those described
in previous studies (Zhu et al., 2019; Song et al., 2020). The
first 10 images were discarded to ensure MRI data stability
(Yuan et al., 2016), and then the remaining 230 images were
slice timing corrected and realigned to the first image, during
which the average frame-wise displacement (FD) was obtained
(no differences in this were found across the three groups; see
Table 1). Inter-scan motion was assessed using the translation
and rotation parameters, and an exclusion criterion of >2.5 mm
translation and/or >2.5◦ rotation in each direction at each time
point was set. Two SCZ patients, two HCs, and three FDRs met
the criteria and were excluded from further analyses, resulting
in 38 SCZ patients, 33 FDRs, and 38 HCs for final inclusion. As
FC measures are sensitive to head motion, Friston-24 parameters
were used to regress out their effects. To further reduce the effects
of nuisance factors, signals from cerebrospinal fluid and white
matter were also regressed out. The global signal was not removed
as suggested in a previous study (Hahamy et al., 2014). Then, the
DARTEL toolbox was used to normalize the data into Montreal
Neurological Institute (MNI) space (Ashburner, 2007), and the
resulting images were finally smoothed with a 6-mm full width at
half maximum (FWHM) Gaussian kernel.

Functional Connectivity of the Whole
Brain
The Craddock atlas was used to parcellate the whole brain
into 200 regions of interest (ROIs) (Craddock et al., 2012).

This new atlas has been validated that it can successfully
parcellate group resting-state fMRI data into spatially
coherent functionally homogeneous clusters of the network
(Allen et al., 2014). The time series within each region were
first band-pass filtered (0.01–0.08 Hz) and then averaged.
For each participant, FC was calculated between each
ROI using Pearson’s correlation coefficients, resulting in
19,900 [(200 × 199)/2] dimensional FC feature vectors
for each subject.

Feature Selection
Before the classifier model was built, an initial feature selection
step was performed for data dimension reduction. The current
study used an F-score for feature ranking, which was shown
to be an effective method in previous studies (Liu et al.,
2015). Leave-one-out cross-validation (LOOCV) was used to
evaluate the performance of the classifier. In LOOCV, one
subject is used as test the data, and the classifier is trained
on the remaining dataset. For each LOOCV iteration, the
features were ranked from the highest to lowest according
to their F-score, and the first 644 features (see details in
subsection “Overall Classifier Performance”) were used to
build the classifier.

However, for each iteration of the LOOCV, the data subset
used for feature ranking was a little different, and the final
features selected for the classification model differed slightly
between each iteration. Therefore, consensus features were
identified, with these being the features that were always selected
to build the classification model in each iteration of the LOOCV.
The weight for each consensus feature was defined as the average
of the weights across the 76 LOOCV iterations. A weight for each
ROI was also calculated by summing one half of the consensus
feature weights associated with that region, which represented the
ability of that region to discriminate SCZ patients from HCs.

TABLE 1 | Demographic and clinical features of the participants.

Demographic and clinical features of the participants SCZ FDR HC

n = 38 n = 33 n = 38

Characteristic Mean (± SD) Mean (± SD) Mean (± SD) p

Age (years) 26.3 ± 6.9 26.7 ± 9.6 25.4 ± 5.6 0.32

Gender (male/female) 19/19 18/15 19/19 0.84

Education level (years) 13.5 (2.96) 12.1 (4.15) 14.2 (3.37) 0.12

Age at onset (years) 19.2 (3.77)

Length of illness (years) 2.72 (2.95)

Frame-wise displacement 0.26 (0.11) 0.23 (0.11) 0.20 (0.09) 0.13

PANSS score

Total 22.6 ± 5.8

Positive 21.5 ± 8.1

Negative 44.1 ± 6.2

General 85.8 ± 12.8

Semantic fluency scores 12.1 ± 6.2 14.9 ± 5.6 16.7 ± 4.3 0.001

Differences in age, education levels, frame-wise displacement and semantic fluency scores were carried with one-way ANOVA. Differences in gender was carried with
Chi-square test.
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Classification and Support Vector
Machine
The SVM algorithm was selected for classification because it
has shown good efficiency when the sample size studied is
relatively small. Patients with SCZ were labeled as 1, and HCs
were labeled as −1, and a decision function was determined
during the training step and used to predict the labels of the test
data. To avoid overfitting and to allow direct extraction of the
feature weights, a linear kernel SVM was implemented using the
LIBSVM toolbox (Chang and Lin, 2011), with the parameter C
set to the default value of 1. With the use of the LOOCV strategy,
the accuracy, sensitivity, specificity, and area under the receiver
operating characteristic (ROC) curve (AUC) were obtained, and
the statistical significance of the accuracy was assessed using a
permutation test (Golland and Fischl, 2003).

Classification of First-Degree Relatives
The above-mentioned classification model was used to classify
SCZ patients and HCs, and our next analysis was to investigate
whether the final classification model could be used to determine
whether the FDRs showed similar FC patterns to SCZ patients or
HCs. After the classification model was built, the FC of each FDR
was input as test data into each iteration of the LOOCV, to obtain
its corresponding prediction label (1 or−1). Therefore, each FDR
was given 76 individual prediction labels. The classification score,
which is the average of the 76 prediction labels, was used as a
robust measure to characterize the similarity of each FDR’s FC
pattern to an SCZ pattern (in the range of−1 to 1, a positive score
indicated an SCZ pattern).

Correlation Analysis Between Cognitive
Function and Classification Scores
Finally, a general linear model was used to investigate the
correlations between classification scores and measures of
cognitive function in FDRs, with age, sex, and years of education
as covariates. A semantic fluency test (animal version) was
administered to evaluate the executive function and the semantic
memory, which are severely affected in SCZ; the performance was
analyzed using the number of correct words within 1 min.

RESULTS

Demographic and Clinical Data
The demographic and clinical data are shown in Table 1. No
significant difference was present between the SCZ patients,
FDRs, and HCs in any of the demographic variables, including
age, sex distribution, education level, and FD. However,
significant differences were found for semantic fluency scores
across the three groups.

Overall Classifier Performance
As shown in Figure 1, the accuracy of the linear SVM classifier
reached up to 88.15% (84.06% for sensitivity, 92.18% for
specificity, and p < 0.001 by permutation test) using the 644
highest-ranked FC features. Thus, we selected the top-ranked 644

FIGURE 1 | Predictive accuracy as a function of the number of connections
used in the classification process. The connections were ranked according to
F-scores in descending order.

features in each iteration of the LOOCV for the classification
features. The discriminative score for each tested individual
was acquired from the SVM classifier and an ROC curve was
created (Figure 2A), which showed an AUC of 0.93, indicating
good classification power. A non-linear SVM classifier was also
trained and showed similar results; however, to reduce the
risk of overfitting and to directly calculate and exhibit the FC
weights and ROI weights, the following analysis is based on the
linear SVM classifier.

Consensus Features and Region Weights
In this study, 397 consensus features were identified, as illustrated
in Figure 2B. Eighteen regions were identified as having weights
that were at least one standard deviation greater than the
average of the weights of all regions. As shown in Figure 3,
the ROIs making the greatest contribution to the model were
located within the default mode network (DMN) (angular gyrus,
middle temporal gyrus, orbital frontal gyrus, temporal pole,
and inferior frontal gyrus), frontal-parietal network (superior
parietal gyrus and parietal operculum cortex), auditory network
(Heschl’s gyrus), and sensorimotor network (precentral gyrus and
postcentral gyrus).

Cognitive Deficits in Relatives and
Correlation Analysis
As shown in Figure 4, six FDRs were given a classification score
of 1 (SCZ specific) in all 76 LOOCV iterations, seven FDRs were
classified as −1 (HCs specific) in all 76 LOOCV iterations, and
the remaining FDRs were classified either as 1 or −1 in different
iterations of the LOOCV. A significant negative correlation was
found between the average classification scores of the FDRs and
the semantic fluency scores.
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FIGURE 2 | (A) Receiver operating characteristic (ROC) curve of the classifier; the gray line indicates the 95% confidence interval for the area under the ROC curve.
(B) The consensus functional connections. The brain regions are represented by a square on the circumference of the big circle. The lines connecting two squares
represent the connections between the corresponding two brain regions. The red lines represent positive connections, and the blue lines represent negative
connections.

FIGURE 3 | Regions of interest that contributed mostly to the accurate classification. L, left; R, right; OFC, orbital frontal cortex; IFG, inferior frontal gyrus; SPL,
superior parietal lobule; MTG, middle temporal gyrus.

Classifier Performance Using Features
Within the Identified Networks
In the current study, we obtained many more features
than examples (644 features were selected according to 76

participants); therefore, we reanalyzed the classifier performance
only using features within the identified networks (DMN,
FP, auditory, and sensorimotor). According to the networks
brought up by Yeo et al. (2015), we masked the DMN, FP,
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FIGURE 4 | Correlation between support vector machine (SVM) scores and semantic fluency in first-degree relatives (FDRs).

auditory, and sensorimotor networks, and 142 features were
obtained. As shown in Figure 5, the accuracy of the linear
SVM classifier reached up to 82.89% (89.47% for specificity,
63.16% for sensitivity, and p < 0.001 by permutation test).
The discriminative score for each tested individual was acquired
from the SVM classifier, and an ROC curve was created
(Figure 6), which showed an AUC of 0.82, also indicating good
classification power.

DISCUSSION

With the use of a multivariate pattern classification method,
our study demonstrated that whole-brain resting-state
FC can be used to distinguish SCZ patients from HCs
with excellent accuracy, with the functional connections
showing the best discriminatory power being mainly
located within or across the default mode, frontal-parietal,
auditory, and sensorimotor networks. Furthermore, the
trained machine learning model could also help to identify
whether unaffected FDRs showed similar FC patterns to
SCZ patients or HCs. An additional finding was that the
classification scores of the unaffected FDRs correlated
significantly with their word semantic fluency test scores.
These findings suggest that FC, combined with a machine
learning algorithm, can help to predict whether unaffected

FDRs show a SCZ-specific FC pattern or a healthy
control-specific FC pattern.

Cutting-edge machine learning methods have been applied
in structural and functional neuroimaging studies and have
revealed that multivariate patterns of brain change are
sensitive enough to classify individual SCZ patients (Liu
et al., 2015; Yuan et al., 2018b). Combining cortical thickness,
gyrification of gray matter, and fractional anisotropy and
mean diffusivity of white matter, Liang et al. (2019) used
a gradient boosting decision tree to identify SCZ patients,
reaching an average accuracy of 76.54%. Using global and
nodal network properties derived from a graph theory
analysis, Jo et al. (2020) revealed that functional network
properties had a high discriminatory ability for classifying
SCZ patients and HCs. Using betweenness centrality from
graph theoretical approaches and a SVM algorithm, Cheng
et al. (2015) found a classification accuracy of around 80% for
differentiating SCZ patients from non-psychiatric HCs. Recent
progress in neuroimaging research has suggested that SCZ is a
dysconnectivity syndrome, and our results provide evidence that
resting-state FC can be successfully used to differentiate SCZ
patients from HCs.

We employed the F-score for the feature ranking in the
feature selection approach, and a SVM algorithm with an
LOOCV strategy showed a classification accuracy of 88.15%.
We used the Craddock atlas for brain parcelation, because the
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FIGURE 5 | Predictive accuracy as a function of the number of connections used in the classification process. The connections were ranked according to F-scores
in descending order. Classification performance was further tested by including features within the default mode network, frontal-parietal network, auditory network,
and sensorimotor network only.

brain regions are clustered in a more homogenous manner
than in the AAL atlas (Craddock et al., 2012), and certain
ROIs from this parcelation showed significant performance in

FIGURE 6 | Receiver operating characteristic (ROC) curve of the classifier
using features within the default mode network, frontal-parietal network,
auditory network, and sensorimotor network only.

classifying SCZ patients from HCs. Previous studies showed
that an isolated brain region or connectivity dysfunction
cannot be responsible for SCZ (Lefebvre et al., 2016) and
indicated that impairment of interactions between several
intrinsic FC networks underlies the specific psychopathological
mechanism of SCZ. Our ROIs showing significant classification
performance were located within previously well-studied brain
networks such as the DMN, frontal-parietal network, auditory
network, and sensorimotor network. Decreased communication
within the DMN supports the idea of impaired self-related
processes relevant to the emotional processing and recollection
of prior experience (Dong et al., 2018), whereas deficits in
the frontal-parietal network have been associated with poor
information manipulation and poor problem-solving in goal-
directed behavior, and it is proposed that abnormal interactions
between the DMN and frontal-parietal network are associated
with errors in the self-monitoring of SCZ (Anhoj et al.,
2018; Brandl et al., 2019). Auditory network dysfunction
is always found in SCZ patients, with morphological and
functional abnormalities of the superior temporal gyrus, a
key component of the auditory network, being frequently
reported, and altered dominance in the direction of causal
influence from the DMN to the auditory network also
being found (Li et al., 2019). Additionally, SCZ patients
have also shown impaired connectivity within sensorimotor
networks, such as compromised connections between M1
and the supplementary motor area and medial motor areas
(Mcnabb et al., 2018). In combination with our findings,
such aberrant connectivity within and between large-scale
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networks not only may reflect the possible pathophysiology
of SCZ but also can provide essential information, allowing
us to differentiate HCs and FDRs before the development
of SCZ symptoms.

First-degree relatives of patients with SCZ have an almost
10-fold increased risk of developing SCZ (Luykx et al., 2017);
however, early interventions to delay or prevent the onset
of psychotic disorders among these high-risk individuals have
shown limited success. One of the most important hurdles
is the identification of a syndrome or set of traits that
reflects a predisposition to SCZ and that might provide
potential targets for intervention. A neuroimaging analysis
of the FDRs of patients with SCZ has mostly focused on
group comparisons, with several functional brain alterations
before the onset of SCZ having been reported in previous
studies, although robust imaging biomarkers for the diagnosis
and prediction of a later transition to psychotic disorders
are still lacking. The classification scores presented in our
study provided a sensitive measure for classifying FDRs as
having a SCZ-specific FC pattern or HC-specific pattern, and
early preventions could be provided for relatives showing a
SCZ-specific pattern, especially those given labels of 1 in the
LOOCV predictions. More importantly, we found that the
classification scores showed a significant negative correlation
with the semantic fluency scores. For those FDRs with
a clear SCZ-specific pattern, psychological and psychosocial
interventions (such as CBT), pharmacological interventions
(such as risperidone), and nutritional supplements (such as
omega-3 fatty acids) would have a beneficial effect on transition
rates (Stafford et al., 2013), while for those with classification
scores <+1, those interventions should be implemented with
caution, as a clinically significant side effect (for example,
possible increased stigma) might be induced (Stafford et al.,
2013). As stated by other studies (Mourao-Miranda et al.,
2012), linear SVM can effectively handle high-dimensional
data and is less prone to overfitting of the data. Therefore,
in this study, we exclusively used a linear kernel SVM
to reduce the risk of overfitting the data and to allow
direct extraction of the weight vector. The linear SVM has
only one parameter (C) that controls the trade-off between
having zero training errors and allowing misclassifications.
This was fixed at C = 1 for all cases (default value). It
has been shown previously that the SVM performance for
whole-brain classification does not change for a large range
of C values and only degrades with very small C values
(Laconte et al., 2005).

Cognitive impairments are a key component of SCZ and
have been included as a diagnostic criterion for SCZ in
the DSM-V classification (Bortolato et al., 2015). Previous
studies have indicated that non-psychotic FDRs also exhibit
similar but less severe cognitive defects (Molina et al., 2016).
Study of the neurocognitive functions of non-psychotic
FDRs is a widely used strategy for understanding the
etiology of SCZ and is free of the confounds associated
with psychosis. Furthermore, it is also well accepted that
cognitive impairments precede the onset of illness and represent
vulnerability markers for the onset of the disorder (Viviano

et al., 2018). Therefore, the negative correlations found between
classification scores and cognitive performance indicate that
the classifiers built on these FC measures could serve as
sensitive biomarkers for the early detection of FDRs at high risk
of developing SCZ.

The present study has several limitations. First, the
sample size of the current study is relatively small, and
the age distribution is rather young because we recruited
first-episode SCZ, and a large multicenter imaging dataset
containing chronic SCZ patients is necessary to confirm
our findings. Second, we used cross-sectional data of the
FDRs, and a longitudinal investigation is needed to verify
our findings. So far, we have followed 10 unaffected FDRs
for 4 years, and they remain normal. Due to low incidence
rate of SCZ in unaffected FDRs, longer follow-ups are
needed to investigate if the SCZ-specific FDRs had higher
risk of development of the disease than the HCs-specific
FDRs. Third, cognitive impairment was characterized
by a small number of measures, and comprehensive
measures should be collected, which may help bring
neuroimaging classification scores from the bench to the
bedside. Finally, we did not collect other cognitive status
score such as Mini-Mental State Exam (MMSE), which
would provide important information on global cognition
for FDRs and HCs.

CONCLUSION

Our findings indicate that brain-wide multivariate neuroimaging
patterns have clear advantages for accurately classifying
individuals as SCZ patients or HCs. FC within and among
the default mode, frontal-parietal, auditory, and sensorimotor
networks contributed most to the accurate classification. Finally,
classification scores obtained by our analysis could serve as an
effective and sensitive biomarker for the early detection of FDRs
at high risk of developing SCZ.
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