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Abstract 

Background  The transition from explanative modeling of fitted data to the predictive modeling of unseen data 
for systems biology endeavors necessitates the effective recovery of reaction parameters. Yet, the relative efficacy 
of optimization algorithms in doing so remains under-studied, as to the specific reaction kinetics and the effect 
of measurement noises. To this end, we simulate the reactions of an artificial pathway using 4 kinetic formulations: 
generalized mass action (GMA), Michaelis–Menten, linear-logarithmic, and convenience kinetics. We then compare 
the effectiveness of 5 evolutionary algorithms (CMAES, DE, SRES, ISRES, G3PCX) for objective function optimization 
in kinetic parameter hyperspace to determine the corresponding estimated parameters. 

Results  We quickly dropped the DE algorithm due to its poor performance. Baring measurement noise, we find 
the CMAES algorithm to only require a fraction of the computational cost incurred by other EAs for both GMA and lin-
ear-logarithmic kinetics yet performing as well by other criteria. However, with increasing noise, SRES and ISRES per-
form more reliably for GMA kinetics, but at considerably higher computational cost. Conversely, G3PCX is among the 
most efficacious for estimating Michaelis–Menten parameters regardless of noise, while achieving numerous folds 
saving in computational cost. Cost aside, we find SRES to be versatilely applicable across GMA, Michaelis–Menten, 
and linear-logarithmic kinetics, with good resilience to noise. Nonetheless, we could not identify the parameters 
of convenience kinetics using any algorithm.

Conclusions  Altogether, we identify a protocol for predicting reaction parameters under marked measurement 
noise, as a step towards predictive modeling for systems biology endeavors.
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Background
In the book A Brief History of Intelligence [1], the author, 
Max S. Bennett, makes the important point of hav-
ing a model that explicitly reproduces the fundamental 
features and interactions of a phenomenon (i.e., first-
principled), to effectively learn the best course of action 
regarding it. For instance, the newly acquired perception 
of time and physical space by vertebrae has endowed a 
more advanced form of reinforcement learning, based 
on a model of the physical world. The new capability ena-
bles the schooling of sophisticated maneuvers, related to 
hunting and predator avoidance, as well as navigational 
skills, to enhance survival fitness in a harsh prehistoric 
world. Early mammals further acquire the capacity to 
flexibly simulate and hence discern alternative actions 
in their world model, providing them with a critical 
advantage over other animal classes, as to the efficiency 
and safety of learning. To note, the ancient competitive 
advantage of using a first-principle model for learning 
remains relevant in the current era of the fourth indus-
trial revolution.

In an earlier commentary, we have set out the criti-
cal role of explicitly modeling the network and reaction 
kinetics for effective learning about biological systems [2]. 
For metabolic engineering [3], synthetic biology [4], or 
even precision drug endeavors [5], the holistic modeling 
of physico-chemical interactions among molecular com-
ponents (systems biology [6]) is necessary for the recon-
struction and elucidation of emergent behaviors and the 
identification of system-wide mechanisms and effects. 
Furthermore, the mathematical model of the change in 
component levels with time based on such interactions 
(i.e., rate laws or reaction kinetics), can be used to flex-
ibly simulate, and predict component dynamics under 
broad conditions. From an application perspective, the 
mechanistic model also provides a structure grounded in 
first principles to help reduce sample size and datapoint 
requirement for training, the effect of biological and 
technical noises, data leakage, and batch effects [2]. The 
model also grounds predictions in molecular mechanism, 
thereby allowing for experimental verification, and ena-
bling explainability. Furthermore, in recent years, there 
has been increasing interest in achieving the aspiration 
of digital twin [7] in various endeavors [3–5]. Regardless, 
however, its underlying principle compels the mirroring 
of a physical twin in its dynamic behavior, which is only 
truly compatible with an explicit model describing the 
underlying pertinent mechanisms. In all, the mechanistic 
model remains central to any machine learning/artificial 
intelligence approach for effective learning about biologi-
cal networks.

While systems biology has begun its nascent transi-
tion from the explanatory modeling of fitted data to the 

predictive modeling of unseen data [2, 8], there remain 
two broad objectives in the field:

1.	 The learning of a mechanistic model of the system 
for predicting unobserved dynamics, a shift from the 
earlier, more restricted objective of calibrating the 
parameters of a given model to best reproduce the 
fitted data [9];

2.	 The finding of an optimal set of system input vari-
ables, given the design objective(s) for the biological 
system. This is typically done by repeatedly simulat-
ing the system, according to values sampled from 
the input variable hyperspace. The design landscape 
is then separately modeled and searched to find the 
set of input variables corresponding to the optimal 
design objective.

In this regard, researchers are cognizant of the chal-
lenges in learning such a mechanistic model, both in 
determining the underlying rate laws and their parameter 
values, which are sensitive to biochemical contexts, such 
as pH, temperature, ion concentrations, and the intracel-
lular microenvironment [10–15]. A suggested approach 
to bypass the difficulty is to model the individual reaction 
rates as a black box ML model [8] but this would result 
in a lack of clarity as to their biochemical basis. A more 
common heuristic approach is to first work on the selec-
tion or discernment of rate laws, followed by estimation 
of the associated parameters. Here, the point to note is 
that there remains room for improvement regarding the 
latter task in attaining the aspiration of predictive mod-
eling for systems biology endeavors. The former task of 
determining the underlying form of the rate laws, and 
how to better integrate both tasks, presents further chal-
lenges that are not within the scope of the current study.

Currently, the various techniques available for param-
eter estimation are essentially of two main categories. 
The first consists of statistical (and sometimes tedious) 
procedures that have been prescribed for specific forms 
of reaction kinetics, including generalized mass action 
(GMA) [16–18], linear-logarithmic (Linlog) [19, 20], and 
convenience kinetics (CK) [21]. However, it is unclear 
what technique would then be easily applicable for the 
myriad combinations of such formulations and new 
ones that could be prescribed for the individual reac-
tions. Certainly, costly ad hoc experiments [22] or deep 
learning methods [23–25] could be specified in specific 
circumstances but a standardized computational proce-
dure would make the learning process more efficient and 
allow for automation. Thankfully, the predicament can be 
bypassed by rephrasing the problem generically as one 
of optimizing a nonlinear objective function in bounded 
parameter search space (nonlinear programming) [26]. 
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What is only needed in this regard is an optimization 
algorithm that can traverse the landscape efficiently for 
sampling the objective function value. The rephrased 
problem thus trades the ill-defined task of prescribing 
parameter estimation procedure, by rate law formulation, 
with a more explicit one of finding an effective optimiza-
tion algorithm.

The new task is, however, no walk in the park. Ideally, 
the algorithm must be capable of both exploring and 
exploiting diverse landscapes to find the global optimal 
among numerous local solutions. The biological land-
scape is characterized by terrains more than just numer-
ous and steep optima. It may also be inconsistent because 
of technical and biological variabilities, and stochasticity, 
or be distorted by a non-representative or inadequate 
number of datapoints. The terrain may also interchange 
depending on the specific parameter dimension and thus 
exhibit sensitivity to small changes in the search space 
location. The terrain may further be sensitive to the input 
data (termed ill-conditioning), due to the prevalence of 
biochemical feedback/forward loops, for instance, and 
further aggravated by variability in experimental meas-
urements. For these reasons, the optimization algorithm 
must minimally be robust and self-adapt quickly to the 
local terrain in carrying out its task.

Historically, researchers have recognized the advan-
tage of using stochastic algorithms [9] over determin-
istic ones (e.g., gradient-based [27] and direct search 
methods [28, 29]) for the search and optimization of 
a multi-modal landscape. Among the more effective 
stochastic methods, evolutionary strategies (ESs) have 
been consistently reported to be more robust and effi-
cient [30–34] than either simulated annealing (SA) [35] 
or genetic algorithms (GA) [36]. This may particularly 
be due to their capacity for self-adapting their strategy 
parameters, while having all the properties necessary 
for global optimization [32]. Their outperformance 
in problems having continuous search space has also 
been attributed to their specific design for them [26]. 
On the other hand, SA and GA are originally intended 
to solve combinatorial problems based on discrete var-
iables [37, 38] with a simplified search space. Indeed, 
the efficacy of ESs has caught the attention of sys-
tems biologists. For example, they have been used for 
the explanative modeling of the circadian clock [39], 
development and pattern formation [40–43], and 
iron metabolism [44]. More broadly, they have been 
employed to help discern network mechanisms [45], 
reverse engineer pathways [46, 47], and infer signaling 
dynamics [48]. In all, the specific application of ESs has 
been largely based on earlier referenced works and/or 
through trials and errors. While such qualitative objec-
tives can be adequately met by the ad hoc selection of 

optimization algorithms, the aspiration of predictive 
modeling will require a more thorough characteriza-
tion of promising algorithms in their ability to recover 
the underlying reaction parameters. For many real-
world applications, it is as critical that the predictions 
are made on time [7], thereby placing a premium on 
the efficiency of the algorithm.

Using both criteria, we ask in this study if there is any 
evolutionary algorithm (EA) that can efficiently trans-
verse the landscape of major reaction kinetics to find the 
globally optimal solution. Given the hard nature of the 
question, we also investigate if there is any value-add in 
prescribing specific algorithm for the individual formula-
tions of reaction kinetics. In doing so, we recognize there 
could be no algorithm that outperforms others under all 
contexts, based on our metrics (no free lunch theorem 
[49]). Instead, we are searching for acceptable tradeoffs 
[50, 51] among our key criteria. To this end, we screen 
the effectiveness of 5 widely used and available EAs in 
estimating the kinetic parameters of an artificial in sil-
ico pathway, according to 4 canonical formulations. To 
mimic an actual application, we otherwise replicate the 
structure of the mevalonate pathway for limonene pro-
duction. As a result, we find specific algorithms to be 
effective under empirical-like conditions, after applying 
key techniques and learning points to mitigate the effects 
of measurement errors. Our resulting protocol thus 
allows for the more accurate modeling of biological path-
way dynamics, as a step towards realizing the aspiration 
of predictive modeling for real world endeavors.

Results
Screening evolutionary algorithms for parameter 
estimations of canonical reaction kinetics
We screen the effectiveness of 5 widely used and available 
EAs (overview provided in the “Methods” section):

	 i.	 Differential evolution (DE),
	 ii.	 Stochastic Ranking Evolutionary Strategy (SRES),
	iii.	 “Improved SRES” (ISRES),
	iv.	 “Covariance Matrix Adaptation Evolution Strategy” 

(CMAES), and
	 v.	 “Generalized generation gap model with parent-

centric combination” (G3PCX)

for 4 kinetic formulations (Additional file 1) of an artifi-
cial pathway (Fig. 1A and B):

	 i.	 GMA [52],
	 ii.	 Michaelis–Menten (MM) [53],
	iii.	 Linlog [19], and
	iv.	 CK [21]
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Fig. 1  Overview of the approach used in the study. A Artificial pathway used in the study by replicating the topology of the mevalonate pathway 
for limonene synthesis. Arrows refer to reaction. Dash lines represent feed-forward inhibition, whereas mixed dash and dot lines indicate feedback 
inhibition. B Formulation of separate reaction kinetics for the pathway [generalized mass action (GMA), Michaelis–Menten (MM), linear-logarithmic 
(Linlog), and convenience kinetics (CK)]. C Time-series data for metabolite concentrations x(t) is generated by using the formulated reaction 
kinetics to simulate reaction progressions through time. The empirical net reaction rate for each metabolite at a given timepoint is then interpreted 
as the slope of its concentration in time. Separately, the dynamic concentration of enzyme participants e(t) is each determined by a specific 
hyperbolic Hill function. D The mean square error (MSE) between empirical net reaction rates and the predicted values based on the kinetic 
formulation is then minimized as an objective function in kinetic parameter hyperspace. The corresponding parameter values are then reported 
as an estimation. E The quality of the parameter estimations is then assessed using 4 criteria/considerations: if the coefficient-of-determinant 
is greater than or equal to 0.9 and is consistently so for three different seed runs, the computational cost (by using the number of generations 
required for optimization as a proxy), and the degree of reproducibility of the underlying reaction dynamics with the estimated parameters. F Five 
widely available evolutionary algorithms (EAs) are then screened for their capacity to estimate the parameters of the different kinetic formulations. 
The initial screening is done using datapoints at 15 min intervals with no measurement noise. Further evaluations are conducted for selected EAs 
in estimating GMA and MM parameters at increasing measurement noise and datapoint spacing. The effect of taking parameter averages based 
on different seed solutions as well as data augmentation is also evaluated. Metabolites AcCoA, acetyl-coenzyme A; AcAcCoA, acetoacetyl-coenzyme 
A; HMGCoA, 3-hydroxy-3-methylglutaryl-coenzyme A; Mev, mevalonate; MevP, phosphomevalonate; MevPP, diphosphomevalonate; IPP, 
isopentenyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; GPP, geranyl pyrophosphate Enzymatic reactions AtoB, acetoacetyl-CoA 
thiolase; HMGS, hydroxymethylglutaryl-CoA Synthase, HMGR, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase; MK, mevalonate kinase; 
PMK, phosphomevalonate kinase; PMD, phosphomevalonate decarboxylase; IDI, isopentenyl-pyrophosphate delta-isomerase; GPPS, geranyl 
pyrophosphate synthase; LS, limonene synthase
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Synthetic data of metabolite dynamics are generated 
based on each of the reaction kinetics (Fig.  1C), pre-
processed, and then fitted back to the same formulation 
(Fig.  1D) by minimizing the mean square error (MSE) 
between predicted and empirical net reaction rates using 
all candidate EAs.

A total of 4 requirements/considerations are used 
for evaluating the corresponding parameter solution 
(Fig. 1E):

	 i.	 A high quality of parameter estimations, as 
reflected by the coefficient of determination (R2) 
being greater than 0.9,

	 ii.	 Consistency in meeting the above requirement 
based on three different seed solutions,

	iii.	 The number of generations required for the EA to 
faithfully reach a plateau-state in terms of mini-
mized MSE (figure conservatively rounded up to 
one significant figure based on the largest of three 
seeds), and

	iv.	 The ability to reproduce the underlying metabolite 
dynamics.

For criterion iii, we use the number of generations as a 
convenient proxy for the number of cost function evalu-
ations (which is computationally expensive), as the same 
population size is used for all algorithms. To discern the 
effect of kinetic formulation and data quality on the per-
formance of EAs, we first use “perfect” data (Fig. 1F), that 
is, with no measurement noise and a datapoint spacing 
that is 15  min apart. Subsequently, we introduce noise 
and increase the spacing to “strain-test” the algorithms. 
This strategy also allows us to efficiently filter out poor 
performers early on, before progressing to their evalua-
tion under more challenging contexts.

Evolutionary algorithms differ widely in their effectiveness 
for parameter estimations
With perfect data, SRES stands out in consistently sur-
passing our R2 threshold for all seed-instances of three 
out of the four reaction kinetics-of-interest. Its median 
R2 values for GMA, Linlog, and MM kinetics are 0.993, 
0.991, and 0.936, respectively (Fig. 2, left panel). We note 
that while SRES was previously reported to produce 
accurate parameter estimations for a MM model [26], its 
performance with regard to other reaction kinetics has 
not been studied.

In the same way, three other EAs exceed the R2 thresh-
old for just two classes of reaction kinetics. Specifically, 
CMAES and ISRES perform similarly well for the same 
formulations, achieving a respective median R2 value of 
1.00 and 0.996 for GMA kinetics, and 0.994 and 0.993 
likewise for Linlog kinetics. We also find G3PCX to be 

effective for Linlog formulation (median R2 value of 0.99), 
but it is also as good as SRES in estimating MM param-
eters (0.936).

Conversely, DE is ineffective for all classes of investi-
gated reaction kinetics, as its R2 values mostly fall below 
0.9, except for one seed-instance of GMA. Apparently, 
this is because of the inability of the algorithm to reach 
a plateau stage in terms of the minimized cost function 
(MSE-of-fit) (Additional file  1: Figs. S1–S4), within the 
budgeted number of generations (Table  1). In contrast, 
all other EAs can do so for the reaction kinetics that they 
did well for (as described above). As expected, its MSEs 
of fit are noticeably higher than those of other EAs for 
GMA, MM, and Linlog kinetics (Fig. 2, right panel). Fur-
thermore, in contrast, the other EAs can achieve MSEs 
of fit within tighter ranges (implying consistency among 
seed-instances), which are also largely matching with 
each other (consistency among EAs). For instance, this 
is true for all other EAs in the case of MM and Linlog 
kinetics, while (I)SRES and CMAES algorithms are simi-
larly so for GMA kinetics. One learning point from the 
juxtapositions is that we confirm that the MSE-of-fit, as 
to its magnitude and consistency among seed-instances, 
can be helpful in filtering out poor performers. The met-
ric is especially valuable in practical settings, since the R2 
value cannot be assessed without knowledge of the true 
solution.

Effective evolutionary algorithms in the absence 
of measurement noise
Given the outright poor performance of DE, we dropped 
it for further evaluation; from this point onward, we use 
“All EAs” to refer to all other EAs except for DE. We 
then evaluate the efficacy of the estimated parameters in 
regenerating metabolite dynamics through simulation. 
For GMA kinetics, we find CMAES, SRES, and ISRES 
to closely reproduce all the metabolite dynamics (Addi-
tional file 1: Fig. S5A), which is consistent with their high 
R2 value of parameter estimations (Fig.  2, left panel); 
those of CMAES are in fact virtually indistinguishable 
from the actual one. Also unsurprisingly given the poor 
R2 performance, G3PCX could not qualitatively repro-
duce the dynamics of all metabolites for GMA kinetics. 
For example, we observe a time lag of 4–6 h for the con-
centration profile of the 5 most downstream metabolites. 
However, unexpectedly for MM kinetics, all shortlisted 
EAs can regenerate the dynamics almost identically 
(Additional file 1: Fig. S5B), despite the R2 values being 
appreciably and broadly lower than in the case of GMA 
kinetics. This suggests the relative insensitivity of MM 
dynamics to the underlying parameters. We also note 
the same excellent recovery of Linlog-based dynamics 
for all EAs (Additional file  1: Fig. S6), which dovetails 
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Fig. 2  Screening of evolutionary algorithms for parameter estimations of canonical rate law models. Data with no measurement error is used 
for screening. Triplicate estimates are conducted using different initial seed solutions. The bars represent the median R2 or MSE-of-fit value, 
while the lower and upper bounds (in red) mark the smallest and largest values of the three initial seed solutions, respectively (Additional file 5: 
Data S4). Note that the computation of the standard deviation as a measure of the spread both above and below the median is inappropriate, 
as the distribution may not be symmetrical. Vertical dash lines mark the threshold value of 0.9 for R2-value metric (R-value of 0.95). A gray 
bar indicates that the values from all three seeds have exceeded the threshold. Note that only one R2-value has been reported in fitting 
the Michaelis–Menten model using the differential evolution (DE) algorithm; two others with negative R-value have not been shown
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with their good metric performance (R2 > 0.99). The 
corresponding MSE-of-fit is also found to be effectively 
minimized within 2000–50,000 generations (Additional 
file 1: Fig. S3, Additional file 2: Data S1).

When we further consider computational cost, CMAES 
stands out in requiring no more than 5000 and 2000 
generations for GMA and Linlog kinetics, respectively 
(Additional file 2: Data S1). This corresponds to 1/6 and 
1/20 of the generation number required for the next most 
cost-efficient EA (ISRES: 30,000 and 40,000, respectively) 
that also meets our other considerations. For MM kinet-
ics, G3PCX is likewise most efficient in requiring only 
1000 generations, which is ½ of the other EA (SRES) that 
fulfills our considerations.

For all that, not a single EA assessed could consistently 
hit our R2 threshold seed-wise for the CK formulation, 
despite all of them attaining the plateau stage during 
cost function minimization (Additional file  1: Fig. S4). 
The plateaued values further vary noticeably among EAs, 
suggesting a challenging cost function landscape with 
numerous local minima. More studies are needed to find 
an effective optimization method for CK-based models.

SRES and ISRES are most effective for GMA kinetics 
in the presence of measurement noise
For the assessment of EAs under experiment-like con-
ditions, we add simulated errors to our metabolite and 
enzyme “measurements” before repeating our analysis. 
Again, DE is not considered due to its poor performance 
in earlier screening. We also exclude Linlog parameter 
estimations, as the kinetic formulation is a heuristic mod-
eling approach, with no empirical profiling of the rate law 
to speak of. Given that random errors are expected to 
increase both the ruggedness and variability of the opti-
mization landscape among replicates, we generate for 
each initial seed solution a different triplicate dataset to 
include the effects of measurement noise on parameter 
predictions. We also take the seed-average of the param-
eter predictions and compute its R2 value to derive a 
measure of the expected quality of parameter estimation.

Contrary to our earlier finding in the absence of noise, 
CMAES becomes the worst performer for GMA kinetics 
upon the introduction of noise. Although its expected R2 

values (reported as filled circles in Fig. 3A) and correla-
tion plots at various noise levels (Fig. 3B) are not very dif-
ferent from those of other EAs, it clearly exhibits greater 
variability in the metric value among seed-instances 
(open circles in Fig. 3A), compared to SRES/ISRES algo-
rithms. CMAES likewise exhibits larger variation in the 
MSE-of-fit compared to other EAs, in the presence of 
noise (Additional file  1: Fig. S7, left column). When we 
test the efficacy of the resulting estimated parameters to 
recover the mass action dynamics under measurement 
noise, CMAES is unable to recapture the qualitative 
profile of the 4 most downstream metabolites, even at a 
noise level of just 2.5% (Additional file  1: Fig. S8A) and 
5% standard deviation (Additional file 1: Fig. S8B). At the 
7.5% level, the dynamics are off track for 7/10 metabolites 
(Fig.  3C), with an early reaction substrate (AcAcCoA) 
falsely predicted to be exhausted.

While G3PCX similarly has larger MSE-of-fit and R2 
variability compared to SRES/ISRES algorithms, this is 
also the case in the absence of noise. Thus, unsurpris-
ingly, G3PCX cannot recover the qualitative profile of 
multiple downstream metabolites even with no noise, 
underscoring its unsuitability for estimating GMA 
parameters. Instead, SRES/ISRES perform the best for 
GMA kinetics, generating similar qualitative dynamics at 
5% standard deviation or less, albeit at a cost of 100,000 
generations.

With measurement noise, G3PCX remains most effective 
for recovering MM parameters
We similarly investigate the efficacy of EAs for estimat-
ing MM parameters when measurement errors are pre-
sent. In this regard, the performance of all algorithms 
based on expected R2 value remains relatively stable at 
increasing measurement noise (Fig. 4A), compared to the 
estimation of GMA parameters. To illustrate, the met-
ric stays between 0.9 and 0.96 (filled ovals) for all EAs 
even at 7.5% noise level, whereas the same figure ranges 
between 0.78 and 1 for GMA parameter estimations. 
To view in another way, there is no discernable drop in 
the expected R2 value for both ISRES and G3PCX algo-
rithms with increasing noise, while those of CMAES 
and SRES decrease minorly (≤ 0.06). In contrast, we 
observe a decrease of 0.21 in the metric value for three 
EAs (CMAES, SRES, ISRES) with increasing noise, for 
the case of GMA kinetics. The similar correlation plots 
between the mean estimated parameters and actual val-
ues at increasing measurement noise further illuminate 
the more insensitive nature of MM parameter estima-
tions to measurement errors (Fig. 4B).

The EAs also recover MM dynamics more reliably than 
that of GMA dynamics, as demonstrated by the largely 
unchanging metabolite profiles that are generated for 

Table 1  Budgeted number of generations for parameter 
estimations of various kinetic models

Kinetic model No. of 
generations

Generalized mass action 1 × 105

Michaelis–Menten 1 × 104

Linlog 1 × 105

Convenience 1 × 105
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Fig. 3  Effectiveness of selected evolutionary algorithms for estimating parameters of generalized mass action model under simulated conditions 
of increasing measurement errors. A Quality of estimations at increasing measurement errors as quantified by R2-value. Each of the three open 
ovals represents a value derived from a distinct triplicate dataset for both metabolites and enzymes and a random seed solution, whereas a filled 
oval denotes the R2-value of their mean parameter values. The trend of the filled ovals is shown as a straight line. B Correlation plots of estimated 
parameter values (mean from the three initial seed solutions) against actual ones at increasing measurement errors for each algorithm. C Simulated 
metabolite dynamics based on the estimated parameters. In this case, the errors are sampled from a normal distribution centered on zero 
and a standard deviation equivalent to 7.5% of the underlying metabolite or enzyme concentration. Refer to Additional file 6: Data S5 for datapoints 
presented in the figure
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MM kinetics with increasing noise for all EAs. Specifi-
cally, the profiles of all EAs are virtually identical to the 
actual dynamics at 0% (Additional file  1: Fig. S5B) and 
2.5% noise levels (Additional file 1: Fig. S9A), while show-
ing marginal differences for the three most upstream 

metabolites at 5% (Additional file  1: Fig. S9B) and 7.5% 
noise levels (Fig.  4C). In this regard, all EAs perform 
similarly well in recovering MM parameters and dynam-
ics when measurement noise is present. However, after 
taking computational cost into account, G3PCX remains 

Fig. 4  Effectiveness of selected evolutionary algorithms for estimating parameters of Michaelis–Menten model under simulated conditions 
of increasing measurement noise. Refer to Fig. 3 for the legend of corresponding sub-figures A–C and Additional file 7: Data S6 for datapoints 
presented in the figure
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the most effective, by necessitating only 2000 genera-
tions to do so (Additional file  1: Fig. S10). The figure is 
66% that of the next most efficient EA (SRES: 3000 in 
Additional file 2: Data S1) that satisfactorily meets all our 
other considerations. It would be interesting to verify for 
a variety of network topologies, if the measurement noise 
has, indeed, less effect on recovering the parameters and 
dynamics of a MM formulation, compared to its GMA 
equivalence.

CMAES is most sensitive to measurement noise
In addition to the case for GMA kinetics, we observe 
CMAES to show increasing inconsistency in MM param-
eter estimations with more measurement noise, as 
reflected by the larger variability in R2 value (open ovals 
in Fig. 4A). Note that this is to a greater extent than other 
EAs. Taken together, the findings for both GMA and 
MM kinetics implicate the unreliability of CMAES under 
noisy experimental conditions.

We further note the inconsistency in MM parameter 
estimation by CMAES, as discussed above, has not been 
obvious from the distribution of the MSE-of-fit (Addi-
tional file  1: Fig. S7, right column). Instead, the MSE 
value for individual seed-instances is largely identical to 
that of other EAs, resulting in an akin overall distribu-
tion for all noise levels. Clearly, similar MSE values do 
not necessarily imply a similar quality of parameter esti-
mations. (Yet conversely, we reason that MSE values and 
distributions that are distinctly larger should be seen as 
strong indicators of the relative ineffectiveness of param-
eter estimations.) Notably, the sensitivity of CMAES 
to noisy data would not be obvious, if not for the usage 
of the R2 metric. In turn, the usage of the latter metric 
would only be possible if the underlying parameter values 
and reaction kinetics are known, such as in the context of 
an in silico pathway.

Recovery of parameters and dynamics can benefit 
from datapoints as close as 15 min apart
Given the superior applicability of SRES and G3PCX 
algorithms to the respective case of GMA and MM kinet-
ics under noisy empirical conditions, we further investi-
gate their sensitivity to another common factor affecting 
performance: the number of hourly empirical datapoints. 
To do so, we reduce the number of datapoints from four 
per hour to (i) two, and then (ii) one hourly. Then, in each 
case, we reevaluate the capability of the two EAs regard-
ing parameter estimations and the recovery of metabolite 
dynamics.

For systems having reversals in dynamic trend (i.e., 
switching from increasing to decreasing concentrations, 
and vice versa) between two to four hours like our mod-
eled system, our findings suggest the benefits of having 

measurements more than once or even twice hourly. For 
a start, there is a tendency towards more accurate param-
eter estimations as exemplified by the R2 value for the 
SRES case study, regardless of measurement noise (Fig. 5, 
top and bottom of left column). (Note that there is no 
clear deterioration in the recovered dynamics due to less 
datapoints [Additional file  1: Fig. S12 versus Additional 
file 1: Fig. S5A and Additional file 1: S8B]). Although the 
G3PCX estimation of MM parameters shows similarly 
high and stable metric value for all considered cases of 
hourly datapoints (one, two, and four) in the absence of 
measurement noise (Fig. 5, top and bottom of right col-
umn), the algorithm however performs poorly accord-
ing to the metric for the case of one hourly datapoint 
with measurement noise. More illuminatingly, when we 
simulate the MM dynamics with the estimated param-
eters, we find the profiles based on one or two hourly 
datapoints do not faithfully reproduce all the underly-
ing profiles (Additional file  1: Fig. S13), unlike the case 
when four hourly datapoints are used (Additional file 1: 
Fig. S5B). On the same note, in the presence of meas-
urement noise, the regenerated dynamics of two hourly 
datapoints (Additional file 1: Fig. S13) are not as close to 
the real profile, compared to 4 datapoints (Fig. 4B). Taken 
together, our data suggests that having more than two 
hourly empirical datapoints (e.g., four) can be still help-
ful for improving parameter estimations and the recovery 
of dynamics, regardless of noise; certainly, this is of para-
mount importance in high-value applications, and when 
safety is critical [7].

No evidence that data augmentation improves parameter 
estimations
Our finding in the previous section begs the question 
if the augmentation of dynamic data could improve 
the recovery of parameters and metabolite dynam-
ics, although it has been clear to us that it cannot be 
a substitute for empirical data. Again, we use the case 
studies of SRES and G3PCX algorithms for GMA and 
MM kinetics, respectively, both in the presence and 
absence of measurement noise. Initial datasets with 
one or two hourly datapoints are then augmented to 
four datapoints hourly before parameter estimations. 
We find at best, a small and negligible increase in the 
R2 value of parameter estimations in many cases (Fig. 6) 
but can also potentially result in a sharp and significant 
decrease in the accuracy of estimations, as revealed by 
the data augmentation of one hourly datapoint for the 
G3PCX estimation of MM parameters (Fig.  6, bottom 
right). As such, we refrain from recommending data 
augmentation for the purpose of parameter estimation, 
as there is no evidence of its benefit from our analysis. 
In fact, our finding of a clearly adverse effect in one 
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case suggests that the repeated usage of data augmenta-
tion could result in a poorer quality of parameter esti-
mations on average. Furthermore, any dataset sparser 
than those investigated here is likely to introduce more 
systematic bias in the augmented datapoints, as there is 
no information locally in time to reliably inform their 
estimate.

Protocol and learning points for uncovering reaction 
kinetic parameters in practice
We recapitulate the two key modules and component 
steps in our protocol contributing to effective param-
eter estimations (Fig.  7). Module one (first 5 steps in 
red) focuses on deriving high-quality estimates of the 
net reaction rate for all metabolites at each timepoint. In 
doing so, it forms the foundation for accurate parameter 
estimations in module two (the last three steps in blue). 
Their rationale or learning points are briefly as follows:

Module one

•	 In step one, the generation of timepoint data that 
are as close as possible reflects the value of having 
more timepoints in deriving accurate empirical val-
ues of net reaction rates. We exemplify this point 
by demonstrating the noticeable end improve-
ment in parameter estimation accuracy by simply 
increasing from one to two and then four hourly 
datapoints (Fig.  5). The effect is even more pro-
nounced in the typical case where measurement 
noise is present. This is despite the implementation 
of all the other steps for maximizing accuracy. Note 
that data augmentation is not an effective solution 
for insufficient timepoints (Fig. 6).

•	 Steps two and three include means for diminishing 
the effect of noise: taking an average of triplicate 
measurements and employing the Savitzky-Golay fil-

Fig. 5  The effect of the number of hourly data points on the quality of parameter predictions as reflected by the R2 metric. Two case studies 
are shown: estimation of generalized mass action (GMA) parameters using the SRES algorithm (left column) and the Michaelis–Menten (MM) 
parameter estimations utilizing the G3PCX algorithm (right column). The top row and bottom row are for the cases without and with measurement 
noise, respectively. For GMA parameter predictions, the amount of measurement noise is sampled from a normal distribution with mean zero 
and a standard deviation equivalent to 5% of the underlying metabolite/enzyme measurement. The corresponding value is 7.5% for MM parameter 
predictions. The highest noise level has been chosen in each case such that the algorithm still performs well with 4 hourly datapoints. Triplicate 
values are derived using different initial seed solutions (Additional file 8: Data S7). The bars represent the median values while the lower and upper 
bounds (in red) mark the smallest and largest values based on the three initial seed solutions



Page 12 of 21Yeo et al. BMC Biology          (2024) 22:235 

ter, which concurrently filters out noise, while com-
puting the net reaction rate (materials and methods).

•	 Steps 3–5 further provide the mechanism for generat-
ing realistic time profiles of metabolites based on net 
reaction rates, by adjusting the Savitzky-Golay param-
eters (window size and polynomial degree for local 
fitting). By observing the similarity with experimental 
profiles, we obtain direct evidence of the reliability of 
derived net reaction rates. Among other possibilities, 
the MSE between regenerated and empirical concen-
tration values (the average of triplicates) across all 
timepoints and metabolites can be used as a metric 
for assessing their similarity in an automated search 
for good Savitzky-Golay parameters.

Module two

•	 Step 6 estimates kinetic parameters (materials and 
methods) by using effective EA implementation 
according to the underlying rate law (Table 2), and 
their corresponding hyperparameters and termina-
tion criteria (materials and methods).

Importantly, the average of parameter values from 
multiple seed solutions (e.g., ≥ 10) is taken to 
improve their accuracy and decrease variability, 
compared to individual seed runs (Additional file 1: 
Fig. S11).

Fig. 6  The effect of data augmentation on the quality of parameter estimations as reflected by the R2 metric. Two case studies are shown: 
estimation of generalized mass action (GMA) parameters using the SRES algorithm (left column) and the Michaelis–Menten (MM) parameter 
estimations utilizing the G3PCX algorithm (right column). Data augmentations (Materials and methods) are done in two cases to increase the hourly 
data points from 2 (top row) and 1 (bottom row) to 4 per hour. For GMA parameter predictions, the amount of measurement noise is sampled 
from a normal distribution with mean zero and a standard deviation equivalent to 5% of the underlying metabolite/enzyme measurement. The 
corresponding value is 7.5% for MM parameter predictions. Triplicate values are derived using different initial seed solutions (Additional file 9: Data 
S8). The bars represent the median values while the lower and upper bounds (in red) mark the smallest and largest values based on the three initial 
seed solutions
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•	 Steps 6–8 are collective mechanisms for enhanc-
ing the similarity between regenerated and experi-
mental time profiles of metabolites, like steps 3–5. 
Without knowing the actual kinetic parameter val-
ues, the similarity serves as the end-all-be-all crite-
ria for assessing the overall reliability of their esti-
mations. The bounds of the parameter search space 
should be informed by domain knowledge as much 

as possible. The hyperparameters of the employed 
EA can also be tuned.

By deconstructing the approach into two modules, it 
will be also easier to sieve out issues as to data quality 
and preprocessing, versus the actual parameter estima-
tions, by examining the quality of regenerated profiles in 
modules one and two, respectively.

Fig. 7  Protocol and learning points for uncovering reaction kinetic parameters in practice. The gray boxes outline the rationale or learning point 
of the associated steps. The red boxes depict the 5 preprocessing steps to derive high-quality values for empirical net reaction rates, while the blue 
boxes set out the three subsequent steps for parameter estimations
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Discussion
No free lunch: effectiveness and limitations of evolutionary 
algorithms
In pushing the performance of EAs to their limit, we real-
ize the feasibility of deriving remarkably good parameter 
estimates in the presence of measurement errors, by using 
the appropriate EA (Table 2) with an entire repertoire of 
mitigation techniques in our protocol. Given that these 
EAs were not designed for systems biology applications, it 
is perhaps surprising to find their clear and distinct com-
petitive traits, in terms of the accuracy and efficiency of 
parameters estimation as to individual rate laws, further 
differentiated by their versatility, robustness to measure-
ment noise, and sensitivity to the initial seed solutions.

Notably, there appears to be trade-offs among their 
competitive advantages. For example, SRES may be com-
pensating for their accuracy, versatility, as well as robust-
ness to measurement noise and initial seed solutions, 
by expending large amounts of computation in explor-
ing and exploiting the search landscape. To give another 
example, while CMAES could very well exploit the 
intrinsic relationships among the advantageous search 
directions of various GMA parameters, such relation-
ships seem to be easily disrupted by measurement noise, 
which can create local kinks in the search terrain to dis-
rupt the said relationships. These trade-offs attest to the 
veracity of the ‘no free lunch’ theorem, which implies 
that there is no algorithm that can outperform all others 
in all metrics under all contexts. In this light, perhaps, 
some limitations may be perceived as the necessary cost 
for outperformance in other aspects, and thus cannot be 
avoided. Even so, their specific implementations were 
largely ad-hoc, intuitive, and improvised stepwise, honed 
by the datasets-of-interest. This modus operandi is obvi-
ous from the originating publications, which mostly 
focus on spelling out the implementation and the com-
parative performance, without articulating their strategic 

advantages over competing algorithms. The resulting 
lack of understanding of the reasons behind their effec-
tiveness and limitations is thus carried forward and may 
become even more obscure in the context of new appli-
cations. In this regard, our curiosity provides the driv-
ing force behind the current work, which provides an 
elucidative but preliminary glimpse of the importance of 
customizing the optimization algorithm to the rate law 
formulation and experimental condition (e.g., the type 
of noise and noise level). Lastly, we quickly note that the 
poor performance of DE might very well be rooted in its 
origin in GA, which is designed for search in simplified 
discrete-variable space, rather than the continuous search 
space that is characteristic of parameters estimation.

Global (or near global) optimization requirement 
for parameters estimation
We take this opportunity to further elaborate on the dif-
ference in applicability between global and local optimiza-
tion methods in the context of the Levenberg–Marquardt 
(LM) algorithm, which is commonly used to fit kinetic 
models. We have excluded the local search method from 
our study, as the aspiration of predictive modeling will 
require a more stringent recovery of the true parameter 
values, necessitating a global search. To recap, the LM 
algorithm is partly a gradient descent-based approach, 
whereby the model fitting error (sum-of-squares) is sys-
tematically being reduced by transiting in the direction of 
the steepest descent in the parameter search space. When 
the search location is determined to be near a minimum, 
another (Gauss–Newton) method is used to more effi-
ciently find the minimum point, by approximating the 
error as a quadratic function, with respect to distance in 
the search direction. The algorithm thus works by lev-
eraging on local terrain information to find a minimum 
point, akin to a ball rolling down a slope to the minimum 
point. In other words, it does not have a strategy for global 

Table 2  Suggested evolutionary algorithms (EAs) for parameter estimations of known underlying reaction kinetics

a The kinetic formulation is a heuristic modeling approach, with no empirical profiling of the rate law to speak of

System/model Suggested EAs Comment Supporting figure(s)

Generalized mass action system (without 
measurement error)

CMAES Most consistent and highest quality 
of parameter estimations, lowest compu-
tational cost

Fig. 2, Additional file 1: Fig. S5A, and Addi-
tional file 2: Data S1

Generalized mass action system (with meas-
urement errors)

(I)SRES Most consistent and highest quality 
of parameter estimations

Fig. 3 and Additional file 1: Fig. S8

Michaelis–Menten system (with/without 
measurement error)

G3PCX Lowest computational cost, 
and among the best in consistency 
and quality of parameter estimations

Additional file 2: Data S1,
Figs. 2 and 3, and Additional file 1: Figs. 
S5B and S9

Linear logarithmic modela CMAES Lowest computational cost, 
among the best in consistency and quality 
of parameter estimations

Fig. 2 and Additional file 2: Data S1
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search. The solution that the LM algorithm finds, is there-
fore highly sensitive to the starting search location for 
complex terrain [54], which is a sufficient basis for us to 
exclude potential candidates in this study. Along the same 
line, we further evaluate the sensitivity of shortlisted EAs 
to different seed solutions in finding the actual param-
eter values. Notably, the only condition whereby the LM 
algorithm is guaranteed to find a global solution is when 
the error function is convex with respect to the parame-
ter values within the search space. However, the required 
condition is not a given for most biochemical systems. 
Even for the relatively simple network in our study, the 
search terrain can be so complex that the true solution is 
not always found by our global optimization candidates.

Contribution to better modeling of biological systems
To spell out how our cumulative findings contribute 
to the better modeling of biological systems, we first 
recap that the aspiration of predictive modeling requires 
improvement in methodologies with respect to two key 
objectives in systems biology:

1.	 To uncover an accurate representation of the under-
lying rate laws

2.	 To accurately estimate the parameter values of the 
uncovered rate laws

In this light, the current study focuses on achieving 
objective two, by first demonstrating its achievability 
and then further contributing the following to enable its 
practice:

•	 Technology: an effective protocol for estimating the 
true parameters, based on:

	 i.	 Supporting preprocessing methods,
	 ii.	 Effective optimization algorithms, as to major 

formulations of reaction kinetics,
	 iii.	 While mitigating the effect of measurement 

noise.

The software has been provided with this work, 
allowing for immediate translational application and 
verification.

•	 Shift in understanding:

	 i.	 The imperativeness of having closely spaced 
time-series datapoints for most (if not all) 
molecular participants, which cannot be 
replaced by data augmentation.

	 ii.	 It is possible to largely mitigate the effect of 
measurement errors on parameter estimation, 
even if the errors are heteroscedastic as com-
monly found in biological systems.

	 iii.	 In contrast, explanative modeling does not 
require:

◦ Comprehensiveness of data with respect to 
molecular participants

◦  Close temporal spacing of datapoints
◦ Global optimization to uncover the true 

parameters
◦ Suitability of the optimization algorithm for 

the formulated rate law
◦ That the chosen rate law formulation truly 

reflects the kinetics

This is because for explanative modeling, the accuracy 
of dynamic prediction (and hence the required accuracy 
of estimated parameters) is not foremost; its purpose is 
to merely provide a plausible explanation of the observed 
data in terms of pathway dynamics.

Translational and practical impacts
Indeed, it is both imperative and a delight to be able to 
use experimental data measured from biological systems 
to validate the proposed protocol. However, the closely 
spaced temporal data for all molecular participants, which 
is required for the emerging area of predictive modeling, 
is simply not yet available, e.g., time-series concentration 
data spaced 15 min apart or better, for dynamics with 
time scale of reversal (i.e., switching from increasing to 
decreasing concentrations, and vice versa) between 2 to 4 
h, like our modeled system. Most if not all available data-
sets to date are sparse, with molecular participants mostly 
unprofiled. Intuitively, closely spaced datapoints for all 
participants are, however, required for accurately com-
puting the instantaneous slope of their dynamic profiles 
to obtain the net reaction rates, i.e., the Y in the kinetic 
model: Y = f(X). Without reliable data on Y, it will be 
impossible to find the parameters predicting the true Y.

Nonetheless, while the applicability to currently avail-
able data is low, we believe our work will impact how 
modeling and experimental data collection are being 
done going forward. Particularly, we foresee (or hope to 
see) the following practical and translational impacts:

•	 A trend towards practices enabling more accurate mod-
eling For example, given the criticality of having closely 
spaced temporal datapoints for predictive modeling 
that is unreplaceable by data augmentation, we foresee 
an increase in experimental measurements that better 
fit our identified requirements for the purpose.
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•	 Accelerated technological and fundamental sci-
ence developments enabling predictive modeling By 
demonstrating the feasibility of predictive mod-
eling, outlining the required conditions, and artic-
ulating the translational relevance, we aim to sow 
the seeds to drive its application in the relevant 
industries.

•	 Direct and immediate applicability to cell-free bio-
manufacturing Synthetic pathways for cell-free pro-
duction are typically known (e.g., nuclei acids, mono-
clonal antibodies, high-value small molecules, etc.) 
and simpler than cellular systems and are thus likely 
to be the first bioproduction systems to achieve and 
benefit from predictive modeling. Together with the 
advent of technologies enabling automated online 
measurements, data sparsity both temporally and 
with respect to molecular participants may be more 
easily overcome, unlike the tedious and laborious 
measurements required for conventional biological 
domains, which are cell-based.

Caveats in practice
Lastly, there remain caveats in using our protocol. For 
example, the bounds of the parameter search space have 
an enormous effect on whether the true solution can ever 
be found. While we recommend constraining as much as 
possible the search space guided by domain knowledge, 
it may not be practically feasible for most parameters. 
It is also currently unclear if an EA is intrinsically suit-
able for the reaction kinetics that it performs well for 
in our study, and to what extent, it will remain so with 
an increasing number of reactions. Besides the need to 
address these questions, future works should explore if 
the hyperparameters tuning of EAs can make a material 
difference to their performance, such as in the required 
computational cost. To appreciate the latter’s impor-
tance, imagine an early fish requiring minutes just to scan 
possible escape routes in the face of an ambush predator. 
Clearly, there is a lot more to learn from the history of life 
if predictive modeling is to become truly useful for real-
world endeavors.

Conclusions
While systems biology has begun its nascent transi-
tion from the explanatory modeling of fitted data to 
the predictive modeling of unseen data, it still neces-
sitates the effective recovery of all underlying reaction 
parameters. In this regard, we found algorithms that are 
effective under marked measurement noise for specific 
reaction kinetics, as a step towards predictive modeling 
for systems biology endeavors. We further provide the 
key learning points and the protocol to do so.

Methods
Candidate evolutionary algorithms
The following candidate EAs are evaluated in our work. 
Note that clustering techniques [55, 56] and adaptive 
stochastic methods [57, 58] are not considered, as they 
are deemed less effective [9]. Ant Colony optimization, 
Taboo Search, and particle swarm methods [59] are also 
not assessed, as they are not used commonly.

a.	 DE [60] is a direct global search method, which is 
designed for optimizing nonlinear, non-differenti-
able, continuous objective functions. It iteratively 
improves a population of candidate vector solutions 
as follows:

•	Initialization: A population of candidate solutions 
is first initialized.

•	Mutation: For each candidate solution, three ran-
dom individuals (a, b, c) are selected from the 
population and combined to form a trial vector by 
using the operation: trial_vector = a + F * (b—c), 
where F is a user-defined amplification factor of 
(b–c).

•	Crossover: operation then results in a segment of 
the trial vector replacing its counterpart in a pre-
determined target. The starting location of the 
segment is randomly chosen, while a user-defined 
parameter, “crossover probability,” determines the 
probability of extending the segment by an addi-
tional vector component.

•	Selection: The resulting trial vector is then com-
pared to the target based on objective function 
value and replaces the target if it gives a better 
value.

•	Termination: The mutation, crossover, and selec-
tion steps are repeated until a termination condi-
tion is met, such as a predefined number of gen-
erations, convergence of the objective function to 
some plateau value, etc.

b.	 ESs [61] are population-based like DE, but are 
designed for search in continuous space. They are 
highly varied in the specifics of implementation but 
generally consist of the following stages:

•	Initialization: μ number of parental vector solu-
tions are first initialized, based on a user-defined 
sampling scheme.

•	Recombination: the μ parental solutions are dupli-
cated, and then followed by the probabilistic 
exchange of solution components among them, 
via predefined rules, to generate a new population 
of λ “offspring: solutions. Note that the process 
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is carried out for the CMAES algorithm, but not 
SRES and ISRES.

•	Mutation: the change in each component value of 
the ‘offspring’ solutions is sampled from the corre-
sponding normal distribution with zero mean and 
some standard deviation. The latter also called the 
mutation step size, is a search strategy parameter, 
as it has the effect of balancing the exploration and 
exploitation of solutions. For example, the muta-
tion step size can be increased to ensure a wider 
search when progress is poor and to decrease the 
step size when progress is promising. ES variants 
may implement a specific approach to automati-
cally adapt the strategy parameter to the search 
landscape. Offspring solutions generated during 
the process may only be accepted (“non-lethal”) if 
they are within user-defined bounds.

•	Selection: the fitness of each of λ offspring is then 
evaluated based on the objective function, with 
the best μ solutions chosen to make up the next 
generation of parents. The μ parents of the current 
generation may form part of the selection pool 
(not the case for our tested variants).

•	Termination: the recombination, mutation, and 
selection steps are repeated until a termination 
condition is met, such as a predefined number of 
generations, convergence of the objective function 
to some plateau value, etc.

In our study, three ES variants were tested:

◦ SRES [33] probabilistically uses only objective 
function for comparing adjacently ranked solutions 
during bubble sort, without penalizing infeasible 
solution(s). It thus gives unacceptable solutions a 
chance to be selected, which could give rise to better 
and more feasible solutions in the next generation. In 
this way, the algorithm encourages exploration and 
helps prevent premature convergence.
◦ ISRES attempts to improvise over SRES by incor-
porating an alternative mutation strategy of using the 
differential between selected solutions to generate 
new ones [62], similarly to DE. This is carried out for 
variables in the search space that are dependent on 
others.
◦ CMAES [34] adapts the multi-variate normal dis-
tribution that is used for sampling mutation sizes, 
by overweighting those selected previously. As such, 
some components of the solution may have preferred 
mutation sizes that are correlated with each other. In 
this light, the covariance matrix of the distribution 
may become non-diagonal over generations. Besides 
adapting the covariance matrix, the algorithm also 

adopts specific principles used in natural gradient 
descent to ensure that the distribution remains undis-
torted by one of its key steps (reparameterization).

3.	 G3PCX [63] presumes offspring solutions generated 
near parental ones in continuous search space to be 
more likely to be good candidates, given that the par-
ents themselves have been previously selected based 
on their fitness. A particular recombination opera-
tion is used to ensure the offspring solutions are nor-
mally distributed and centered on individual parents 
(‘parent-centric’). The algorithm also modifies its 
core model, the minimal generation gap (MGG) [64], 
to select the best two solutions separately from each 
batch of similar fitness in each generation, instead of 
using the roulette-wheel selection procedure, which 
is computationally expensive, to choose just one 
solution.

Generating synthetic enzyme datasets
An overview of the artificial pathway is provided in 
Fig. 1A. For each of the 4 in silico experiments, the final 
level for each of the 9 enzymes is chosen from three lev-
els: low, medium, and high, via Latin Hypercube sam-
pling [65]. The Hill function is then used to generate the 
concentration data ei(t) of enzyme i at time t of the run 
as follows:

Here, kf ,i is the maximum increase in enzyme concen-
tration, while the relative amplification factor α is 0.432, 
1, and 2.486 for the low, medium, and high final level [66], 
respectively. Also, km,i is the time required to increase the 
enzyme concentration by 50% of α ∗ kf ,i , while e0,i is the 
basal enzyme concentration prior to tuning. Other than 
α, the parameter values of each enzyme (Data S1) are 
uniformly sampled from predefined ranges.

Generating synthetic metabolite datasets by reaction 
kinetics
To do so, the initial concentration of metabolites 
(Additional file  3: Data S2) is set so that they are not 
exhausted during the run at the medium tunable level 
for all enzymes; enzyme concentrations over time are 
determined by using Hill’s function as above. Based 
on these conditions, metabolite concentration data are 
then generated at 15  min intervals over 24  h by simu-
lating the underlying reactions using separate forms 

ei(t) =
α∗kf ,i ∗ t

km,i + t
+ e0,i
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of reaction kinetics for the system model (Additional 
file  1). The kinetic parameter values are obtained as 
follows: MM parameters are first arbitrarily chosen 
(Additional file  4: Data S3) and then used to simulate 
metabolite time-series data. The latter data is then used 
to fit the other kinetic models (using the CMAES algo-
rithm) to efficiently engender reasonable parameter 
solutions. Parameters are also liberally altered to keep 
them within reasonable ranges.

The measurement error of metabolite and enzyme con-
centrations is sampled from a normal distribution with 
zero mean and a standard deviation equivalent to 2.5%, 
5%, or 7.5% of the underlying value (otherwise referred to 
as 2.5%, 5%, 7.5% “noise levels”).

Data augmentation
Monotonic cubic splines are used piecewise (“Piecewise 
Cubic Hermite Interpolating Polynomial” [67]) to inter-
polate the metabolite concentration at new time points in 
between the regular temporal datapoints.

Computing metabolite net reaction rates from triplicate 
time‑series data
For both metabolite and enzyme datasets, the average 
of triplicate measurements at regularly spaced matching 
timepoints is first taken. The net metabolite reaction rate 
yt at each temporal data point is given by the instanta-
neous slope, i.e., the first derivative of the concentration 
curve in time. We use the Savitzky-Golay filter [68] for 
evaluation, as it intrinsically smoothens noisy measure-
ments. For datasets with measurement noise, we apply 
the filter with a temporal window size of 5 datapoints and 
polynomial order 2. In the absence of noise, the values 
are 7 and 3, respectively.

To assess the accuracy of the computed y values, the 
metabolite concentration at each timepoint t = tk is then 
recovered by summing up its changes over time from its 
initial concentration:

where �t is the temporal spacing between neighboring 
datapoints, e.g., �t = 0.25 h for 4 temporal datapoints 
per hour. The regenerated datapoints in time are then 
compared visually with the corresponding measurements 
by overlaying them.

Implementing evolutionary algorithms, hyperparameters, 
and termination criteria
We use evolutionary algorithms implemented in the python 
package, pymoo (version 0.6.0) [14]. Other than setting a 
population size of 64, the default hyperparameter settings 

x(tk) = x(0)+
t=tk−1

t=0
(yt∗�t)

in pymoo are used for all algorithms. We set an upper limit 
of 1 × 105 generations for the termination criterion (Table 1), 
which allows most algorithms to reach a plateau state 
(in terms of the cost function) or to self-terminate for the 
CMAES algorithm (Additional file 1: Figs. S1–S4).

Estimating kinetic parameters for artificial pathway
The nonlinear programming problem is formulated as 
follows:

Find the vector of rate law parameter values (decision 
variable values), p  , to minimize the cost function, 
i.e., the overall mean square error MSE in our case:

where S is the total number of experimental runs, M is 
the total number of modeled metabolites, T + 1 is the 
total number of time points, ys,m,t is the net reaction 
rate for metabolite m at time t in experiment s, and ŷ is 
the corresponding prediction by the system model. The 
model is in the form of a set of ordinary differential equa-
tions as described in section one of Additional file 1.

MSE is further subjected to:

where x is the vector of metabolite concentrations as 
state variables, e is the vector of enzyme concentrations 
as control variables, v is the vector of other parameter 
values that are not being estimated in the current prob-
lem (usually invariant in the system with time). The 
constant inflow of AcCoA precursor into our modeled 
system is represented by one such parameter Vin.

Performance metric for parameter estimations: coefficient 
of determination
Recall that Pearson’s correlation coefficient indicates 
the degree to which two variables, y and x, are statisti-
cally related by a linear relationship between them, i.e., 
y = mx + c. To measure the quality of parameter predic-
tions by candidate evolutionary algorithms, we use a 
similar metric to gauge the extent to which, the predicted 
values k̂r are equivalent to the actual values k̂r , i.e.,

MSE =
1

S ∗M ∗ (T+ 1)

∑S

s=1

∑M

m=1

∑T

t=0
(ys,m,t − ŷs,m,t )

2

ŷs,m,t = fm(x(s, t), e(s, t), p, v)

x(s, t) = xs,t

e(s, t) = es,t

v = v

plb ≤ p ≤ pub

kr = k̂r
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This provides a direct and more stringent measure of 
estimation quality than otherwise if we merely assess the 
degree to which kr and k̂r are linearly related. Note that in 
this case, m and C are 1 and 0, respectively. Analogously, 
we calculate the coefficient of determinant R2:

whereby the residual sum of square SSr and the total sum 
of square SSt are also analogously computed as follows:

kr,i is the actual value of the ith rate law parameter, while 
k̂r,i is the corresponding predicted value; kr  is the mean of 
the actual value of all N rate law parameters.

Evaluating improvement in R2 by taking average solution 
from multiple seed runs
The Wilcoxon-Mann–Whitney test is carried out using 
the software EDISON-WMW [69].
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