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ABSTRACT
Aspecies’ distributionprovides fundamental informationon: climatic niche, biogeogra-
phy, and conservation status. Species distribution models often use occurrence records
from biodiversity databases, subject to spatial and taxonomic biases. Deficiencies
in occurrence data can lead to incomplete species distribution estimates. We can
incorporate other data sources to supplement occurrence datasets. The general public
is creating (via GPS-enabled cameras to photograph wildlife) incidental occurrence
records that may present an opportunity to improve species distribution models. We
investigated (1) occurrence data of a cryptic group of animals: non-marine snakes, in a
biodiversity database (Global Biodiversity Information Facility (GBIF)) and determined
(2) whether incidental occurrence records extracted from geo-tagged social media
images (Flickr) could improve distribution models for 18 tropical snake species. We
provide R code to search for and extract data from images using Flickr’s API. We show
the biodiversity database’s 302,386 records disproportionately originate from North
America, Europe and Oceania (250,063, 82.7%), with substantial gaps in tropical areas
that host the highest snake diversity. North America, Europe and Oceania averaged
several hundred records per species; whereas Asia, Africa and South America averaged
less than 35 per species. Occurrence density showed similar patterns; Asia, Africa
and South America have roughly ten-fold fewer records per 100 km2 than other
regions. Social media provided 44,687 potential records. However, including them
in distribution models only marginally impacted niche estimations; niche overlap
indices were consistently over 0.9. Similarly, we show negligible differences in Maxent
model performance betweenmodels trained using GBIF-only and Flickr-supplemented
datasets. Model performance appeared dependent on species, rather than number of
occurrences or training dataset. We suggest that for tropical snakes, accessible social
media currently fails to deliver appreciable benefits for estimating species distributions;
but due to the variation between species and the rapid growth in social media data, may
still be worth considering in future contexts.

Subjects Biodiversity, Biogeography, Conservation Biology, Ecology
Keywords Snake, Social media, Species distribution models, Tropical, Occurrence, GBIF, Flickr,
Low detectability

INTRODUCTION
Species distribution models can yield insight into a species’ niche and habitat (Santos
et al., 2006). Information on a species’ niche provides some ability to predict species’
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responses to environmental change (Penman et al., 2010; Yousefi et al., 2015; Ahmadi
et al., 2019). Predictions from species distribution models can also inform protected
area allocation (Tulloch et al., 2016), support conservation status assessments (Solano &
Feria, 2007; Fourcade et al., 2013), invasion potential (Pearson, 2015; Mutascio et al., 2018;
although with complications Phillips, Chipperfield & Kearney, 2008) and identify potential
human-wildlife conflicts (Yañez-Arenas et al., 2014).

The utility of a species distribution model is dependent on the underlying species
occurrence data used in constructing the model. Gaps and incomplete data can lead
to misidentifying the target species’ niche (Monsarrat et al., 2019). Underestimating
species distributions can further mask the impacts of human activity on distributions,
contributing to shifting baseline syndrome where progressively eroded species distributions
or populations are accepted as normal or healthy (Cromsigt, Kerley & Kowalczyk, 2012).
Ways to mitigate data gaps need thorough investigation.

Technological advances, global survey effort and digitisation of museum records have
developed large biodiversity databases, pulling together disparate data sources to make
global occurrence records more accessible and comprehensive. However, considerable gaps
in biodiversity databases exist because of: detection difficulties, inconsistent surveying, and
inadequate (or sometimes inaccurate) locality data for museum specimens (Yesson et al.,
2007; Beck et al., 2013; Troudet et al., 2017).

Novel supplementary data sources could help fill biodiversity database gaps (Toivonen
et al., 2019). With the proliferation of GPS enabled devices, the public is generating huge
datasets on Web 2.0 platforms that can describe and/or predict a variety of phenomena
including: protests (Alanyali, Preis & Moat, 2016), land-use (Antoniou et al., 2016), tourism
(García-Palomares, Gutiérrez & Mínguez, 2015; Chua et al., 2016), hurricane damage (Preis
et al., 2013) and protected area use (Orsi & Geneletti, 2013; Hausmann et al., 2018). Some
Web 2.0 data, in the form of geo-tagged images, can communicate the identity and location
of species (Barve, 2014). The geo-tagged images in a searchable social media platform may
be a source for incidentally collected records of species (Allain, 2019; Barve, 2014; ElQadi
et al., 2017; Jiménez-Valverde et al., 2019).

Incidental biodiversity records have already improved data availability for butterflies,
snowy owls (Barve, 2014), spiders (Jiménez-Valverde et al., 2019), bees, flowers (ElQadi et
al., 2017) and turtles (Allain, 2019). However, we do not know whether social media can
provide similar benefits for (mostly) unpopular and low-detectability species.

Snakes present a model to explore the utility of social media data. Because snakes have
been historically overlooked in research (Shine & Bonnet, 2000; De Miranda, 2017) and
are difficult to detect (Steen, 2010; Durso & Seigel, 2015) they are likely suffering from
a lack of primary biodiversity data. The need to generate more primary biodiversity
data is underscored by: snakes’ important regulatory and keystone roles in ecosystem
functioning (Willson & Winne, 2016;De Miranda, 2017); major gaps in reptile conservation
assessments (Bland & Böhm, 2016; Tingley, Meiri & Chapple, 2016; Hughes, 2017); and
frequent involvement in human-wildlife conflicts (Whitaker & Shine, 2000; Akani et al.,
2002;Meek, 2012;Miranda, Ribeiro & Strüssmann, 2016; Marshall et al., 2018).
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We describe the current state of snake occurrence records in the Global Biodiversity
Information Facility (GBIF) database, highlighting gaps in surveying. We then explore the
potential utility of a supplementary data source, a photography sharing platform Flickr, in
the modelling of tropical snake distributions.

MATERIALS & METHODS
We completed all data analyses in R v.3.5.3 (R Core Team, 2019) and R Studio v.1.2.1335
(R Studio Team, 2019). For data visualisation we used ggplot2 (Wickham, 2016), ggrepel
(Slowikowski, 2019) and scico (Pedersen & Crameri, 2018) packages. We have included a
directory of scripts, packages (using packrat Ushey et al., 2018), and data used in analyses
at: doi: 10.5281/zenodo.3243983.

Data retrieval
GBIF
Before acquiring data from the GBIF database (GBIF.org, 2019) we generated a
comprehensive list of snake species. We used the taxize package (Chamberlain et al., 2018)
to access GBIF and National Center for Biotechnology Information (NCBI; Benson et al.,
2008; Sayers et al., 2009) records for all squamates families, filtering for those mentioning
Serpentes in downstream classification. For each family within the suborder Serpentes
we then queried the GBIF database and downloaded occurrence records, on a per genus
basis, using the dismo (Hijmans et al., 2017) and rgbif packages (Chamberlain et al., 2019).
Once we had downloaded all records, we queried the GBIF database a second time to
ensure that downloaded files were complete and included all available occurrences. All
GBIF downloads and metadata (including a list of data sources) are available at doi:
10.5281/zenodo.3243983.

After downloading, we compiled the resulting genus occurrence files, filtering out
marine snake families (data manipulation performed with the dplyr (Wickham et al., 2017),
data.table (Dowle & Srinivasan, 2019) and reshape2 (Wickham, 2007) packages). Due to the
size of the dataset, we automated cleaning. We opted to use the CoordinateCleaner package
to clean each species individually (Zizka et al., 2019). Following the process outlined in
Zizka et al. (2019), we removed records with locations as NAs, zeros, identical values, near
GBIF headquarters, near biodiversity institutions, within oceans, and that were extreme
outliers for that species (using interquartile range outlier detection). Species with over
15,000 records (e.g., Thamnophis spp., Natrix spp. and Vipera berus) failed or produced
erroneous results so we examined these species manually, removing outlying occurrences
(those occurring on incorrect continents).

Flickr
To acquire data from Flickr we generated a list of species names, both common and
binomial as search terms. We used the taxize package (Chamberlain et al., 2018) to query
the GBIF and NCBI databases for all species downstream of the Serpentes families. We
then compiled results from both databases into a single list, removing duplicates. Common
name queries of GBIF and NCBI databases were inadequate or failed for many species.
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Therefore, we created a query system that accessed The Reptile Database (Uetz, Freed &
Hošek, 2019) (using XML (Lang & CRAN Team, 2019a), xml2 (Wickham, Hester & Ooms,
2018) and rvest (Wickham, 2019)). For each species we retrieved all common names the
Reptile Database listed. We parsed each set of common names to separate them to generate
a list of search terms for each species, attempting to anticipate as many notation styles as
possible used by Reptile Database. We relied on the stringr package (Wickham, 2018) to
handle recurring character patterns.

We then accessed Flickr’s API (Flickr Development Team, 2019), via R packages XML
(Lang & CRAN Team, 2019a), RCurl (Lang & CRAN Team, 2019b) and httr (Wickham,
2017), using each species’ search terms to retrieve search results for images. Photos had to
be tagged as snake and geo-tagged so that a location was evident. During this process we
saved theURL and year (extractedwith the lubridate packageGrolemund &Wickham, 2011)
for each photo to later manually verify species identification. We then manually reviewed
each image for the 18 selected tropical species (1166 images total), removing records of
non-target species or images judged to have been taken within captive settings (captive
settings were inferred by the presence of artificial substrate, white-balances associated with
artificial lighting and geographic proximity to zoos, i.e., occurred within a raster cell and a
suburban/urban area contiguous with a Google Maps labelled zoo).

Raster layers
Weused the raster package (Hijmans, 2019) to retrieve climatic raster data fromWorldClim
(Fick & Hijmans, 2017). To guard against over-parameterisation and over-fitting during
species distribution modelling (Fourcade, Besnard & Secondi, 2018), we discarded 14 of
WorldClim’s bioclimatic layers. We discarded layers until between-layer correlations with
an R value >0.6 were removed (Merow, Smith & Silander, 2013; Castellanos et al., 2019).
We explored different combinations that reduced the correlation, and opted for a set of five
variables covering a variety of climatic aspects likely important to snake range delimitation
(Kearney, Shine & Porter, 2009; Fourcade, Besnard & Secondi, 2018). The remaining layers
were: BIO1 (annual mean temperature), BIO2 (mean diurnal temperature range), BIO7
(temperature annual range), BIO12 (annual precipitation), and BIO15 (precipitation
seasonality).

We limited the remaining WorldClim data to three regions of interest: Tropical Asia
(longitude: 50◦E, 150◦E; latitude: −25◦N, 50◦N), Africa (longitude: −40◦E, 40◦E; latitude:
−25◦N, 75◦N) and South America (longitude:−120◦E,−25◦E; latitude:−60◦N, 25◦N).We
also downloaded global elevation data (Danielson & Gesch, 2011; U.S. Geological Survey,
2016) and human footprint index (Venter et al., 2016a; Venter et al., 2016b). Then we
downscaled and reprojected elevation and footprint layers using projectRaster (Hijmans,
2019) with the default bilinear method to match the regional WorldClim layers’ projection,
extent and resolution. We have included the resulting raster layers used in analysis in the
supplementary data.
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POINT PROCESS ANALYSIS
We examined the distribution of GBIF occurrences via several point process analyses. We
set the data within a landmass polygon (to account for water bodies during calculations)
downloaded from natural earth using the rnaturalearth package (South, 2017). Then
using the spatstat package (Baddeley & Turner, 2005) we tested for spatial conformity. We
performed four types of spatial tests.We ran quadrat tests (with quadrats roughly equivalent
to 10 degrees squared) to examine the spatial randomness of points. We calculated nearest
neighbour distance functions (G) with Kaplan–Meier, border, and hazard corrections to
examine the distribution of distances from points to their nearest neighbour. We estimated
the empty space function (F) with Kaplan–Meier, border, and Chiu-Stoyan correction to
examine how empty space was distributed between points. Finally, we estimated Ripley’s
reduced second moment function (K), with no correction applied due to the prohibitively
large dataset, for further examination of spatial non-randomness.

We estimated continental area and occurrence density using the rnaturalearth landmass.
To estimate continental area, we projected the landmass for each continent using the closest
Albers equal area conic projection (specifications obtained from https://epsg.io) with the
rgeos (Bivand & Rundel, 2018) and sp packages (Pebesma et al., 2019). For standard error
calculations we used the pracma package (Borchers, 2019).

MODELLING
Species selection
We selected 18 species to investigate: nine selected manually and nine selected randomly.
Our manual selection was based on relative taxonomic stability, their charismatic
appearance and ease of photographic identification: Bitis arietans MERREM, 1820;
Bothriechis schlegelii (BERTHOLD, 1846); Bungarus fasciatus (SCHNEIDER, 1801);
Calloselasma rhodostoma (KUHL, 1824); Coelognathus radiatus (BOIE, 1827); Dendroaspis
polylepisGÜNTHER, 1864;Eunectes murinus (LINNAEUS, 1758);Malayopython reticulatus
(SCHNEIDER, 1801); and Ophiophagus hannah (CANTOR, 1836). Our manual selection
represented all three tropical regions (Tropical Asia: 5, Africa: 2, South America: 2).

In addition to the ninemanually selected species, we used the sample_n function in dplyr
(Wickham et al., 2017) to randomly select ninemore species that fitted the following criteria:
occurs entirely within one of the three tropical regions, and be considered taxonomically
stable. We defined the second criteria using the names listed on Reptile Database. Any
species with a single binomial name listed since 2000, we considered stable. Once we had
filtered the list of species by those criteria, we randomly selected nine species from 25
species with the most Flickr results. We had to repeat the random selection to avoid species
with too few occurrences to model or an insufficiently sized distribution to be estimated
with the resolution of raster layers. Porthidium spp . also had to be excluded because of the
difficulties verifying species identity in images. The final nine randomly selected species
were:Aplopeltura boa (BOIE, 1828);Atheris nitscheiTORNIER, 1902;Boiga cynodon (BOIE,
1827); Boiga kraepelini STEJNEGER, 1902; Chironius carinatus (LINNAEUS, 1758); Echis
coloratus GÜNTHER, 1878; Enhydris enhydris (SCHNEIDER, 1799); Hydrodynastes gigas
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(DUMÉRIL, BIBRON & DUMÉRIL, 1854); and Sinonatrix percarinata (BOULENGER,
1899) (Tropical Asia: 5, Africa: 2, South America: 2).

Model settings
We created four training datasets per species. First, we used SPthin (Aiello-Lammens et
al., 2014) with a grid size equal to the raster cell to thin the data, ensuring only a single
occurrence per cell. We split the GBIF occurrences into five randomly assigned groups
in geographic space, limiting non-independence in environmental space (Roberts et al.,
2017; Castellanos et al., 2019). We used the BlockCV package (Valavi et al., 2018) with the
recommended block size based on the climatic and elevation raster layers (using 100,000
samples, group assignment was optimised across 500 iterations). Where the recommended
block size failed to assign at least one occurrence to every group, we decreased the block size
by 5% and re-ran the assignment until all groups were represented. Once groups had been
successfully assigned, we set aside the median sized group of points from testing. We used
the remaining points to train the geo-independent model. We generated a second GBIF
data-only training set with a random subset of the original data removed. We removed
this subset with no space weighting (to replicate random k-folds frequently used in the
modelling literature), and the size was equal to the subset removed for the geo-independent
model training dataset. We refer to the second model as the GBIF randommodel. The final
models used the two GBIF training datasets described above supplemented by the Flickr
data collected for that species.

We generated an array of 10,000 background points for each species, the array was
consistent between model runs and training datasets. We bounded background point
generation with a minimum convex polygon around all species occurrence records
(Castellanos et al., 2019), plus a buffer equal to half the mean distance between occurrences.
Whereas studies usually choose a fixed buffer to create the bounding area, the disparity
in our 18 species distributions required us to use species-specific buffers based on relative
occurrence record spread. Relying on a compromised fixed buffer for all species could
underestimate AUC scores for species with large distributions, while inflating AUC
scores for species with small distributions (Anderson & Raza, 2010). Because survey effort
is undocumented and unequal (Tulloch et al., 2013), we weighted background point
distribution using a bias layer to areas that are likely to have had increased survey effort
(Phillips et al., 2009; Merow, Smith & Silander, 2013). We chose human footprint as proxy
for survey likelihood, under the assumption that increased access and human presence
leads to greater occurrence records.

We used the ENMeval package (Muscarella et al., 2014) to run Maxent models across
varying model settings. We chose Maxent because of its flexibility and performance relative
to other methods (Elith et al., 2006). We used combinations of linear and quadratic feature
classes and ran models using a sequence of regularization values from 1 to 8 to reduce the
chances of overfitting (Shcheglovitova & Anderson, 2013; Merow, Smith & Silander, 2013;
Radosavljevic & Anderson, 2014) and set internal cross validation to user groups defined
with BlockCV (Valavi et al., 2018).
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Model evaluation
The metrics used to assess species distribution model performance are debated. Due to
their reliance on pseudo-absences some of the ways of evaluating models are unhelpful.
We chose to follow Castellanos et al.’s, (2019) advice and use multiple metrics. We selected
receiver operating characteristic AUC (ROC AUC) because of its wide use and ability
to compare models based on different datasets. Use of ROC AUC has drawbacks (Lobo,
Jiménez-valverde & Real, 2008): it is sensitive to background area (Anderson & Raza, 2010),
and is liable to overestimate model performance (Fernandes, Scherrer & Guisan, 2018).
To supplement ROC AUC evaluation, we use precision-recall values (PRRC)—recently
recommended as a metric insensitive to background area and species rarity because it
ignores correctly predicted absences (Sofaer, Hoeting & Jarnevich, 2019). For every model
created by the four training datasets, we calculated ROC AUC and PRRC values for all
three test datasets with the PRROC package (Grau, Grosse & Keilwagen, 2015).

As an additional measure of the Flickr data’s contribution to models, we examined the
niche overlap between models trained on only GBIF records and those trained on datasets
supplemented with Flickr occurrences. We estimated niche overlap using Schoener’s D
measure with the ENMeval package (Muscarella et al., 2014).

We exploredMaxentmodel performance usingGLMandGLMMswith the lme4 package
(Bates et al., 2015). We created models using combinations of number of occurrences,
species, and training dataset as predictors of PRRC and ROC AUC values. The full list
of models tested can be found in Table S1. We used Spearman’s rank test to explore the
relationships between area and occurrence count, after testing for normality with qqplots
(from the car package Fox & Weisberg, 2011) and Shapiro–Wilk tests.

RESULTS
Data summary
Our assessments of GBIF snake occurrences reveal strong spatial bias in the 302,386 unique
locations of non-marine snakes. Flickr data searches produced only 44,689 images tagged
with snakes and location information; Flickr data was also spatially nonuniform.

All point process analysis showed that the distribution of GBIF and Flickr points are not
randomly distributed: multiple metrics suggest spatial clustering (GBIF data Quadrat test:
X 2
= 2425600, df = 288, p-value <2.2e−16; Flickr: Quadrat test: X 2

= 426820, df = 288,
p-value <2.2e−16; G-function: Fig. S1; F-function: Fig. S2; K-function: Fig. S3). The
clustering is apparent in Figs. 1 and 2, illustrating points concentrated in North America,
Europe and Australia –both GBIF and Flickr appear to follow similar distributions.

Examining the GBIF results per continent reveals the scale of spatial bias (Table 1). The
number of occurrence records are considerably lower in Africa, Asia, and South America,
despite their large area and diversity of snake species. This pattern is particularly apparent
in the density of occurrence records that are approximately ten-fold lower.

The data available for our 18 selected snake species varied dramatically (Fig. 3), and
appeared to only be weakly positively associated with the size of the minimum convex
polygon (MCP) of occurrence points (Fig. 4). Overall, we manually reviewed 1166 Flickr
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Figure 1 Global distribution of all GBIF non-marine snake records displayed against continental divi-
sions.

Full-size DOI: 10.7717/peerj.8059/fig-1
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Figure 2 Global distribution of geo-tagged Flickr photos that appeared across all searches.
Full-size DOI: 10.7717/peerj.8059/fig-2

images, discarding 11.22 ± 5.68 non-snake or captive image locations per species (range
= 0–92; percentage of images discarded per species 11.06 ± 4.86%, range = 0–77.97%).

Modelling results
Overall, we found that models trained on GBIF supplemented with Flickr results were
marginally better at predicting both randomly selected and geographically selected GBIF
records when assessed using ROC AUC (Fig. 5). Precision-Recall values only saw the Flickr
supplemented models perform better when predicting the geographically independent
sample of GBIF records (Fig. 6).
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Table 1 Summary information of GBIF snake records.

Continent # Species # Occurrences Mean
occurrences
per species

SE Area
(million
km2)

Occurrences per
100 km2

Africa 513 17,108 33.35 3.38 29.89 0.006
Asia 576 19,187 33.31 5.69 44.67 0.004
Europe 99 42,892 433.25 169.78 8.97 0.048
North America 680 157,923 232.24 33.62 24.64 0.064
Oceania 236 49,247 208.67 32.56 8.92 0.055
South America 633 16,029 25.32 2.21 17.91 0.009

Notes.
# Species, Number of species appearing in GBIF data, not the actual number of species known to exist across the continent;
# Occurrences, Number of occurrence records in GBIF downloads; Mean occurrences per species, Total number of occur-
rences records in a continent divided by number of species in GBIF data; SE, Standard error associated with the mean oc-
currences per species; Area, Area in millions of km2 estimated using Albers equal area conic projection; Occurrences per 100
km2, Total number of occurrence records divided by the estimated continental area.
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ance: BiAr = Bitis arietans, BoKr = Boiga kraepelini, BoSc = Bothriechis schlegelii, ChCa = Chironius car-
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enhydris, CaRh = Calloselasma rhodostoma, AtNi = Atheris nitschei, ApBo = Aplopeltura boa.

Full-size DOI: 10.7717/peerj.8059/fig-3
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Full-size DOI: 10.7717/peerj.8059/fig-4

Models trained on randomly and geographically independent GBIF data performed
similarly when tested against the Flickr data. The randomly subset GBIF models showed
more variable results both for ROC AUC and PRRC. The respectable ability to predict
Flickr results from only GBIF records suggest that Flickr results have little in the way of
new climatic information.

The limited new information provided by Flickr datasets is further supported by the high
levels of niche overlap between models trained on GBIF-only and Flickr-supplemented
datasets, albeit with variation between species (Fig. 7).

When we investigated which variable predicts model performance, the mixed-models
using the training dataset and species as randompredictors were superior based onAIC. The
resulting model agrees with Figs. 1 and 2 indicating variability between species and a weak
trend driven by the training dataset.While themodel investigations seem to support species
as the driver behind Maxent model performance, the residuals from the models remain
highly structured and non-normal (Sharpiro-Wilk test: PRRC as response, W = 0.7526,
p-value <2.2e−16; ROC AUC as response, W = 0.94194, p-value <2.2e−16). Our models
exploring change in model evaluation metrics suggested that the difference in sample
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Figure 5 Receiver Operating Characteristic results for the three models when tested against the three
independent test datasets. (A) GBIF random sample. (B) GBIF geo-independent sample. (C) Flickr data.
Species codes in alphabetical order: ApBo = Aplopeltura boa, AtNi = Atheris nitschei, BiAr = Bitis arietans,
BoCy = Boiga cynodon, BoKr = Boiga kraepelini, BoSc = Bothriechis schlegelii, BuFa = Bungarus fasciatus,
CaRh = Calloselasma rhodostoma, ChCa = Chironius carinatus, CoRa = Coelognathus radiatus, DePo =
Dendroaspis polylepis, EcCo = Echis coloratus, EnEn = Enhydris enhydris, EuMu = Eunectes murinus, HyGi
= Hydrodynastes gigas, MaRe =Malayopython reticulatus, OpHa = Ophiophagus hannah, SiPe = Sinonatrix
percarinata.

Full-size DOI: 10.7717/peerj.8059/fig-5

size played a very small role (negative relationship with PRRC values: −0.0095 ±0.0039,
p= 0.015; positive relationship with ROC AUC values: 0.0260 ± 0.0042, p< 0.001) and
the changes were largely dependent on the species (model specification and AIC values can
be found in Table S1).

DISCUSSION
Spatial bias
Our results show a strong spatial bias in GBIF’s occurrence records for non-marine
snakes. The lack of records in the critical snake hotspots mirrors investigations into other
taxonomic groups (Yesson et al., 2007; Amano, Lamming & Sutherland, 2016; Roll et al.,
2017). The identified gaps in GBIF records support efforts to make use of more diverse
data sources: by filling gaps in GBIF coverage and boosting sample sizes, supplementary
data sources could reduce the chances of underestimating species distributions and
ecological niches (Beck et al., 2013; Monsarrat et al., 2019). However, while our efforts to
retrieve occurrence records from social media were successful, the quantity of records was
insufficient to make significant impacts on distribution models. The gaps in GBIF records
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Figure 6 Precision-Recall results for the three models when tested against the three independent test
datasets. (A) GBIF random sample. (B) GBIF geo-independent sample. (C) Flickr data. Species codes in
alphabetical order: ApBo = Aplopeltura boa, AtNi = Atheris nitschei, BiAr = Bitis arietans, BoCy = Boiga
cynodon, BoKr = Boiga kraepelini, BoSc = Bothriechis schlegelii, BuFa = Bungarus fasciatus, CaRh = Cal-
loselasma rhodostoma, ChCa = Chironius carinatus, CoRa = Coelognathus radiatus, DePo = Dendroaspis
polylepis, EcCo = Echis coloratus, EnEn = Enhydris enhydris, EuMu = Eunectes murinus, HyGi = Hydrody-
nastes gigas, MaRe =Malayopython reticulatus, OpHa = Ophiophagus hannah, SiPe = Sinonatrix percari-
nata.

Full-size DOI: 10.7717/peerj.8059/fig-6

(and similar gaps in Flickr derived data) are likely not the results of lack of knowledge in
these locations (Tantipisanuh & Gale, 2018), but barriers limiting submissions to global
biodiversity databases (Amano & Sutherland, 2013).

Other studies had highlighted the potential of social media photographs to supplement
existing occurrence records (Allain, 2019; Barve, 2014; ElQadi et al., 2017), but stopped
short of exploring how the records would impact distribution modelling and model
predictive power. Studies that explored the impact on models’ predictive power targeted
more readily photographed species in a region with greater interaction with biodiversity
recording (Jiménez-Valverde et al., 2019). Tropical snakes provide a harsher assessment of
the utility of community generated geo-tagged images. Our findings suggest that while
there is a growing potential for social media to supplement biodiversity databases, the
benefits are currently minimal for species with low-detectability and vary dramatically
between species.

There are several reasons for researchers to consider using social media despite the
marginal impacts shown here. First, is the low cost of initially screening for potential
records. Flickr’s map user interface (https://www.flickr.com/map) can be used to gauge the
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Full-size DOI: 10.7717/peerj.8059/fig-7

number of potential records before undertaking the task of extracting (and reviewing) the
records. Second, are the benefits of increased sample sizes that analyses of real-world data
find difficult to quantify. Larger samples are less sensitive to false-positives/negatives and
locational error (Wisz et al., 2008; Mitchell, Monk & Laurenson, 2017; Fernandes, Scherrer
& Guisan, 2018). When working with species with fewer than 20-30 records, model
performance is more likely to be improved by any additional records (Stockwell & Peterson,
2002); only three of our tested species had fewer than 30 records. Third, species distribution
modelling techniques can vary in their sensitivity to changes in sample size (Thibaud et al.,
2014; Fernandes, Scherrer & Guisan, 2018); Maxent tends to be a less sensitive technique
(Thibaud et al., 2014).

Supplementary data sources limitations and potential
We highlight three limitations to implementing social media occurrence into species
distribution efforts.

First is the number of geo-tagged images for low detectability species. The species
with the most photographs relative to GBIF records tended to be more striking, either
in size or colouration (e.g., Eunectes murinus, Malayopython reticulatus and Bothriechis
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schlegelii); a pattern reflected in GBIF records overall (Troudet et al., 2017). Public interest
in reptiles has also been linked to whether a species is venomous, endangered, or widely
distributed (Roll et al., 2016). It may be the case that traits associated with people’s interest
in a species are mediated by traits that control how likely a species is to be photographed,
such as its rarity or natural history (e.g., generalist species may be more photographed than
purely cryptozoic species). Limitations associated with the quantity of photos will lessen
over time as GPS enabled cameras become more common and the growth in geo-tagged
images continues to increase (Fig. S4). Accessing other social media platforms containing
geo-tagged images could additionally bolster occurrence datasets. However, current terms
and conditions on several potential platforms prohibit data mining or have significant
barriers to data access (Toivonen et al., 2019). Reliance on manual curation of occurrence
records may be feasible when focusing on a single species but will become prohibitively
time-consuming when assessing a wider clade.

The second limitation is the need to verify the identity of species depicted. While
community science projects can have good identification rates for non-professional
participants (Austen et al., 2016;Kosmala et al., 2016), species distributionmodelling can be
sensitive to false-positives (Fernandes, Scherrer & Guisan, 2018). Eliminating false-positives
currently requires manual verification by the researchers, but there is significant progress
being made in automated species identification (Botella et al., 2018; Wäldchen & Mäder,
2018; Toivonen et al., 2019). For snakes, a reliable system may be difficult to perfect given
their crypsis and current taxonomic fluidity. Even if automated photographic verification
can become reasonably reliable, it would be prudent to explicitly integrate the confidence
of species identification into the distribution models, a practice that has already been
demonstrated to improve predictions (Louvrier et al., 2018; Johnston et al., 2018).

Finally, researchers must consider the drivers behind different data sources distributions
(Li, Goodchild & Xu, 2013). The use of bias layers in presence only modelling is the primary
way to mitigate the impacts of an unknowable survey effort (Phillips et al., 2009; Merow,
Smith & Silander, 2013). However, bias layers derived from the spatial patterns of one
dataset may be inappropriate for another. This is why we opted for a bias layer, human
footprint, that is likely connected to the overall distribution of wildlife observations. With
larger datasets from more sources there may be a need to account for sampling bias on a
per-dataset basis. Alternatively, social media derived datasets could be used only in model
validation, proving a ‘‘semi-independent’’ dataset to supplement cross-validation (Gregr et
al., 2019).

Conservation implications
Numerous reptiles lack proper conservation assessment due to data deficiency (Bland
& Böhm, 2016). Discovering ways to fill data gaps (e.g., Callaghan et al., 2019) without
having to fund additional surveying efforts would be valuable at a time when natural
history investigations are under appreciated but macro-ecological questions are popular
(Ríos-Saldaña, Delibes-Mateos & Ferreira, 2018; McCallen et al., 2019). Overcoming data
deficiencies should be prioritised; delays could result in occurrence data derived from
distributions defined by human activity (realised niche), rather than the climatic or
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absolute niche of a species (Monsarrat et al., 2019). Improvements in occurrence data may
help identify current distributions, but unstructured occurrence data cannot help quantify
population trends sorely needed formany reptile species (Bland & Böhm, 2016; Bayraktarov
et al., 2019).

The quantity and accessibility of social media species occurrence records is open for
abuse. In herpetology, there have been several cases of species being negatively affected
by the scientific publication of location data (Stuart et al., 2006; Lindenmayer & Scheele,
2017) even though journals allow masked or partial publication (Lowe et al., 2017). While
there is understandable fear in publishing the locations of new and desirable species in
scientific literature, how long does it take for that information to enter the public sphere
via geo-tagged photography? With the rapid growth geo-tagged images, being able to keep
a desirable species protected by secrecy or gate-keeping may become increasingly difficult.

CONCLUSION
We have highlighted that there is considerable spatial bias in the GBIF records for non-
marine snakes, with gaps in tropical regions that house exceptionally high snake diversity
(Roll et al., 2017). While we encourage the investigation of supplementary data sources to
help fill gaps in biodiversity databases, currently accessible social media occurrence records
only improve species distribution models marginally. The data availability for tropical
snakes is highly variable between species and emphasises the difficulties researchers
face when studying low detectability species. Both GBIF and social media data sources are
growing exponentially (although not uniformly across taxaAmano, Lamming & Sutherland,
2016); tapping the full potential of these resources may be best realised with integration of
image recognition and identification confidence.
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