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Abstract: The size effect on plain concrete specimens is well known and can be correctly captured
when performing numerical simulations by using a well characterised softening function. Neverthe-
less, in the case of polyolefin-fibre-reinforced concrete (PFRC), this is not directly applicable, since
using only diagram cannot capture the material behaviour on elements with different sizes due to
dependence of the orientation factor of the fibres with the size of the specimen. In previous works,
the use of a trilinear softening diagram proved to be very convenient for reproducing fracture of
polyolefin-fibre-reinforced concrete elements, but only if it is previously adapted for each specimen
size. In this work, a predictive methodology is used to reproduce fracture of polyolefin-fibre-
reinforced concrete specimens of different sizes under three-point bending. Fracture is reproduced by
means of a well-known embedded cohesive model, with a trilinear softening function that is defined
specifically for each specimen size. The fundamental points of these softening functions are defined a
priori by using empirical expressions proposed in past works, based on an extensive experimental
background. Therefore, the numerical results are obtained in a predictive manner and then compared
with a previous experimental campaign in which PFRC notched specimens of different sizes were
tested with a three-point bending test setup, showing that this approach properly captures the size
effect, although some values of the fundamental points in the trilinear diagram could be defined
more accurately.

Keywords: size effect; polyolefin-fibre-reinforced concrete; trilinear softening function; cohesive model

1. Introduction

In the case of plastic limit analysis or elasticity assessed up to a strength limit, results
are independent of the specimen size, but in the case of elements made of quasi-brittle
materials such as concrete that are evaluated beyond the proportionality limit, the nominal
strength is dependent on the specimen size.

Size effect on plain concrete is well known and is the reason why fracture develops
at lower values of the nominal strength when the size of a concrete specimen increases
while keeping the same proportions [1]. When fracture in plain concrete is numerically
reproduced, the size effect can be correctly captured by means of a cohesive zone formula-
tion that uses a well-characterised softening diagram [2–4]. In fact, as Bažant states, the
cohesive crack model proposed by Hillerborg can be considered as the most realistic among
simple models when quasi-brittle fractures are studied [5].

The use of fibres as reinforcement in concrete has been studied for decades and has
been traditionally developed by using steel fibres [6,7] but has been boosted in recent
years, and the range of fibres used for this purpose has increased [8–11], with polyolefin
fibres being one of the most recent types. Polyolefin-fibre-reinforced concrete (PFRC) is
experiencing great development in recent years, due to its good mechanical behaviour and
the fact that it reduces and, in some cases, even eliminates some of the problems observed
in steel-fibre-reinforced concrete (SFRC) such as corrosion, sensitivity to magnetic fields,
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or wear and tear of machinery related to its production (concrete pumps and mixers, for
example), making PFRC particularly suitable for some uses. The effect of these fibres on the
properties of PFRC has been studied in depth during the last years for traditional vibrated
concrete [12], self-compacting concrete [13], and in combination with steel fibres [14]. Many
aspects of PFRC are already studied, such as the fibre distribution depending on the
production process [15] or how it affects fracture in mode I [16] and mode II [17]. Although
this material is starting to count with initial examples of use as a structural material [18,19],
one of the reasons why PFRC is still not becoming as widespread as it could is probably the
scarce experience with it and the uncertainty on its behaviour in real engineering works
under certain situations. One of the aspects that must be clarified is the size effect; this is of
paramount importance if the material properties measured at a laboratory scale are to be
used for designing larger structures.

There is not much information about the size effect in fibre-reinforced concrete (FRC),
especially in the case of PFRC, given that it is a relatively recent material. In the case
of SFRC, some studies can be found [20,21], and in the case of PFRC, an experimental
campaign has been recently carried out [22], which has shown that the nominal strength
at the limit of proportionality is governed by the matrix (concrete), and the post-cracking
residual strength is governed by the fibres.

In previous works, the use of a cohesive zone formulation fed with a trilinear softening
curve has proven to be very convenient for reproducing the fracture process in FRC [23],
but it must be adapted depending on several factors such as the fibre length, the fibre
proportion [16], and the specimen size [24]. This trilinear softening diagram describes the
contribution of matrix and fibres in the fracture process which, due to the different elastic
moduli of both materials, begin to significantly work at different stages of load transmission.
Considering the trilinear diagram shown in Figure 1, the initial point t identifies the fracture
of the concrete matrix, k the point at which the contribution of fibres starts to predominate
over the contribution of the matrix, r the maximum remanent contribution of fibres, and f
the eventual failure of the material.
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Figure 1. (a) Load–displacement diagram obtained in a three-point bending test with a PFRC
specimen; (b) trilinear softening diagram.

In [16], some parameters of the PFRC mix were identified, and some expressions
were also proposed to define the fundamental points of the trilinear diagram (k and r
points). In addition to this, in [25] the length and orientation of fibres were observed as key
parameters to define the trilinear diagram, also identifying a higher threshold of the PFRC
behaviour obtained testing specimens with long fibres oriented in the optimum direction.

From the numerical point of view, there exist many approaches and models that help
to simulate fracture. In many cases, these models are calibrated using the experimental
results of the test simulated, but this does not guarantee that the parameters represent any
other case different from the one under study. From this point of view, the most interesting
approach consists of finding models that can reproduce fracture in a predictive way, that is,
a model that is fed with parameters obtained by experimental tests that are different from
the loading case that wants to be simulated. This type of model is considered less biased
and more representative of the material than a specific loading case.
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The main aim of this contribution is to reproduce fractures on different size specimens
of PFRC using a predictive approach. A cohesive model and a softening diagram that
corresponds to a trilinear function defined a priori was employed. Using the knowledge
obtained in previous works, the coordinates of each of the fundamental points t, k, r and f
were identified. To do this, the experimental results of [22] were reproduced and compared
through a finite element analysis by using an embedded cohesive crack formulation. In the
following sections, the experimental work used as a reference of the size effect in PFRC is
briefly described, then the main features of the embedded cohesive crack model used to
numerically reproduce fracture are presented, and the trilinear softening functions used
with each specimen size are obtained by means of the expressions proposed in [16]. Since,
as will be later discussed, some parameters of the diagram (more specifically, wr and w f )
are estimated, some parts of the load–displacement curves obtained numerically only agree
partially with the experimental results. Therefore, in the final part of this paper, an analysis
of the influence of such parameters is carried out, and some conclusions are highlighted.

2. Experimental Benchmark

In order to compare the numerical simulations with experimental results, the campaign
described in [22] was used. For a detailed description of this campaign, the reader is
encouraged to read the referenced work, since here only the main aspects relevant for the
present study are presented. Table 1 shows the concrete composition used in this campaign,
which corresponds to a self-compacting concrete with 10 kg of fibres per m3 (SCC10).

Table 1. Concrete composition.

Material SCC10

Cement (kg/m3) 375
Limestone (kg/m3) 200

Water (kg/m3) 188
w/c 0.5

Gravel (kg/m3) 245
Grit (kg/m3) 367
Sand (kg/m3) 918

Superplasticizer (% cement) 1.25
PF48 (kg/m3) 10

Concrete reinforcement consists of 48 mm long polyolefin macrofibres with an em-
bossed surface. The main properties of these fibres can be consulted in Table 2. More
information on these fibres can be found in [12].

Table 2. Fibres properties.

48 mm

≈ 2mm

Material density (g/cm3) 0.910
Eq. diameter (mm) 0.903

Tensile strength (MPa) >500
Modulus of elasticity (GPa) >9
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The experimental campaign of reference involved three-point bending tests carried
out on three samples of each size, following the guidelines of the EN-14651 standard [26]
(except for the specimen sizes and notch dimensions). Figure 2 shows a schematic drawing
of the experimental setup, and Table 3 shows the dimensions of the specimens. In all cases,
the concrete composition was the same, and 48 mm long polyolefin fibres were used in a
proportion of 10 kg/m3. The scheme on the left of Figure 2 shows the proportions of the
specimens, which remained equal for each size, and the scheme on the right shows the
specimen at an intermediate state of the test, when the cracking process was in progress
and propagated vertically from the notch tip.

In these tests, the load and the displacement were obtained from the testing machine,
and the evolution of the crack mouth opening displacement (CMOD) was measured by
means of a digital image correlation system (DIC). To compare the experimental results,
two main diagrams were employed: load versus displacement of the application point of
the load and load versus CMOD. Figure 2 shows these values in the scheme of a damaged
specimen during the test.

D

0:5D

1:5D1:5D0:75D 0:75D

L

CMOD

Load displacement

L

Figure 2. Left: scheme of a three-point bending test and specimen geometry; right: scheme of crack
propagation from the notch tip during the test.

Table 3. Specimens’ dimensions.

Specimen Length (mm) Width (mm) Height (mm) Notch (mm)

Large 1350 50 300 150
Medium 675 50 150 75

Small 340 50 75 37.5

3. Embedded Cohesive Crack Model

The crack process is modelled by using the finite element analysis and adapting a
formulation based on the cohesive zone approach developed by Hillerborg [27], inspired
by the work of Dugdale [28] and Barenblatt [29]. This formulation simulates fracture
inside an element using the strong discontinuity approach and was initially developed for
concrete [30,31] but later adapted to brickwork masonry elements [32] and fibre-reinforced
cementitious materials [16,23,24].

The cohesive zone approach relies on the experimental evidence that fracture usually
develops under a predominant local mode I. Thus, this approach assumes that the cohesive
stress vector t is perpendicular to the crack opening and parallel to the crack displacement
vector w, which is expressed by (1).

t =
f (w̃)

w̃
w with w̃ = max(|w|) (1)

where f (|w̃|) stands for the material softening function, defined in terms of an equivalent
crack opening w̃. This equivalent crack opening stores the maximum historical crack
opening to account for possible unloading scenarios. In this case, the softening diagram
is defined as trilinear, as shown in Figure 3, and the load–unload branches follow lines
towards the origin in all cases. The trilinear diagram is defined by the following expression:
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σ =



fct +

(
σk − fct

wk

)
· w if 0 < w ≤ wk

σk +

(
σr − σk
wr − wk

)
· (w− wk) if wk < w ≤ wr

σr +

(
−σr

w f − wr

)
· (w− wr) if wr < w ≤ w f

0 if w > w f

(2)

In the finite element models presented later, the embedded cohesive crack formulation
is used with constant strain triangular elements. Cracking can only develop in three
directions, each parallel to the element sides and at mid height, which guarantees that local
and global equilibria are satisfied. Figure 4 shows the only three possible crack paths in
an element.

fct

w

σk

σr

wk wr

k

r

f

t

wf

Figure 3. Scheme of a trilinear softening function. Load–unload branches follow a line towards
the origin.
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Figure 4. Potential crack paths (left) and geometrical definitions of w, n, and b+ (right).

Once the crack direction is defined, the element is divided into two parts, A+ and A−,
and the stress vector t is constant along the crack, expressed by (3).

t =
A
hL

σ · n (3)

where A stands for the area of the element, h for the height of the triangle over the side
opposite to the solitary node, L for the crack length in the element, and n for the unit vector
normal to that side and to the crack. Since the crack is parallel to one side of the triangular
element and is placed at mid height, Expression (3) turns into t = σ · n (the reader can find
more details of this and other aspects of the model in [30]).

The material outside the crack is assumed to be elastic, and the crack displacement
vector w is solved considering that the stress tensor can be obtained by subtracting an
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inelastic part, which considers the contribution of the crack displacement to the elastic
prediction computed using the apparent strain by means of (4).

σ = E :
[
εa −

(
b+ ⊗w

)S
]
· n (4)

where E is the elastic tangent tensor, εa the apparent strain vector obtained with the nodal
displacements, b+ the gradient vector of the shape function that corresponds to the solitary
node, which can be easily obtained in this case by (5), superscript S indicates the symmetric
part of the resulting tensor, : the double-dot product ((A : b)ij = Aijklbkl), and ⊗ the direct
product ((a⊗ b)ij = aibj).

b+ =
1
h

n (5)

Since the stress vector t can be obtained as t = σ · n, using the expression of σ obtained
with (4) and the expression of t in terms of the crack opening (1), the following expression
is defined:

f (w̃)

w̃
w = [E : εa] · n−

[
E :
(
b+ ⊗w

)S
]
· n

which can be rewritten as [
f (w̃)

w̃
1 + n · E · b+

]
·w = [E : εa] · n (6)

where 1 stands for the second-order identity tensor. Using an iterative process (such as the
Newton–Raphson method), the crack displacement w that satisfies (6) can be obtained.

This model is implemented using a UMAT subroutine in ABAQUS and, since vectors
n, b+, crack length L, and the element area A are computed using the nodal coordinates
for each element, it reads an external file with this information.

4. Definition of the Trilinear Softening Diagrams

As observed in [16], there are several parameters that can be experimentally measured
and help to define the trilinear diagram for the PFRC. Apart from the fracture parameters of
plain concrete (GF and ft), which define the first part of the diagram, these parameters are
the volume of fibres (Vf ), the orientation factor (θ) and the percentage of pulled out fibres
at the fracture surface (%Pulled− out). With the help of Vf , the angle φ can be obtained by
means of (7).

φ = −3.6046 + 5.0625 ·
(

1− e(−6.55·Vf )
)

(7)

This angle serves to identify the second point of the diagram (point k), which is the
intersection of the softening function of plain concrete (here considered as an exponential
function: σ = ft · exp(− ft ·w

GF
)) with a line passing through the origin with a direction

defined by φ (see Figure 5).

w (mm)

φ

σ
(M

P
a)

k

Softening diagram
of plain concrete

Figure 5. Identification of k point of the trilinear diagram by means of the angle φ.
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By using the three main parameters mentioned before and the ultimate tensile strength
of the fibres (σu), the maximum remaining strength (σr) can be obtained with (8).

σr = (1−%Pulled− out) ·Vf · θ · σu (8)

Considering the scheme of the trilinear diagram shown in Figure 1, the first two
points can be identified as follows: point t is identified by ft, which can be experimentally
obtained, while point k depends on the volume fraction of fibres (Vf ) by means of the φ
angle defined with (7) and the softening function of plain concrete. Table 4 shows the
intermediate values that result of this calculation.

Table 4. Intermediate values for obtaining point k of the trilinear diagram.

ft (MPa) GF (N/mm) φ wk (mm) σk (MPa)

Small/Medium/Large 3.2 0.13 1.448 0.07143 0.57715

As regards the remaining two points, r and f , the value of σr can be obtained with (8).
Table 5 shows the results of this calculation for each size, and σf is, obviously, equal to
0, but wr and w f must be estimated; they depend on the fibre length, but there are no
specific expressions to obtain them. In this case, wr is estimated as equal to 1.65 mm, since
this was the value adopted in [24] for simulating fracture in specimens made with 48 mm
long fibres of the same kind as those used here. As regards w f , this value is related to the
maximum crack opening before completely losing the bonding between the fibres and the
matrix; therefore, it is assumed to be proportional to the fibre length. Thus, since in [16]
specimens made with 60 mm long fibres were modelled using w f = 7.5 mm, here, a value
of w f = 48

60 · 7.5 = 6.0 mm is adopted. Figure 6 shows the resulting trilinear softening
diagrams for all three sizes.

Table 5. Intermediate values for obtaining σr for all three considered sizes.

θ %Pulled − Out Vf σu (MPa) σr (MPa)

Small 0.63 0.54 0.011 376 1.20
Medium 0.62 0.54 0.011 376 1.18

Large 0.72 0.54 0.011 376 1.37

1 2 3 4 5 6 7
w (mm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

σ
(M

P
a)

Large

Medium

Small

Figure 6. Initial trilinear softening diagrams.

5. Results and Discussion

Fracture of the three specimen sizes analysed in [12] was carried out using the finite
element method, and a displacement control was used to drive the fracture evolution
with good convergence. The simulations were computed using ABAQUS [33], and the
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fracture was reproduced by means of a UMAT subroutine that implemented the previously
described material behaviour.

Figure 7 shows the three meshes used in this work with the same scale. In all three
meshes, the region connecting the notch tip with the load application point was refined
in order to better capture the fracture process, while the rest of the specimen was meshed
with larger elements, which helped to notably reduce the time of computation. The models
were formed by a number of nodes smaller than 800 and a number of triangular finite
elements smaller than 1500, thus keeping the model size small enough to have models
that perform efficiently. These simulations were run on a computer with an Intel Xeon
E5-1620 processor with 4 cores at 3.5 GHz, although only one was used since the user
subroutine that reproduces the material behaviour does not allow parallel computing; all
the simulations took around 150 min to run. In the case of the large size model (L), the
side of minimum element size was around 7 mm, in the case of the medium size model
(M), 3.5 mm, and in the case of the small size model (S), 2 mm. The refinement of these
meshes was designed based on previous works (see [24]), in which the mesh dependence
was already analysed.

1350 mm

675 mm

340 mm

75 mm

150 mm

300 mm

L
a
rg
e

M
ed
iu
m

S
m
a
ll

Figure 7. FEM meshes used in the simulations for each specimen size.

Figure 8 shows the load–load displacement and load–CMOD diagrams for all three
sizes and compares them with the experimental results. Each specimen size is identified
by a different colour: red for large size, blue for medium size, and green for small size.
The shades behind the diagrams correspond to the experimental envelopes, with the same
colour code used in the diagrams; therefore, the red shade corresponds to the experimental
envelope of the large specimens, the blue shade to the experimental envelope of medium
specimens, and the green shade to the experimental envelope of small specimens. Apart
from the overestimation of the initial peak, which is a known issue when this type of
numerical modelling is used, especially in large-sized specimens [34], the models reproduce
the experimental results reasonably well. This agreement is particularly good, in the
case of the medium size, and presents some differences in the last part of the load–load
displacement diagrams, in the cases of large and small sizes, in which the numerical model
tends to underestimate the specimen’s remaining strength.

It is also worth noting that in the case of the experimental results, the maximum
remanent load occurs at a larger load displacement if compared with the medium and
large sizes, while in the case of the numerical results, this maximum load after the first
peak occurs approximately at the same load displacement and, in all cases, following a
very linear trend. These trends are depicted by dashed lines on the load–load displacement
diagrams of Figure 8.
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These results show that expressions (7) and (8), defined in the past by analysing the
fracture behaviour of different PFRC mixes, well describe the general behaviour of this
material and take into account the main parameters: the volume of fibres in the mix (Vf ),
the orientation of fibres with respect to the fracture surface (θ), and the quality of bonding
between the fibres and concrete, expressed by the fraction of fibres that are pulled out
at the fracture surface (%Pulled− out). Nevertheless, the parameters used to define the
trilinear softening diagrams, abscissa values of points k and f , are only estimated based on
previous experiences with this type of model, but there are no expressions proposed for
them yet. In the following section, the influence of these two values, wr and w f , is studied
to understand how they modify the diagrams, which can help to propose expressions to
quantify them.
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Figure 8. Numerical results compared with the experimental envelopes; each specimen size is
identified by a different colour. Experimental envelopes correspond to three specimens tested.

6. Study on the Influence of wr and w f

6.1. Influence of wr

To understand how the value of wr modifies the load–load displacement and load–
CMOD diagrams for each specimen size, the trilinear diagrams of Table 6 were considered
as a reference, and new ones were defined by modifying the value of wr, keeping the
rest unchanged. Figure 9 shows these trilinear functions and Figure 10 the resulting
load–load displacement and load–CMOD diagrams, considering the reference value of wr,
1.65 mm, and two alternative values, 1.85 mm and 2.05 mm, were identified by dashed lines
and dotted lines, respectively; these values have been adopted as reasonable alternatives
of the reference value according to previous experiences with this type of simulation.
As described for Figure 8, red, blue and green shades identify the experimental envelopes
of large, medium, and small specimens, respectively.

Table 6. Parameters of the softening diagrams for each specimen size.

Small Medium Large

wt (mm) 0.00 0.00 0.00
σt (MPa) 3.20 3.20 3.20
wk (mm) 0.07 0.07 0.07
σk (MPa) 0.57 0.57 0.57
wr (mm) 1.650 1.650 1.650
σr (MPa) 1.20 1.18 1.37
w f (mm) 6.00 6.00 6.00
σf (MPa) 0.00 0.00 0.00



Materials 2021, 14, 3795 10 of 14
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Figure 9. Left: trilinear diagrams used to study the influence of wr on the numerical simulations;
right: detail of the diagrams around point r (see Figure 3). Continuous lines represent the trilinear
functions with wr = 1.65, dashed lines the functions with wr = 1.85, and dotted lines the function with
wr = 2.05.
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Figure 10. Numerical results compared with the experimental envelopes to study the influence of
wr on the numerical simulations. The trilinear functions used in each case are shown in Figure 9.
Experimental envelopes correspond to three specimens tested.

As a consequence of defining larger values of wr, the maximum remanent load is
reached later in the test, as could be expected, but it is also interesting to observe that the
maximum load becomes slightly lower. This makes the simulations of large and medium
sizes agree somewhat better with the experimental envelope. The maximum remanent load
still shows proportionality with the specimen size and the experimental observation is not
reproduced, since, in the small size case, it still occurs earlier than in the experimental tests.

These results suggest that the value of wr has a strong influence on the diagram, i.e.,
on the load displacement at which the maximum remanent load occurs, as well as on its
value, since the larger wr is, the smaller the maximum remanent load becomes. This is
due to the uneven stress evolution along the fracture plane during the test; if wr is smaller,
the slope of the k–r line (see Figure 3) is steeper; therefore, the lower fibres of the fracture
plane, which are the first to be damaged and the most relevant from the point of view of the
bearing capacity of the section due to their position, begin to recover their loading capacity
earlier. At this point, as there is a smaller fraction of the ligament damaged, the sample
is capable of reaching a higher value of the remanent load before its final decay. On the
contrary, if wr is higher, the loading capacity of the lower fibres of the bearing section is
recovered later, and therefore, a larger portion of the section is damaged, which leads to a
smaller value of the maximum remanent load.
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6.2. Influence of w f

To analyse how w f affects the fracture behaviour in the simulations of each size,
the same strategy as with wr was followed. Using the trilinear diagrams of Table 6 as the
reference, two more diagrams were created for each size by modifying only the abscissa of
point f , using values considered as reasonable based on previous experiences with these
simulations. Figure 11 shows these trilinear diagrams and Figure 12 the curves obtained
with them in the numerical simulations. As in Figures 8 and 10, red, blue, and green shades
identify the experimental envelopes for each specimen size.
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Figure 11. Left: trilinear diagrams used to study the influence of w f on the numerical simulations;
upper right: detail of the diagrams around point r; lower right: detail of the diagrams around point
f (see Figure 3). Continuous lines represent the trilinear functions with w f = 6.0, dashed lines, the
functions with w f = 6.5, and dotted lines, the function with w f = 7.0.
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Figure 12. Numerical results compared with the experimental envelopes to study the influence of
w f on the numerical simulations. The trilinear functions used in each case are shown in Figure 11.
Experimental envelopes correspond to three specimens tested.

As expected, these diagrams show that when w f is larger, the load decay in the
last part of the test is delayed, which makes the numerical simulations more akin to the
experimental observations in the case of the large size, maintaining a good agreement
with the other two sizes. Although the behaviour of the model is very similar up to the
maximum remanent load, there are small differences among each of the three values of
w f used in each specimen size. Taking a closer look at the diagrams around the region
where the maximum remanent load occurs, it can be observed that this occurs at a slightly
higher value of the load displacement and the value of this load is slightly higher, although
the differences are almost negligible. This behaviour is expected, since once the damage
starts in the lower fibres of the ligament and progresses beyond the r point, their bearing
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capacity decays at a slower rate as the crack opens. Since the maximum remanent load is
the result of a competition between the load lost by the more damaged fibres that have
already reached the r point and the increased bearing capacity of less damaged fibres that
have still not reached the r point, a softer slope of the r– f line in the trilinear diagram
results in a higher remanent load that occurs later in the test (see Figure 3).

Lastly, regarding the experimental trend of the maximum remanent load observed
experimentally, here, again, it presents a proportional evolution with the specimen size.
As observed with the alternative softening diagrams obtained by modifying wr, the max-
imum remanent load occurs approximately at the same load displacement for all three
sizes, while the experimental results (see the load–load displacement diagram in Figure 8)
show a larger value for the small size; therefore, this aspect is not captured by the numeri-
cal simulations.

As the previous results show, modifying wr or w f has effect on the maximum remanent
load and the final decay branch of the diagrams, but the alternative trilinear softening
diagrams used suggest that these values also depend on the specimen size. Estimating
wr and w f as fixed values for all specimen sizes results in a proportional evolution of the
maximum remanent load that follows a linear trend in the load–displacement diagrams,
which does not agree with the experimental observations. The work carried out in past
papers provide a good tool to reproduce the behaviour of PFRC elements in a predictive
way, capturing reasonably well the size effect of this type of materials, but the results
shown here suggest that expressions such as those used to define σk, wk and σr (see
Equations (7) and (8)) should be found for wr and w f in order to have a tool that captures
the whole fracture behaviour of this composite material and be fully predictive.

7. Conclusions

In this work, the numerical modelling of the size effect by means of a cohesive model
fed with a trilinear softening function was studied using a predictive method. A three-point
bending test on specimens of three sizes was numerically reproduced and compared with
experimental data from previous works. The trilinear diagrams for each size were defined
by expressions obtained in previous experimental campaigns, resulting in good agreement
with the lab observations.

From the work presented above, the following conclusions can be drawn:

1. The complete fracture behaviour of PFRC specimens can be numerically simulated
using a predictive trilinear cohesive crack model, which can be defined a priori by
means of empirical expressions obtained with lab tests different from those simulated.
This diagram is defined by four points, with coordinates that depend on PFRC
mechanical characteristics, i.e., the tensile strength of the matrix, the proportion
of fibres, and the orientation factor. Abscissa values wr and w f (see Figure 3) are
fixed based on experimental results obtained in previous literature. It is still an
unsolved challenge to obtain expressions to estimate wr and w f using the mechanical
characteristics of the PFRC.

2. The softening diagrams are not equal for all specimen sizes and should be adjusted
for each of them. This is mainly due to a different orientation factor that varies with
the size of the specimen.

3. The maximum remanent loads obtained for each size present a linear trend on the
load–displacement diagram, which does not agree completely with the experimental
observations, although the load–displacement and load–CMOD curves properly agree
with the experimental envelopes for the three studied sizes.

4. Modifying wr and w f affects the maximum remanent load on the load–displacement
diagram and modifies the last part of this diagram but cannot capture the nonlinear
trend of the remanent load among specimen sizes.
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