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Left posterior temporal 
cortex is sensitive to syntax 
within conceptually matched 
Arabic expressions
Suhail Matar1*, Julien Dirani1,3, Alec Marantz1,2,3 & Liina Pylkkänen1,2,3 

During language comprehension, the brain processes not only word meanings, but also the 
grammatical structure—the “syntax”—that strings words into phrases and sentences. Yet the neural 
basis of syntax remains contentious, partly due to the elusiveness of experimental designs that 
vary structure independently of meaning-related variables. Here, we exploit Arabic’s grammatical 
properties, which enable such a design. We collected magnetoencephalography (MEG) data while 
participants read the same noun-adjective expressions with zero, one, or two contiguously-written 
definite articles (e.g., ‘chair purple’; ‘the-chair purple’; ‘the-chair the-purple’), representing equivalent 
concepts, but with different levels of syntactic complexity (respectively, indefinite phrases: ‘a 
purple chair’; sentences: ‘The chair is purple.’; definite phrases: ‘the purple chair’). We expected 
regions processing syntax to respond differently to simple versus complex structures. Single-word 
controls (‘chair’/‘purple’) addressed definiteness-based accounts. In noun-adjective expressions, 
syntactic complexity only modulated activity in the left posterior temporal lobe (LPTL), ~ 300 ms 
after each word’s onset: indefinite phrases induced more MEG-measured positive activity. The 
effects disappeared in single-word tokens, ruling out non-syntactic interpretations. In contrast, left 
anterior temporal lobe (LATL) activation was driven by meaning. Overall, the results support models 
implicating the LPTL in structure building and the LATL in early stages of conceptual combination.

The neural basis of reading comprehension is multi-faceted and comprises many different computations, includ-
ing the composition of individual words to build more complex phrases and sentences. This combinatory pro-
cedure involves processing syntax—i.e., the underlying hierarchical structure of a phrase or sentence. Correctly 
representing syntactic structures can be crucial for comprehension, since word meanings (e.g., ‘mouse’, ‘cat’, 
‘chase’) and world knowledge (Cats chase mice.) alone may lead to incorrect interpretations (given a sentence 
such as ‘The mouse chased the cat.’).

But although syntax has been extensively studied theoretically and experimentally, we have yet to form a 
clear, coherent picture of the neural basis of syntactic processing. In fact, the range of hypotheses remains wide, 
extending from the assertion that a specific subpart of a frontal cortical area processes syntax specifically1, to the 
claim that syntactic processing is inseparable from processing meaning within a cortical ‘language network’2,3.

One likely reason for the slow progress is the difficulty in varying syntactic structure independently of other 
confounding variables. The syntactic structure of a stimulus depends on the words used, and while we could 
manipulate the underlying structure by changing the words, doing so usually also changes the meaning of the 
stimulus and its visual (or auditory) properties, among other factors. One popular approach that attempts to 
dissociate syntax from meaning uses word lists4,5—jumbled-up word sequences that discourage syntactic struc-
ture building (‘chased the the cat mouse’)—and pseudo-word stimuli6–9—i.e., well-formed tokens that are devoid 
of meaning (‘The fouse chaled the yat.’). However, such unnatural stimuli may engage brain computations and 
processes that are extraneous to real language comprehension. In addition, most studies chiefly use functional 
MRI (fMRI) with its poor temporal resolution, obscuring the timing of syntactic effects.

Here, we use a two-pronged approach to elucidate the neural basis of syntax: (i) magnetoencephalography 
(MEG) recordings, with the dual benefits of millisecond temporal resolution and a good ability to spatially trace 
signals back to their cortical origins, and (ii) a Standard Arabic minimally-contrastive, two-word composition 
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design, which manipulates syntactic structure independently of semantic, conceptual, and visual variables 
(Fig. 1a). To note, other studies have employed basic composition designs to investigate syntactic processing, 
but dissociated syntactic and semantic variables using either pseudo-words1 or determiner-noun (‘this ship’) 
versus adjective-noun (‘blue ship’) pairs10.

Just like English, Arabic adjectives are either attributive (‘a purple chair’) or predicational (‘The chair is 
purple.’). But unlike English, Arabic adjectives always follow their nouns, and they may bear the definite article 
(‘al-’), which is written inseparably from nouns/adjectives. As Fig. 1a shows, an adjective matching its noun’s 
definiteness (i.e., whether it bears the definite article) is attributive, while a bare adjective following a definite 
noun forms a predicate, creating a full sentence.

Though the three noun-adjective conditions in Fig. 1a feature the same words that build the same concept, the 
simple addition or removal of definite articles produces syntactic structures of different complexities. There are 
different ways to conceptualize syntactic structure. One way is to consider ‘offline’ structure—i.e., the syntactic 
structure of the whole expression (schematically shown in Fig. 1a)11; as this structure requires reading the whole 
expression, its complexity is only relevant after reading the second (and last) word. In our case, zero definite 
articles (‘chair purple’) produce the simplest syntactic structure—an indefinite phrase—while two articles (‘the-
chair the-purple’) produce a definite phrase, with a more complex structure to accommodate the definite articles. 
(Moreover, some syntactic accounts analyze such adjectival structures as reduced relative clauses12; intuitively, 
this definite phrase has the same meaning as ‘the chair that is purple’.) The condition with only one article (‘the-
chair purple’) corresponds to a full sentence and a more complex structure, which accommodates extra levels of 
syntactic information, such as tense (the chair is purple now). Thus, our design also decouples ‘offline’ syntactic 
complexity from mere visual form complexity. Note that we do not pre-suppose specific syntactic operands (e.g., 
Merge1,13, or Unification14); we simply assume indefinite phrases are less complex than the other conditions, 
because they feature less layers of information.

We can also consider what occurs during ‘online’ processing, as the brain builds the structure incrementally 
starting with the first word11. Recent evidence suggests that during comprehension, sensorially-driven bottom-up 
processes interact with top-down syntactic information15–17. In our case, indefinite nouns always lead to simple 
indefinite phrases, whereas definite nouns could lead to sentences or definite phrases, resulting either way in 
more complex structures. Therefore, definite nouns may be involved in predicting or projecting bigger structures 
than indefinite nouns on the first word.

While participants read such noun-adjective pairs in a rapid serial presentation (Fig. 1b), we acquired MEG 
signals from sensors surrounding their heads. For all ROI analyses, we used single-trial regression and mixed 
effects models; we compared models with and without our factors of interest, to test whether our factors’ pres-
ence explains significantly more of the neural data. We focused on four left-hemispheric cortical regions most 
commonly associated with syntactic processing (Fig. 2a): the left anterior temporal lobe (LATL)4,9,18,19, the left 

Figure 1.   Syntactic manipulation and trial structure. (a) The three-way syntactic manipulation. Syntactic 
representation column shows schematic structure per condition; detailed schematic structures appear below 
the table. (b) Trial structure in noun-adjective blocks. Highlighted areas on time axis indicate time window 
of analyses, and the corresponding figure numbers. Colors correspond to those used in Figs. 2 and 3. (c) Trial 
structure of single-word control blocks. (d) Example task items.
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Figure 2.   Results of syntactic effects analysis. (a) Results of likelihood ratio tests, comparing models with and without 
the syntactic factor for each cortical ROI. Gray bar indicates test time window (700–1100 ms). Horizontal red lines 
indicate cluster-forming thresholds. Filled green areas indicate suprathreshold clusters. Asterisks indicate significance 
of cluster-based permutation tests within ROI and test window. (b) Model-based estimated marginal means of LPTL 
activation per condition. Green area demarcates LPTL cluster in (a). Light bands indicate standard error of mean. 
(c) Estimated marginal means of LPTL activation per condition within the cluster in (a). Significance bars correspond 
to corrected pairwise comparisons. (d) Model comparison results assessing effect of noun definiteness in noun window 
(100–500 ms). Red lines indicate cluster-forming threshold. (e) Estimated marginal means of LPTL activation per 
condition. Green area shows LPTL cluster in (d). (f) Estimated marginal means within LPTL cluster in (d).
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posterior temporal lobe (LPTL; roughly corresponding to “Wernicke’s area”)9,13,20–25, the left inferior frontal cortex 
(LIFC; roughly corresponding to “Broca’s area”)1,7,9,20,23,25,26, and the left angular gyrus (LAG)9,19. We expected 
ROIs involved in syntactic processing to respond differently to the varying complexity of our conditions: if the 
ROI is involved in top-down predictions, we expected effects on the first word (the noun), and if it is involved 
in bottom-up syntactic combinatorics, we expected effects on the second word (the adjective). As to timing, 
recent MEG studies have shown syntactic effects a few hundred milliseconds after word onset21,22, so we chose 
a 100–500 ms test window after word onset.

Another set of electrophysiology studies has queried the effect of structure during comprehension on the coor-
dinated firing of cohorts of neurons, which manifest as oscillations at different frequency bands. They found that 
β-band activity (roughly 10–30 Hz) increases more, compared to baseline, for structured (e.g., sentences) versus 
unstructured (e.g., word lists) stimuli27,28. To bridge ROI analyses with spectral oscillatory research, we compared 
the time–frequency representations of MEG sensor data in the β-band, expecting the more complex sentences 
and definite phrases to elicit greater activity increases in the β-band compared to simple indefinite phrases.

In separate blocks, participants read the same nouns and adjectives—with and without definite articles—but 
as single-word controls (Fig. 1c). These were important for ensuring the effects in two-word blocks were not 
merely due to the contrast between definite and indefinite words (see Results and Discussion). After one-third 
of the trials, a task sentence containing two blanks (or one, in single-word blocks) appeared: we instructed par-
ticipants to mentally substitute the blank(s) with the word(s) of the most recent trial, and to indicate via button 
press whether or not the result is both grammatical and plausible (Fig. 1d; see Methods).

But reading comprehension is not limited to syntactic processing; the brain also engages in the crucial step 
of semantic composition—i.e., the process of building a complex concept (‘purple chair’) from individual ones 
(‘purple’, ‘chair’)29. A recent line of MEG research has implicated the LATL and its right-hemispheric homologue 
(RATL) in basic semantic composition. Several studies have shown that phrases (e.g., ‘tomato dish’) elicit more 
activation in these regions than single words (‘dish’), ~ 250 ms after noun onset30–32—including in Arabic33. Here, 
we used more properties of Arabic to further investigate semantic composition effects using two manipulations 
orthogonal to the syntactic factor (Fig. 5a).

We manipulated the conceptual specificity of the noun (e.g., low-specificity ‘dish’ vs. high-specificity ‘soup’), 
which affects behavioral34 and neural35,36 responses. In English, main nouns that have higher conceptual specific-
ity (‘tomato soup’ vs. ‘tomato dish’) eliminate the LATL semantic composition effect; the same occurs with modi-
fiers that have lower conceptual specificity (‘vegetable dish’ vs. ‘tomato dish’)35,36. However, it is unclear whether 
this depends on the word’s role (main noun vs. modifier) or its position (first vs. second word). Since word order 
in Arabic is reversed, if specificity effects depend on word role, we expected low- but not high-specificity nouns 
to elicit the LATL effect; if they depend on word order, we expected the opposite.

Finally, semantic composition effects occur relatively early, before brain responses associated with accessing 
lexical meaning37, suggesting the effects might be sensorially-driven. We hypothesized that orthographic form 
typicality38—i.e., the degree to which a word’s written form indicates its category (e.g., noun, adjective)—could 
provide cues facilitating early composition. Form typicality has already been shown to affect early occipito-
temporal activity in MEG39 and EEG40 reading studies. To test whether it affects composition, we included an 
adjectival form typicality manipulation (see Methods). We expected high-typicality adjectives (i.e., adjectives 
that look adjectival) to facilitate early LATL effects, and low-typicality adjectives (adjectives that look ‘nouny’) 
to eliminate them.

Results
Behavioral results.  Overall task accuracy for the 21 participants included in neural analyses (see Meth-
ods) was 90.02% (SD = 5.57%; all participants: 86.52%, SD = 8.54%). Participants averaged 92.38% (SD = 4.13%) 
on grammatical and plausible items, 83.49% (SD = 10.64%) on grammatical violation items, and 91.83% 
(SD = 8.82%) on plausibility violation items. Though results suggest grammatical violation items were more dif-
ficult, we had not normed task items for difficulty—we simply designed them to keep participants engaged. 
Additionally, during each trial, participants could not predict which item type (if any) will appear. Therefore, we 
did not analyze behavioral results further.

Main syntactic ROI analyses.  We first addressed whether our syntactic manipulation explains MEG-
estimated activation in our four ROIs beyond what other variables explain. To that end, we analyzed two-word 
trials 700–1100 ms after trial onset (Fig. 2a; adjective window, Fig. 1b). At each timepoint, we modeled activation 
as follows (bold indicates predictors missing in reduced model; see Methods for details):

Since syntactic complexity has three levels (indefinite phrase, definite phrase, sentence), model comparison 
resulted in a timecourse of χ2(2)-distributed statistics (parameter indicates degrees of freedom). The biggest 
contiguous clusters of suprathreshold (> 95th-percentile) statistics appear in green (Fig. 2a). We found clusters 
in LPTL (867–964 ms from trial onset), LATL (791–802 ms), LIFC (700–715 ms), and LAG (708–723 ms). A 
cluster-based permutation analysis (Monte Carlo simulation) revealed a significant syntactic effect only in the 
LPTL (p = 0.0032, corrected; remaining ROIs: p = 0.603; see Methods). We plotted the model estimation of mean 
LPTL activation over time, per condition (Fig. 2b), and regressed average LPTL cluster activity using the full 
model; we estimated marginal means per condition and performed pairwise comparisons (Fig. 2c). This revealed 
significant differences between indefinite phrases and sentences (p = 1.7 · 10–6; corrected), and between indefinite 

(1)
activationROI (t) = intercept + complexity + specificitynoun × typicalityadj

+ freqnoun + freqadj + log(time)+
(

intercept|participant
)
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and definite phrases (p = 0.0014; but sentences vs. definite phrases: p = 0.285), with more positivity for indefinite 
phrases compared to the other conditions.

We repeated the analysis in the 100–500 ms window (Fig. 2d), in which participants had only encountered the 
noun. Thus, we replaced complexity with noun definiteness (definite, indefinite; Fig. 1b), grouping sentences and 
definite phrases together. Model comparison produced χ2(1)-distributed statistics, with LPTL (254–334 ms) and 
LAG (188–207 ms) clusters. A Monte Carlo simulation revealed a significant effect only in the LPTL (p = 0.022; 
LAG: p = 0.917). Pairwise comparison of estimated average LPTL cluster activity revealed significantly more 
positivity for indefinite compared to definite nouns (p = 4.8 · 10–5; Fig. 2e,f).

We repeated these analyses in right-hemispheric ROIs (Supplementary Fig. S1). The adjective window 
had clusters in the right posterior temporal lobe (RPTL: 720–738 ms), right anterior temporal lobe (RATL: 
864–875 ms), and right angular gyrus (RAG: 861–885 ms). However, the Monte Carlo simulation found no 
significant effects (RPTL, RAG: p = 0.245; RATL: p = 0.5). In the noun window, we found clusters in RPTL 
(121–138 ms), RATL (192–215 ms), and right inferior frontal cortex (RIFC: 382–394 ms), but the Monte Carlo 
simulation revealed no significant effects (RPTL, RATL, RIFC: p = 0.547).

Follow‑up LPTL analyses.  One potential confound is the possibility that these LPTL effects merely reflect 
sensitivity to noun definiteness, since the conditions that feature definite nouns elicit different LPTL activation 
than those that feature indefinite nouns. To test this, we conducted two follow-up LPTL analyses using single-
word controls (Fig. 1c). First, we analyzed two-word trials and single-noun trials, between 100 and 500 ms. The 
full model was:

If LPTL effects were mere noun definiteness effects, we expected them regardless of block type (one-word, 
two-word). However, if the effects are syntactic, we expected a block type × definiteness interaction, with a defi-
niteness difference in two-word blocks, exclusively. This is exactly what we found. Model comparison resulted 
in χ2(3)-distributed statistics, with an LPTL cluster (257–333 ms; Fig. 3a); the Monte Carlo simulation found a 
significant effect (p = 0.0214). We estimated marginal means per condition (Fig. 3b) and performed two pairwise 
comparisons: indefinite nouns had significantly more positivity than definite nouns in two-word (p = 4.7 · 10–5), 
but not single-word blocks (p = 0.151; Fig. 3c).

As a sanity check, and to ensure that we do find main definiteness effects (regardless of block type) where we 
expect them, we ran the same analysis between 0 and 200 ms in the lateral occipital cortex, bilaterally (Fig. 3e). 
We found a right lateral occipital cortex cluster (61–187 ms) and a significant effect there (p = 0.0056; left lateral 
occipital: 121–145 ms, p = 0.163). The underlying pattern shows more positivity for the definite nouns in both 
one-word (p = 0.0119) and two-word blocks (p = 2.7 · 10–5; Fig. 3f).

Secondly, we analyzed all single-word trials alone, to establish whether LPTL definite differences appear in 
either word category (nouns or adjectives), using this full model:

We found an LPTL cluster (189–203 ms; Fig. 3d) of χ2(3)-distributed statistics, but the Monte Carlo simula-
tion did not reveal significant effects there (p = 0.538).

Spectral analysis.  We conducted three spectro-temporal clustering analyses on two-word trials in the 
time–frequency domain (see Methods). As hypothesized, we found clusters of increased β-band activation for 
the syntactically complex sentences (Fig.  4a) and definite phrases (Fig.  4b), both compared to the syntacti-
cally simple indefinite phrases (cluster extents: sentences > indefinite phrases, 390–1200 ms and 8–32 Hz; defi-
nite > indefinite phrases, 780–1200 ms and 8–20 Hz). The permutation test revealed significant differences in 
both comparisons (sentences vs. indefinite phrases: p = 0.0156; definite vs. indefinite phrases: p = 0.0302; FDR-
corrected for three comparisons). The comparison between the two complex conditions (sentences > definite 
phrases) yielded clusters which did not survive the permutation test (Fig. 4c; smallest p = 0.366).

To ensure these effects are genuinely oscillatory (not simply evoked phase-locked components), we performed 
the same analysis on evoked response time–frequency representations (see Methods)27. No clusters in any of the 
three comparisons survived the permutation test (Supplementary Fig. S2; smallest clusters: sentences > indefinite 
phrases, p = 0.7; definite phrases > indefinite phrases, p = 0.837; sentences > definite phrases, p = 0.165). Qualitative 
comparison shows that the clusters delineated in the single-trial analyses do not appear in ERP comparisons.

Semantic composition.  For the analysis of semantic composition effects in the anterior temporal lobe and 
its interaction with noun specificity and form typicality, we analyzed two-word trials and single-word adjectives 
between 750 and 950 ms (adjective window; Fig. 5a), using this full model:

Noun type had three levels (high-specificity, low-specificity, or none—i.e., single-word adjectives) and adjec-
tive form typicality two levels (high, low). Model comparison produced timecourses of χ2(11)-distributed sta-
tistics, with LATL (826–950 ms) and RATL clusters (803–840 ms; Fig. 5b). The Monte Carlo simulation found 
an LATL effect (p = 0.0016; RATL: p = 0.1143).

(2)
activationLPTL(t) = intercept+block×def initenessnoun+specificitynoun+freqnoun+log(time)+

(

intercept|participant
)

(3)
activationLPTL(t) = intercept+categoryword×def initenessword+freqword+log(time)+

(

intercept|participant
)

(4)
activationROI (t) = intercept+typenoun×typicalityadj×def initenessadj+freqadj+log(time)+

(

intercept|participant
)
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We estimated mean LATL activation levels over time, per condition. For visualization purposes, we divided 
the 12 conditions by adjective typicality and definiteness (Fig. 5c). We regressed averaged LATL cluster activity 
against the full model to estimate marginal means per condition. For each level of adjective typicality and definite-
ness, we performed pairwise comparisons between the three noun types: we wanted to know which circumstances 
drive differences between one- and two-word trials. Results show a three-way interaction between noun type, 
adjective typicality, and adjective definiteness (Fig. 5d; Supplementary Table S2). High form-typicality adjectives 

Figure 3.   Follow-up analyses in the LPTL and visual cortex. (a) Model comparison results assessing the effect 
of noun definiteness, block type, and their interaction in the noun window. Red line indicates cluster-forming 
threshold. (b) Model-based estimated marginal means of LPTL per condition, with cluster from (a) shown 
in green. (c) Estimated marginal means of LPTL activation within cluster. Significance bars show corrected 
pairwise comparisons. (d) Model comparison results assessing the effect of word definiteness, syntactic category, 
and their interaction in single-word blocks. (e) Same as (a), but in the lateral occipital cortex, bilaterally, and in 
an earlier test window (0–200 ms). (f) Model-based estimated marginal means per condition over time (right) 
and averaged within cluster (left).
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in two-word trials elicited more LATL positivity than single-word trials, regardless of adjective definiteness or 
noun specificity. In low form-typicality adjectives, the effect appeared only for definite adjectives, when compar-
ing single-word and low noun-specificity trials.

Discussion
We used MEG data and a minimally-contrastive basic composition design to investigate the neural basis of 
syntax. Of the four chosen ROIs, only the LPTL was sensitive to our syntactic manipulation in noun-adjective 
pairs, ~ 300 ms after onset of each word, with more positivity for the structurally-simple indefinite phrases 
compared to sentences and definite phrases. Here, we discuss the effect’s pattern and possible interpretations, 
and its locus in space and time.

The results rule out several interpretations. First, visual differences between conditions cannot explain the 
effect: sentences and indefinite phrases feature identical indefinite adjectives (Fig. 1a) but produced the biggest 
pairwise difference on the adjective (Fig. 2c).

Secondly, if noun definiteness (‘the chair’ in sentences and definite phrases, versus ‘a chair’ in indefinite 
phrases) explained LPTL activity, we would have observed similar effects in single-word nouns. The mere pres-
ence of noun-definiteness sensitivity in the LPTL might not necessarily preclude a syntactic role for the LPTL, 
though it would introduce a potential confound in the interpretation of LPTL results. However, our analysis 
rules out this possibility, since the LPTL difference disappears in single-word trials, regardless of word category 
(Fig. 3d). Also, nouns in two-word blocks, but not single-word blocks, elicited LPTL effects (Fig. 3a–c). As a 
sanity check, the right visual cortex did respond to noun definiteness across block types (Fig. 3e–f).

A remaining possibility is that the LPTL processes noun definiteness differently for multi-word and single-
word contexts. But LPTL clusters are time-locked to each word’s onset (Fig. 2a,d). If adjective-window activity 
reflected the noun’s definiteness, the adjective-window cluster could have appeared at any different latency. It is 
more likely that the adjective cluster is a bottom-up response to the adjective itself.

The series of analyses we conducted rule out non-syntactic interpretations of the LPTL effects; the remain-
ing viable possibility is that the effects reflect a syntactic computation, though its nature remains unclear. One 
possibility we consider is that, rather than complexity, LPTL activity simply tracks some function of syntactic 
transition probabilities between words within trials (e.g., the probability of encountering a definite adjective given 
an indefinite noun, P(definite adjective | definite noun)). To investigate this, we briefly consider three popular 
information theoretic metrics, expressed as a function of transition probabilities: entropy, entropy reduction, and 
surprisal. To compute these metrics, we calculated transition probabilities based on both the Arabic GigaWord 
corpus (e.g., in the corpus as a whole, what is P(definite adjective | definite noun)?) and our experimental design 
(e.g., in our experiment, specifically, what is P(definite adjective | definite noun)?; Fig. 1b).

Syntactic entropy reflects uncertainty about future syntactic information based on current and past 
information41. But on the adjective, corpus-extracted entropy values are similar across our three conditions 
(Supplementary Table S3). If LPTL activity reflects design-based entropy instead, we should have observed no 
differences between the three conditions in response to the adjective, since entropy becomes zero (trial is over).

Figure 4.   Pairwise comparisons of time–frequency representations of increased activity in two-word trials 
compared to baseline. Color bar shows t statistic values. White dashed lines represent word onsets. Green 
dashed lines delineate suprathreshold clusters which survive the permutation test.
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Figure 5.   Semantic composition analyses and LATL effects of form typicality and conceptual specificity. (a) Trial structure 
outlining noun conceptual-specificity and adjectival form typicality manipulations. Highlighted letters on adjectives indicate 
form typicality (yellow) and untypicality (orange) cues. (b) Model comparison results assessing the effect of noun type, 
adjectival form typicality, adjectival definiteness, and all possible interactions in the adjective window (750–950 ms), in the 
LATL (left) and RATL (right). Red lines indicate cluster-forming threshold. (c) Model-based estimated marginal means of 
LATL activation per condition. Conditions are separated by adjective form typicality and definiteness. Green shape demarcates 
extent of LATL cluster in (a). (d) Estimated marginal means of LATL activation within cluster per condition. Significance bars 
show corrected pairwise comparisons.
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The same applies for syntactic entropy reduction42: corpus values are zero for both definite and indefinite 
nouns (Supplementary Table S4), despite observed differences in the noun-window LPTL activity. As to design-
based entropy reduction, indefinite nouns in two-word blocks, which invariably produce indefinite phrases, 
entail a bigger entropy reduction than definite nouns (Fig. 1b); but if this reduction explained LPTL activity, we 
would have observed the opposite response to the adjective—more positivity for sentences and definite phrases, 
as entropy reduction increases in these two conditions.

Surprisal (unlikelihood of current information, given past information)41 also fails to explain our results. On 
the adjective, corpus-based surprisal is highest for sentences and lowest for definite phrases (Supplementary 
Table S5), which does not match the adjective LPTL pattern. As to design-based surprisal, in two-word blocks, 
indefinite nouns are less frequent (one in every three trials, Fig. 1b), thus more surprising. But if surprisal 
explained LPTL activity, we would have observed the opposite response to the adjective: given an indefinite noun, 
an indefinite adjective presents zero surprisal, whereas given a definite noun, definite and indefinite adjectives 
are equally more surprising.

Having ruled out syntactic interpretations that are not due to structure complexity, we turn to the remaining 
viable interpretations. On the one hand, we expected an ROI tapping into the ‘offline’ syntactic complexity of the 
whole expression to respond differently to complex versus simple stimuli during the presentation of the second 
word. On the other hand, we expected an ROI involved in predictive syntactic processing to respond differently 
to the same manipulation on the first word. Both predictions were borne out, both in the LPTL. Thus, it is possible 
that the two LPTL effects, after first word onset and after second word onset, reflect different syntactic processes. 
Specifically, it is unlikely that the LPTL effect after the first word (Fig. 2a–c) reflects purely bottom-up syntactic 
structure building, else, we would have observed the same activity patterns in response to nouns in one- and 
two-word trials (Fig. 3a). In two-word trials, it is rather the anticipation of a second word that likely elicits the 
noun effect. This is consistent with previous work showing that syntactic processing during comprehension is 
predictive17,43–45. Conversely, it is unlikely that the LPTL effect after the second word (Fig. 2d–f) is a top-down 
predictive process, since all trials ended after the second word, and the probability of a task item (and the type 
of the task item) was equal for all trials. The second word effect likely reflects bottom-up syntactic structure 
building or combinatorics.

Thus, the main remaining plausible possibility is that the LPTL engages in a dual syntactic role: a top-down 
predictive structure building on the noun (in two-word blocks, definite nouns trigger the prediction of a bigger, 
albeit underdetermined, syntactic structure compared to indefinite nouns)11, and a bottom-up syntactic compo-
sition process on the adjective (in two-word blocks, sentences and definite phrases trigger bottom-up building 
of bigger syntactic structures). This possible duality is reminiscent of and compatible with left-corner syntactic 
parsing strategies, which combine characteristics from both bottom-up and top-down parsers46,47. Moreover, 
the apparent involvement of LPTL in syntactic processing aligns with different models of syntactic processing 
in the brain, such as the prediction-binding model48, or the hierarchical structuring versus morpho-syntactic 
linearization model23, which ascribes the former to the LPTL.

Note that, throughout this work, we made no assumptions about the elementary operation at the heart of 
the syntactic computation (e.g., Merge1,13, Unification14, or otherwise). If LPTL activity indeed reflects syntactic 
structure processing, we do not make any specific claims about whether it tracks the number of elementary opera-
tions, or some other function describing the complexity of the syntactic representation; these different metrics 
are likely highly correlated in our design, and it was not our intention to adjudicate between them.

Regarding the effect’s locus, our results are in line with previous fMRI9,24,25, lesion49, and MEG8,21,22 findings 
implicating the LPTL in syntactic processing. However, they contrast with results from two main sets of stud-
ies in recent years. One set of results has implicated the LIFC in syntactic structure building (embodied by the 
theoretical operation Merge)1,7,10,13, while the other has presented evidence suggesting that syntactic processing 
is distributed across a large language network, and that it is inseparable from lexico-semantic processing2,3. These 
differences might be explainable in terms of experimental design. In a fully grammatical, lexico-conceptually 
and visually controlled design, we found that our syntactic manipulation did not significantly affect the LATL, 
LIFC, or LAG, suggesting a separation between the processing of syntax and meaning in the language network. 
Particularly interesting is the absence of LIFC effects, as this region has been traditionally associated with syn-
tactic processing. However, recent findings suggest that production—rather than comprehension—demands 
drive activity in that region23,24. Our results also suggest left-lateralization of syntactic processing, as no right-
hemispheric ROIs responded to our manipulation (Supplementary Fig. S1).

Our cluster timing (~ 300 ms post onset) comes after the 170-ms mark for morphological decomposition50,51—
i.e., the step of breaking a complex written word (e.g., ‘al-banafsaji:’) down to its parts (‘al-’, ‘banafsaji:’). This 
suggests that by the time the clusters occur, information about definiteness and, by extension, the syntactic 
structure, is already available to the brain.

We also note that other MEG studies implicating the LPTL in syntactic processing reported earlier (~ 220 ms)21 
and later (~ 350 ms)22 clusters; however, they used different designs with lengthier stimuli. Insofar as all LPTL 
effects tap into the same syntactic computations, this could suggest temporal flexibility in syntactic processing.

We also bridged ROI analyses with neural oscillations research. Our spectro-temporal analyses in two-word 
trials showed significantly larger increases in β-band activation for the syntactically more complex conditions 
(sentences, definite phrases) compared to the simple condition (indefinite phrases; Fig. 4a–b). This extends 
previous results showing such β-band effects when comparing stimuli with and without syntactic structure27. 
Here, we replicate this between equally grammatical stimuli that, while visually and conceptually matched, have 
different levels of syntactic complexity. Our results support models assigning lower β-band oscillations a major 
role in syntactic processing48. Importantly, both clusters (Fig. 4a–b) cover the temporal extent of the LPTL 
clusters after the second word in the ROI analyses (~ 900 ms). The clusters largely appear after the onset of the 
second word, even though ROI analyses revealed effects after the first word, too. This could further support the 
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speculation that the two LPTL effects underlyingly reflect different processes, only one of which (bottom-up 
structure building) appears in β-band activity. Cross-frequency β-θ coupling is specifically suggested to support 
syntactic predictions48,52, while other sets of results have shown a modulation of the δ-band spectral components 
by combinatorial variables53. More research is needed to address the different models directly, and to further 
bridge ROI results and spectral analyses.

In contrast to the syntactic effects, LATL semantic composition appeared ~ 275 ms after adjective onset 
(Fig. 5). Here, we tackled two questions: (i) Does form typicality (the degree to which a word’s visual form gives 
away its category) facilitate semantic composition? and (ii) Do conceptual specificity effects during composition 
depend on a word’s position or its role? We found a three-way interaction between noun type, adjective form 
typicality, and adjective definiteness (Fig. 5c–d).

All high form-typicality adjectives elicited composition effects, regardless of definiteness or noun specificity 
(two leftmost panels in Fig. 5d). Low typicality adjectives eliminated composition effects (except in one case, 
discussed below).

To note, while low typicality adjectives had 4 letters in their bare (masculine, indefinite) form, high typical-
ity adjectives varied in length (bare form mean: 4.7 letters, SD‍ = ‍0.89 letters). But it is unlikely that this small 
difference explains LATL effects; if word length had any effect on composition, we would expect the opposite: 
longer adjectives hindering composition.

In Arabic, noun-adjective pairs combine readily, whereas noun-noun pairs do not. Thus, the more likely inter-
pretation of the effect is that high-typicality adjectives, with their adjective-biasing visual form (see Methods), 
carry sufficient cues to enable early composition, whereas low-typicality adjectives, with their noun-biasing visual 
form, do not provide enough evidence for this early semantic composition to occur. Our results thus support 
the hypothesis that semantic composition during reading depends on the availability of visual cues regarding 
the categories of the words being read. Recent research suggests that one possibility is that visual information 
reaches the LATL via a ventral stream, which includes occipital and inferior temporal regions54, which have 
been shown to subserve reading comprehension55,56. Importantly, the basis of our form typicality manipulation 
is morphological (see Methods), and activity in the visual word form area, which is part of the ventral stream, 
is affected by morphological properties during comprehension50,51.

In the conditions where we found conceptual specificity effects (definite, low-typicality adjectives), it was 
two-word trials with low-specificity (‘period’)—but not high-specificity (‘year’)—nouns that elicited significantly 
more positivity than single-word trials. This is consistent with previous research showing the same pattern on 
head nouns in English word pairs35,36; thus, it is the noun’s role (main vs. modifier), rather than its position, that 
seems to dictate conceptual specificity effects on LATL composition.

To complete the examination of the LATL effects, we turn to what underlies the difference between indefinite 
and definite low-typicality adjectives (two rightmost panels in Fig. 5d). One possibility is that definite articles 
could constitute another, albeit weaker, form-based cue: a definite article necessarily implies a word is either a 
noun or an adjective (and not a verb, or other). Thus, for definite, low form-typicality adjectives, there are only 
partial visual cues for the word’s category.

The emerging picture from this and other studies is one where the occurrence of early LATL composition 
effects depends on the strength of the available visual evidence: if there is strong evidence supporting composi-
tion (e.g., high form-typicality adjectives following a noun), it takes place, and if there is strong evidence against 
composition (e.g., low form-typicality adjectives that look like nouns), it does not. However, if the evidence is 
inconclusive (as with our definite low-typicality adjectives), whether early LATL composition occurs is sensitive 
to other features and factors, such as conceptual specificity in this case. Of course, further studies are required to 
directly test this hypothesis. Previous studies have shown that LATL activity is modulated by complex interac-
tions between two sets of variables (e.g., conceptual and logical, like negation57).

Finally, as one reviewer remarked, it is important to note that while MEG’s array of sensors allows us to 
estimate the cortical sources of neural activity, these estimates can carry errors compared with real neuronal 
activities, mainly due to leakage of activity between real and reconstructed neural patterns58. Thus, it would be 
beneficial to use similar designs to test hypotheses and replicate results using high spatial resolution methodolo-
gies, such as fMRI.

In sum, a minimally-contrastive, basic composition design that dissociates syntactic variables from visual, 
lexical, and conceptual variables—without resorting to unnatural stimuli—revealed two syntactic effects in the 
LPTL. By elimination of other possibilities, it is likely that one effect corresponds to predictive structure build-
ing, while the other reflects bottom-up syntactic composition. A spectral analysis revealed a greater overall 
increase in activity for syntactically complex—compared to simple—conditions in the lower β frequency range. 
We also found semantic effects in the LATL, modulated by form typicality and conceptual specificity. These 
results provide support for models that implicate the LPTL in structure-driven processing, and the LATL in 
meaning-driven processing.

Methods
Participants.  We recruited 34 right-handed native Arabic speakers at New York University (NYU; 18) and 
NYU Abu Dhabi (NYUAD). NYU and NYUAD Institutional Review Boards independently approved the exper-
iment, which we performed in accordance with relevant guidelines and regulations. Participants had normal or 
corrected-to-normal vision. They provided written informed consent and received compensation. We excluded 
7 participants’ data because of excessive noise and/or poor quality. We further excluded 6 participants’ data for 
scoring below 60% on one or more task types (Fig. 1d). We used data from 21 participants (12 at NYU; mean 
age = 26.8 years, SD = 5.7 years; 11 identified as female).
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Materials.  We created 36 experimental sets and three practice sets. Each set contained 20 conditions: twelve 
two-word conditions (3 syntactic × 2 conceptual specificity × 2 form typicality levels), and eight single-word con-
ditions (nouns: 2 specificity × 2 definiteness levels; adjectives: 2 form typicality × 2 definiteness levels). In total, 
there were 720 trials. Half the sets had feminine nouns/adjectives (i.e., had a single-letter feminine suffix), and 
half had masculine ones (no suffix).

We used the Word Tree in Arabic Wordnet (v2.0)59 to find hierarchically-related noun pairs of the same gen-
der (e.g., period dominates year). We designated hierarchically-dominant nouns as low conceptual-specificity.

Our form-typical adjectives are derived from nouns by adding a single-letter suffix (yellow marking in Fig. 5a). 
The likelihood of words with this suffix being adjectives is 78.9% (calculated using Arabic Gigaword corpus (v5.0), 
parsed with MADAMIRA60). Thus, the words’ form provides a strong ‘adjectivality’ visual cue. Untypical adjec-
tives were of the template C1aC2i:C3, where Cj is the jth consonant in a triconsonantal Arabic root [C1, C2, C3]; in 
Arabic, different roots can be substituted into the same template to form different words. The corpus likelihood 
of words of this template being adjectives is 29.4%: the words’ form ( ‘i:’ between C2 and C3; orange marking in 
Fig. 5a) provides a strong visual cue against ‘adjectivality’, and in favor of ‘nouniness’.

Task.  Half the task items resulted in ‘good’ (grammatical and plausible) sentences, and half in ‘bad’ sentences, 
of which half had grammatical violations, and half had plausibility violations (Fig. 1d). We counterbalanced 
presence of task items and types of resulting sentences, across conditions.

Stimuli presentation.  We divided stimuli into 10 blocks (6 two-word, 4 single-word), using a Latin square 
design. Each word appeared only once per block (e.g., ‘chair purple’ and ‘the-throne the-purple’ appeared in dif-
ferent blocks). For each participant, we randomized block order and trial order within blocks.

Each trial’s elements appeared on screen for 300 ms, followed by a 300 ms blank screen. Trials began with 
a fixation cross, followed by the first word. For two-word trials, the second word followed. On non-task trials, 
a symbol (<O>) appeared and participants pressed either button to continue (Fig. 1b). On task trials, the task 
sentence appeared until participants responded. To avoid entrainment to presentation frequency, after each trial 
a blank screen appeared with a random uniformly-distributed duration (466.66–700 ms).

A projector relayed the image onto a screen inside the Magnetically Shielded Room (MSR); visual angles 
across both systems were 0.7° vertically. For presentation, we used PsychoPy261 (v1.84.2) and the Arabic Text 
Reshaper package (https://​github.​com/​mpcabd/​python-​arabic-​resha​per). Content appeared in white against 
gray. Explanation screens appeared first, followed by practice sets and experimental stimuli. The experiment 
lasted ~ 55 min.

Data acquisition.  Before the experiment, we digitized participants’ head-shape using a hand-held FastS-
CAN laser scanner (Polhemus, VT, USA) for later co-registration (i.e., aligning brain, sensors, and head-shape 
within the MSR; see ‘MEG data pre-processing’ below). We marked and digitized five points on the head: center, 
left, and right of forehead, and one anterior of each auditory canal. Inside the MSR, we placed marker coils on 
digitized points to localize the participant’s head relative to the MEG sensors. Marker measurements obtained 
right before and after the experiment measured overall movement. During the experiment, we acquired MEG 
data using 157- (NYU) and 208-channel (NYUAD) axial gradiometer systems (Kanazawa Institute of Technol-
ogy, Kanazawa, Japan), with a 1000 Hz sampling rate, and an online 200 Hz low-pass filter. We collected struc-
tural Magnetic Resonance volumes from 5 participants using NYUAD’s MRI facility (3T MAGNETOM Prisma, 
Siemens).

MEG data pre‑processing.  We noise-reduced data using the Continuously Adjusted Least Squares 
Method (CALM62; MEG160 software v2.004A—Yokogawa Electric Corporation and Eagle Technology Corpo-
ration, Tokyo, Japan), which discounts noise recorded in reference channels, located inside the MSR away from 
the brain. We imported data into MNE-Python63 (v0.16), and band-pass-filtered them between 1 and 40 Hz. 
We overrode bad channels (flat/excessively noisy; NY: min = 7, max = 11, median = 8; AD: min = 7, max = 16, 
median = 9) and interpolated missing data using remaining sensors. Then, we applied an independent compo-
nent analysis (ICA) algorithm, to identify and remove system-characteristic or identifiable noise components 
(e.g., eyeblinks, heartbeats) based on visual inspection. Afterwards, we segmented data into epochs, -100–
1200 ms relative to first word onset (for semantic composition analysis, single-adjective epochs were epoched 
relative to fixation cross onset, to temporally align adjectives across one- and two-word blocks; Fig. 5a). Finally, 
we baseline-corrected epochs using the first 100 ms, and rejected epochs containing amplitudes exceeding 3000 
fT (NYU) or 2000 fT (NYUAD; difference due to ambient magnetic noise differences between systems/cities.) 
On average, we lost 0.27% (SD = 0.36%) of trials at this stage.

For co-registration, we scaled the FreeSurfer average brain64 to match participants’ head-shape, and created a 
source-space mesh of 2,562 vertices per hemisphere. For participants with structural MR volumes, we used those 
for co-registration instead of FreeSurfer’s average. Using the Boundary Element Model method, we calculated a 
forward solution from vertices, then estimated the inverse solution per trial, per subject, assuming an SNR value 
of 1. We constrained dipoles along the direction orthogonal to local cortical patches, yielding a signed activation 
estimate. The inverse solution resulted in a noise-normalized Dynamic Statistical Parameter Map (dSPM65).

ROIs.  We averaged dSPM values within each ROI’s sources. For syntactic analysis ROIs, we used MNI-coor-
dinate seeds from a study reporting clusters in all four regions9 (Table 1). We grew seeds up to a 40 mm radius 

https://github.com/mpcabd/python-arabic-reshaper
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(LIFC: 30 mm) without overlap (Fig. 2a). For right-hemispheric homologues, we reversed seeds’ x-coordinate 
sign, growing the labels similarly.

For semantic analysis ROIs, we picked an MNI seed on the cortical surface of the left temporal pole 
((– 57, – 2, – 33); RATL: reversed x-coordinate), and grew it up to 40 mm, roughly covering the anterior half of 
the lobe (Fig. 5b).

Statistical models and analyses.  We built and estimated regression models using R (v3.6.1) and RStudio 
(v1.2.5001). Linear mixed effects models depended on the question, but included these fixed effects where pos-
sible/relevant: trial onset-time from experiment start (log-transformed, z-scored), gender (factor: masculine, 
feminine), Zipf frequency of nouns/adjectives66 (i.e., log10(frequency/billion words); z-scored). Additionally, we 
included the variables of interest (see Results). Random effects included intercepts per participant; more com-
plex random effects structures resulted in non-convergence.

Analyses regressed dSPM values at each timepoint using two nested models; reduced models always left out 
our variable(s) of interest. Model comparison produced timecourses of χ2-distributed statistics quantifying the 
model’s improvement due to variable(s) of interest. We identified clusters of contiguous timepoints with statistics 
exceeding the 95th-percentile threshold of χ2 distribution. We defined cluster size as the sum of its χ2 values. 
Per ROI, we chose the biggest cluster’s size as the significance-determining statistic.

We determined significance using a cluster-based (Monte Carlo) permutation test67. We randomly shuffled 
condition labels per participant 10,000 times, re-comparing models to retrieve the biggest cluster per ROI. For 
each ROI, we compared the real cluster against a distribution of 10,000 simulated clusters. ROI p-values equal the 
proportion of permutations with clusters larger than the real cluster, within test window. We corrected p-values 
for multiple comparisons across ROIs using the False Discovery Rate (FDR) procedure68. Effects are significant 
if corrected p-values < 0.05.

For pairwise contrasts, we regressed averaged ROI activity within cluster against the full model, and compared 
model-based estimated marginal means, correcting for multiple comparisons using multiplicity adjustment.

Spectral analysis.  Using MNE-Python, we conducted spectral analyses on the MEG sensor data in two-
word trials. Using Morlet wavelets (4 cycles globally), we calculated time–frequency representations of each 
epoch, for each participant and sensor independently. As we had a specific hypothesis about the β-range, we lim-
ited the frequency domain to 8–32 Hz, with 1 Hz steps. After spectral decomposition, we downsampled time–
frequency representations by 5 along the time domain, for computation efficiency. We calculated the log-ratio 
of activity increase per epoch, compared to baseline (-100–0 ms). For each condition and subject, we averaged 
activity profiles across all sensors and trials, resulting in a three-dimensional matrix (subject, time, frequency) 
per condition.

We performed spectro-temporal clustering analyses, comparing the three condition pairs: a time–frequency 
point contributed to a cluster if the local, one-tailed paired t-test statistic corresponded to a value more extreme 
than the 95% percentile. We then ran 10,000 permutation analyses, yielding 10,000 clusters. If the biggest real 
cluster was larger than 95% of permutation clusters, we concluded there is a significant difference between condi-
tions in test window. We corrected for three comparisons using FDR.

Finally, we repeated this analysis for time–frequency representations calculated based on average evoked (not 
single-trial) responses per subject and condition. This eliminates oscillatory contributions to the time–frequency 
representations, and allows us to qualitatively ensure that effects in single-trial data reflect genuine oscillatory 
signatures, not phase-locked spectral components27.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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