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Emgerency Department
Febrile children
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Admission prediction
0.84).

patient characteristics available at triage. We determined the discriminative values of the model by calculat-
ing the area under the receiver operating curve (AUC).

Findings: Of 38,424 paediatric encounters, 9,735 children were admitted to the ward and 157 to the PICU. The
prediction model, combining patient characteristics and NICE alarming, yielded an AUC of 0.84 (95%CI 0.83-

The model performed well for a rule-in threshold of 75% (specificity 99.0% (95%CI 98.9-99.1%, positive likeli-
hood ratio 15.1 (95%CI 13.4-17.1), positive predictive value 0.84 (95%CI 0.82-0.86)) and a rule-out threshold
of 7.5% (sensitivity 95.4% (95%CI 95.0-95.8), negative likelihood ratio 0.15 (95%CI 0.14-0.16), negative predic-
tive value 0..95 (95%CI 0.95-9.96)). Validation in a separate dataset showed an excellent AUC of 0.91 (95%CI
0.90- 0.93). The model performed well for identifying children needing PICU admission (AUC 0.95, 95%ClI
0.93-0.97). A digital calculator was developed to facilitate clinical use.

Interpretation: Patient characteristics and NICE alarming signs available at triage can be used to identify
febrile children at high risk for hospitalisation and can be used to improve ED flow.

Funding: European Union, NIHR, NHS.
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Abbreviations

APLS Advanced Paediatric Life Support

AUC Area under the Curve

ED Emergency Department

EMS Emergency Medical Services

IQR Interquartile range

MOFICHE = Management and Outcome of Fever in children in
Europe

NICE National Institute for Health and Care Excellence

PERFORM  Personalised Risk assessment in Febrile illness to Opti-

mise Real-life Management across the European Union

PEWS Paediatric Early Warning System
ROC curve Receiver Operating Characteristic curve
SBI Serious bacterial infection

Research in context

Evidence before this study

ED crowding is known to negatively impact quality of care for
adult as well as paediatric patients, patient outcome and
patient as well as health care worker satisfaction.

Although several studies have investigated the positive
effects of admission prediction models on patient flow and ED
crowding, those studies mainly focused on adults or specific
paediatric patient groups such as asthma, used variables not
available early on at the ED process and thus limiting the effect
on patient flow, or were single-centre studies, limiting their
generalisability.

Added value of this study

In a large multicentre study of almost 40,000 paediatric ED vis-
its, we developed and validated a robust admission prediction
model for febrile children attending the ED, based on patient
characteristics and clinical alarming signs, which can be used to
predict general ward and PICU admission directly at triage.

Implications of all the available evidence

The developed prediction model can be used at triage to iden-
tify febrile children attending the ED at high risk for hospitalisa-
tion and as such can be used to improve patient flow and
reduce crowding. A digital calculator is available to facilitate
clinical use.

1. Introduction

Fever in infants and children is one of the most common rea-
sons to present to the ED, accounting for up to 20-30% of ED
visits.[1]

Most children with fever will suffer from self-limiting viral ill-
nesses, however, the clinical presentations of self-limiting viral and
life-threatening bacterial infections may be identical, making diagno-
sis based on clinical judgement alone a difficult task. [1] If life-threat-
ening infections are not recognised in time, this may have disastrous
consequences, such as mortality, long-term morbidity or ICU admis-
sion, highlighting the daily challenge of caring for this broad group of
children. As a result, an elaborate approach is often used, character-
ised by multiple investigations, evaluation of treatment effect at the
ED or hospital admission for observation [1,2]. Unfortunately, such
interventions are invasive, costly and are likely to prolong a child’s
visit to the ED, contributing to extended ED waiting times and ED
crowding [1].

ED crowding can negatively impact ED length of stay, guideline
adherence, quality of care for the individual patient, such as delay in
administration of antibiotics or analgesics, patient outcome including
mortality, health care costs, patient satisfaction and healthcare staff
satisfaction. For example, several American studies estimated the
financial burden of crowding to be as high as several million dollars
per hospital, for example due to a longer hospital length of stay [3] or
ambulances being diverted to other EDs [4].

Regarding patient and healthcare staff satisfaction, ED waiting
times are one of the most important factors influencing parental sat-
isfaction [1] and crowding is one of the factors contributing to health
care staff “compassion fatigue”, a reduced capacity and interest in
being empathetic for suffering individuals, that has a further negative
impact on quality of care [5].

Several studies have shown a positive effect of interventions
that reduce crowding on these outcome measures [1,3-10] and
interventions that expedite early admissions ensure earlier access
to specialised care for those patients that need to be admitted
anyway and are associated with increased patient and physician
satisfaction [8,11].

An important approach in the reduction of ED crowding is the
development of tools that can predict admission early on at the ED
process, such as during triage [8].

Our aim was to identify risk factors for hospital admission in
febrile children attending the ED that are available at triage and to
use those risk factors to develop and validate a prediction model that
can be used to improve patient flow by identifying febrile children
with a high risk of hospitalisation. Furthermore, we aimed to develop
a practical digital prediction tool, that can easily be implemented at
the ED.
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2. Methods
2.1. Study design

This study is part of the MOFICHE study (Management and Out-
come of Febrile children in Europe), which is embedded in the PER-
FORM study (Personalised Risk assessment in Febrile illness to
Optimise Real-life Management across the European Union, https://
www.perform2020.org). The MOFICHE study is an observational mul-
ticentre study that studies the management and outcome of febrile
children in Europe using routine data [12]. The study was approved
by the ethics committees of the participating hospitals. The need for
informed consent of individual patients was waived.

2.2. Study population and setting

All children aged 0-18 years presenting with fever to the ED (tem-
perature >=38.0 ° C) or a history of fever in the 72 hours before the
ED visit were included.

Twelve EDs from eight different European countries (Austria, Ger-
many, Greece, Latvia, the Netherlands, Spain, Slovenia, and the
United Kingdom) participated in the study. Participating hospitals
were either tertiary university hospitals or large teaching hospitals.
The characteristics of these hospitals are described in Appendix 1.
Short stay units were not available at the participating hospitals at
the time of data collection. Data were collected for at least one year,
in the study period between January 2017 until April 2018. Data col-
lection per month ranged from a one week per month sample to the
entire month, depending on the number of ED visits per hospital
(Appendix 1).

Sample size was estimated based on Riley et al. [13,14] Assuming
20 predictors, an admission prevalence of 30% and an expected R2 of
0.145 based on previous literature, a sample size of 1,139 with 342
admissions would be sufficient for any hospital admission. Based on
a prevalence of 0.4% and a maximum achievable R2 of 0.05, a sample
size of 7,724 with 31 admissions would be sufficient for ICU admis-
sion.

2.3. Data collection and definitions

Data were entered into the patient’s records as part of routine care
by the treating physician and nurses and were then manually
extracted from these records and manually entered into an electronic
case report form. The data entered into the case report form were
specifically collected for the MOFICHE study according to a prespeci-
fied study protocol. The collected data included general patient char-
acteristics (age, sex, comorbidity, medical care in the last five days,
time of arrival, referral (self, primary care physician, Emergency Med-
ical Services (EMS) or other), triage urgency, vital signs, presence of
“red traffic light” symptoms for identifying risk of serious illness
(alarming signs) (National Institute for Health and Care Excellence
(NICE) guideline on fever [15] and disposition. Comorbidity was
defined as a chronic underlying condition that is expected to last at
least one year. Complex comorbidity was defined as a chronic condi-
tion in two or more body systems, malignancy, or immunocompro-
mised patients [16]. Disposition was defined as patient destination
after the ED: discharge, admission, or paediatric intensive care unit
(PICU) admission. Any hospital admission was defined as general
ward admission, or PICU admission. Long hospital admission was
defined as general ward admission longer than 24 hours. Admission
with an intervention was defined as any admission with either intra-
venous antibiotics, oxygen therapy, or one or more immediate life-
saving interventions. Immediate life-saving interventions were
adapted from Lee et al. [17] and were categorised into the following
categories: airway and breathing support, electrical therapy (e.g. defi-
brillation), emergency procedures, hemodynamic support and

emergency medications (Appendix 2).The NICE alarming signs
include reduced consciousness, ill appearance, increased work of
breathing, dehydration, age less than three months, non-blanching
rash, meningeal signs, status epilepticus, and focal neurological signs.
Different signs of dehydration (dry mucous membranes, sunken eyes,
and reduced skin turgor) were grouped together as dehydration.
Information on cyanosis of the skin was not available (Appendix 3).

Paediatric Early Warning System (PEWS) scores were calculated
based on the PEWS developed by Parshuram (vital signs, capillary
refill time, work of breathing, and oxygen therapy, combined into a
score, Appendix 4) [18]. A modified PEWS was used as blood pressure
was excluded from the PEWS as it was not routinely performed in our
study. A previous study showed that a simplified PEWS not contain-
ing blood pressure showed similar performance in predicting PICU
admission in comparison to the original full PEWS [19].

Data quality was improved and standardised by the use of a digital
training module for treating physicians at the ED who assess febrile
children, in order to reduce missing values and improve uniform data
quality, including the clarification of the NICE alarming signs for the
local research teams. Clinical data were entered into a standardised
case report form by trained research team members. Furthermore,
monthly teleconferences and biannual meetings were organised and
quarterly reports of data quality were discussed with all ED partners.

2.4. Missing data

Patients with missing disposition (e.g. discharge, hospital admis-
sion) were excluded from the analysis. Missing determinants such as
heart rate and respiratory rate were handled by using multiple impu-
tation. Imputation was performed by using the MICE package in R,
version 3.5. SPSS version 25 and R version 3.5.1 were used for the
analysis of the data.

2.5. Data analysis and model construction

Data analysis was performed according to a pre-specified analysis
plan. First, we performed a descriptive analysis for the frequency of
general patient characteristics, vital signs, PEWS scores and presence
of NICE alarming signs (Table 1). Patient characteristics between dis-
charged and admitted children were compared using chi-squared-
tests and Mann-Whitney tests. Results were deemed significant with
a p-value < 0.05.

A prediction model for hospitalisation was constructed using mul-
tivariable logistic regression analysis. We used a stepwise approach
in which models with the following sets of variables were tested sep-
arately, and then were subsequently combined into the final model:
general patient characteristics (age, sex, comorbidity, medical care in
the last five days, time of arrival, mode of referral), vital signs (heart
rate, respiratory rate, capillary refill time, oxygen saturation, and
temperature), PEWS scores, and NICE alarming signs (Table 2).

Vital signs were tested with predefined cut-off values according to
APLS and PEWS reference values as these are age-dependent. Individ-
ual variables that did not improve the AUC of the model significantly
were removed. As PEWS scores and vital signs have considerable
overlap, we added PEWS scores and vital signs separately and not
simultaneously to the other sets of variables and chose the best per-
forming model as the final model.

We defined our outcome measures as: any admission, admission lon-
ger than 24 hours, PICU admission and admission with an intervention.

We determined the discriminative value of the model by calculat-
ing the area under the receiver operating characteristic (ROC) curves
(AUC) and evaluated the predictive performance (sensitivity, specific-
ity, positive and negative likelihood ratio (LR) and positive and nega-
tive predictive value (PV) of different risk thresholds to obtain a cut-
off with a high specificity for hospital admission as our aim was to
identify children at high risk for admission. The prediction model
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Table 1
patient characteristics, original data (N=38,424)"
Discharged Any admission ~ Admission>24 hours PICU admission Missing N (%)
N=28531N (%) N=9892N(%) N=7258N (%) N =157 N (%)
Age in years, median (IQR) 2.9(1.4-5.6) 2.3(1.1-5.3) 2.3(1.1-5.3) 2.4(0.8-6.8) 0(0.0)
Male 15,645 (54.8) 5,433 (54.9) 3,999 (55.1) 85(54.1) 1(0.0)
Comorbidity 3,786 (13.2) 2,265 (22.9) 1,703 (23.4) 79 (50.4) 366 (1.0)
Complex 835(2.9) 804 (8.1) 612 (84) 42(26.8)
Referral 1,161 (3.0)
Self 17,694 (62.0) 3,510(35.5) 2,461 (33.9) 27(17.2)
GP/private paediatrician 3,591 (12.6) 2,810(28.4) 2,046 (28.2) 28(17.8)
Emergency medical service 3,544 (12.4) 2,036 (20.6) 1,701 (23.4) 49 (31.2)
Other 2,746 (9.6) 1,332 (13.5) 879 (12.1) 48 (30.6)
Triage urgency 1,174 (3.1)
High: immediate, very urgent, 8,245 (28.9) 4,961 (50.1) 3,724 (51.3) 121(77.1)
intermediate
Low: non-urgent, standard 19,572 (68.6) 4,472 (45.2) 3,241 (44.7) 25(15.9)
Vital signs
Tachycardia™ 6,239 (21.9) 3,324 (33.6) 2,381(32.8) 95 (60.5) 3,492 (9.1)
Tachypnoea*™ 3,398 (11.9) 2,276 (23.0) 1,562 (21.5) 70 (44.6) 8,773 (22.8)
Hypoxia, oxygen saturation <94% 259(0.9) 596 (6.0) 414 (5.7) 33(21.0) 5,558 (14.5)
Prolonged capillary refill >=3 100 (0.4) 323(3.3) 217 (3.0) 32(204) 4,414 (11.5)
Oxygen therapy 123 (0.4) 968 (9.8) 728 (10.0) 83(52.9) 120(0.3)
PEWS
5 or higher 481(1.7) 994 (10.0) 695 (9.6) 61(38.9) 16,639 (43.3)
NICE “red traffic lights” (alarming signs)
Decreased consciousness 44(0.2) 156 (1.6) 93 (1.3) 32(204) 378(1.0)
1l appearance 2,426 (8.5) 3,577 (36.2) 3,014 (41.5) 91(58.0) 1,702 (4.4)
Increased work of breathing 1,434 (5.0) 1,825(18.4) 1,186 (16.3) 76 (48.4) 4,857 (12.6)
Dehydration 746 (2.6) 1,154 (11.7) 885(12.2) 19(12.1) 6,956 (18.1)
Fever < 3 months of age 336(1.2) 720(7.3) 554 (7.6) 14(8.9) 1,056 (2.7)
Rash: petechiae/non-blanching 695 (2.4) 415(4.2) 283(3.9) 13(8.3) 4,394 (11.4)
Meningeal signs 21(0.1) 116 (1.2) 90(1.2) 7(4.5) 2,029 (5.3)
Seizures 629 (2.2) 748 (7.6) 484 (6.7) 21(134) 1,138 (3.0)
Status epilepticus 7(0.0) 59 (0.6) 29(04) 17 (10.8) 1,138 (3.0)
Focal neurology 25(0.1) 108 (1.1) 60 (0.8) 18(11.5) 2,438 (6.3)
n (%) Range ED's %
Disposition
Left without being seen 219(0.6) 0.0-2.0
Admission < 24 hours 2,011 (5,2%) 0,0-16,2%
Admission > 24 hours 7,258 (18,9%)  2,5%-42,4%
Admission, duration unknown 466 (1,2%) 0,0-6,5%
Admission to PICU 157 (0.4) 0.1-4.0

*All comparisons p<0.0001 except gender.
**According to APLS cut-off values by age.

was derived from the complete set and the final model was subse-
quently validated using the “leave-one-setting-out cross-validation”
method, a validation method that addresses between-setting hetero-
geneity [20], which is relevant in our study as it included different
settings with a different patient case mix and different admission
rates. With this method, the model is derived in all settings except
one and then validated in the setting that was left out, repeated with
each setting being left out once, leading to 12 validations; the sepa-
rate results from these 12 validations are pooled [20] by using the R

Table 2
Model construction and final model

metaphor package. In addition to this, the prediction model was vali-
dated in a separate dataset from a previous study on febrile children
at different European EDs [21]. This second dataset included data
from 28 European EDs and 5,177 paediatric visits and consisted of a
mixture of university (17 settings, 3,807 patients), teaching (10 set-
tings, 1,299 patients) and non-teaching hospitals (1 setting, 71
patients), paediatric as well as mixed adult paediatric EDs and inner-
city as well as regional hospitals. [21] Detailed information regarding
this dataset is described in the original research article.

Model construction

Final model

General patient characteristics
Vital signs”

NICE alarming signs

PEWS

Age, gender, comorbidity, medical care in the last 5 days, time of
arrival, referral, triage urgency

Temperature >38.0, tachycardia, tachypnoea, oxygen saturation
<94%, capillary refill time > 3 seconds

Reduced consciousness, ill appearance, increased work of breath-
ing, dehydration, fever < 3 months, non-blanching rash, menin-
geal signs, seizures/status epilepticus, focal neurological signs

Heart rate, prolonged capillary refill, respiratory rate, work of
breathing, oxygen saturation and oxygen therapy, combined
into the modified PEWS score

Age, comorbidity, referral, triage urgency

Tachycardia, tachypnoea, oxygen saturation <94%, capillary refill
time > 3 seconds

Reduced consciousness, ill appearance, increased work of breath-
ing, dehydration, fever < 3 months, non-blanching rash, menin-
geal signs, seizures/status epilepticus, focal neurological signs

* according to APLS cut-offs by age
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Table 3

multivariable odds ratios for any admission, admission>24 hours and PICU admission

Any admission  admission>24hours  PICU admission

General patient characteristics
Age < 3 months
3-12 months
1-4 years
5-12 years
>12 years
Comorbidity Present
Referral Self
Primary care physician
Emergency medical service

Other
Triage urgency High urgent
Vital signs
Tachycardia* Present
Tachypnea® Present
Oxygen saturation <94%
Capillary refill time >3 seconds

NICE alarming signs
Reduced consciousness
[ll appearance

Increased work of breathing

Dehydration
Non-blanching rash
Meningeal signs
Seizures

Status epilepticus

Focal neurological signs

OR (95% CI) OR (95% CI) OR (95% CI)
8.8(7.6-10.3) 7.1(6.1-8.3) 3.1(1.6-6.3)
1.4(1.3-1.5) 14(1.3-1.5) 1.8(1.1-2.9)
Reference Reference Reference
1.1(1.0-1.)*  11(1.0-1.1)* 1.9(1.2-3.0)
1.4(1.3-1.6) 1.4(1.2-1.6) 1.4(0.7-2.8) %
1.9(1.8-2.1) 2.1(1.9-2.2) 2.2(1.4-33)
Reference Reference Reference
1.6(1.5-1.8) 1 4(1.3-1.6) 1.5(0.8-3.0)
1.3(1.2-14) 3(1.1-1.4) 8(1.0-32)*
1.9(1.7-2.1) 9(1.7-2.2) 4.7 (2.5-8.6)
2.1(1.9-22) 20(1 9-22) 0(1.2-3.6)
1.1(1.0-1.1)* 1(1.0-12)* 24(1.6-3.5)
1.3(1.2-1.5) 3(1.2-1.4) 1.3(0.8-2.0)*
2.6(2.2-3.1) 1.9(1.6-2.3) 3.0(1.8-5.2)
2.0(1.5-2.7) 1(0.8-1.5)* 3.7(2.2-6.4)
2.2(1.4-34) 0.7(0.5-1.1) * 8 (4.6-16.6)"
4.9 (4.6-5.3) 4.4 (4.1-4.7) 6(3.4-9.3)
3.1(2.8-34) 1.9(1.7-2.1) 7(2.3-5.9)
3.9(3.5-44) 2 6(2.3-2.9) 1.3(0.7-2.5) *
2.1(1.8-2.5) 7(1.4-2.0) 2.7(14-54)
6.8(3.8-12.2) 3 4 (2.3-5.2) 2(0.7-62)*
3.5(3.0-4.0) .1(1.8-2.5) 5(0.8-3.1) %
7.3(3.0-17.9) .5(0.8-2.5) 7(2.1-15.1)
43(2.3-8.0) 1 2 (0.7-2.1)* 1(0.8-5.5)*

*

according to APLS age related cut-offs
all values: p <0.001, except

* =p:0.001

# = non-significant.

2.6. Role of the funding source

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No. 668303

The Research was supported by the National Institute for Health
Research Biomedical Research Centre based at Imperial College (JH,
ML) and at Newcastle Hospitals NHS Foundation Trust and Newcastle
University (EL, ME).

The funders had no role in the study design, data collection, data
analysis, interpretation, or writing of the report. The views expressed
are those of the author(s) and not necessarily those of the NHS, the
NIHR or the Department of Health.

3. Results

3.1. After excluding 56 paediatric visits with missing disposition, 38,424
paediatric encounters were included

The different EDs varied in patients who had any comorbidity
(range: 5.2-65.6%), were self-referred (range: 0.6-94.9%), were tri-
aged as high urgent (range: 8.8-89.9%) or were ill appearing (range:
0.9-50.3%) (Table 1). Comorbidity is described in more detail in
Appendix 5.

In total, 9,735 children were admitted to a general ward (25.3%,
range EDs 5.1-54.5%) and 157 were admitted to the PICU (0.4%, range
EDs 0.1-4.0%). 7,258 children were admitted for longer than 24 hours
(74.6% of general ward admissions) and 4,268 children were admit-
ted with an intervention (43.1% of all admissions).

Children requiring admission were younger (median age 2.3 ver-
sus 2.9 years), more often had comorbidity (24.4 versus 14.2%) and
more often were referred or brought in by Emergency Medical Serv-
ices (EMS) (20.6 versus 12.4%) than those discharged home (p
<0.001). Admitted children also had a higher triage urgency (50.1

versus 28.9%), more often had abnormal vital signs (tachycardia 33.6
versus 21.9, tachypnoea 23.0 versus 11.9%), a higher PEWS score
(PEWS score of five or higher: 10.0 versus 1.7%) or had one or more
NICE alarming signs present (for example ill appearance 36.2 versus
8.5%) than children that were discharged home (p <0.001, Table 1).

3.2. Prediction model

Multivariable odds ratios for patient characteristics, vital signs
and NICE alarming signs in relation to hospital admission are shown
in Table 3 and Appendix 6.

When tested separately, NICE alarming signs (AUC 0.81, 95% CI
0.80-0.82) performed better than patient characteristics (AUC 0.72,
95%Cl 0.71-0.72), vital signs (AUC 0.72, 95% CI 0.72-0.73) and PEWS
(AUC 0.73, 95% C1 0.73-0.74), displayed in detail in Fig. 1).

3.3. Final model

The combination of general patient characteristics, vital signs, and
NICE alarming signs (final model), yielded an AUC of 0.84 (95% CI
0.83-0.84) in predicting any hospitalisation.

Several variables, including some of the NICE clinical alarming
signs, were removed from the final model, as they did not signifi-
cantly improve the model when included in the final model (Tables 2
and 3, Appendix 6). Adding PEWS scores to the final model instead of
vital signs did not improve the model and thus PEWS scores were left
out in the final model. Variables included in the final model are dis-
played in Table 2.

3.4. Cross-validation, external validation and calibration
Using the leave-one-setting-out cross-validation method, the final

model, performed equally well, with AUC’s ranging from of 0.82 to
0.90 and a pooled AUC of 0.82 (95% CI 0.80-0.84, Appendix 7).
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Fig. 1. ROC curves of the separate risk factors and combined model with patient char-
acteristics, vital signs and NICE alarming signs

la. Any admission

1b. Admission>24 hours

1c. PICU admission

Validation in the separate dataset yielded an excellent pooled AUC
0f 0.90 (95% C10.89- 0.91) in the whole dataset and 0.91 (95% CI 0.90-
0.93) in the subset of non-university hospitals only.

Calibration differed between settings and ranged between poor-
moderate to excellent with significant changes in intercept (range of
-1.1 to +1.3) and slope (range of 0.6 to 1.6) (Appendix 8). Calibration

was good for the external validation dataset (intercept 0.1, slope 0.9,
p < 0.001).

An intercept of 0 and a slope of 1 mean perfect calibration, while
an intercept <0 is suggestive of overestimation and an intercept >0
is suggestive of underestimation due to differences in the prevalence
of the event, in this case hospital admission. A slope of <1 suggests
that risk estimation by the model is too extreme (i.e., too high for
patients with a high risk and too low for patients with a low risk) and
a slope >1 suggests that risk estimation is too moderate. [22]

Adjustments in intercept and slope after calibration reflect differ-
ences between the different settings, for example due to differences
in admission risk per setting, differences in sample size or case mix
variables not complete captured by correction for ED setting in the
model.

In our prediction model, overall calibration showed considerable
unexplained heterogeneity; possibly caused by the factors mentioned
above. To demonstrate the impact of different baseline admission
risks, calibration was performed for settings depending on admission
risk prevalence, analysing settings with low (<20%), intermediate
(20-40%) and high (>40%) admission risk separately (Appendix 8).
This analysis showed excellent calibration for settings with a low and
intermediate admission risk but poor calibration for settings with a
high admission. However, as an admission rate of >40% is only the
case in a minority of European EDs [2,21], this supports the applica-
bility of our prediction model in clinical practice.

3.5. Model performance at different thresholds

The model performed well for a rule-in threshold of 75% with a
specificity of 99.0% (95% CI 98.9-99.1%, positive likelihood ratio of
15.1 (95% CI 13.4-17.1), and positive predictive value of 0.84 (95% CI
0.82-0.86) and a rule-out threshold of 7.5% with a sensitivity of 95.4%
(95% CI 95.0-95.8), a negative likelihood ratio of 0.15 (95% CI 0.14-
0.16), and a negative predictive value of 0.96 (95% CI 0.95-0.96).
Detailed information on model performance at different thresholds is
provided in Table 4.

3.6. Model performance for different types of admission and different
patient groups

Separate analyses were performed for admission longer than
24 hours (AUC 0.84, 95% CI 0.83-0.84 and admission with an inter-
vention (AUC 0.83, 95% CI 0.82-0.83) (Table 4, Fig. 1). Furthermore,
the model was able to predict PICU admission with an AUC of 0.95
(95% CI 0.94-0.95) and with cross-validated AUC’s ranging from of
0.90 to 0.99 and a pooled AUC of 0.95 (95% CI 0.93-0.98, Appendix 7).
Detailed information on model performance at different thresholds is
shown in Table 4.

Secondly, separate analyses were performed for different age
groups and by focus of infection, which all showed results consistent
with the analyses of the complete dataset.

Running the prediction model in a dataset in which patients with
comorbidity were excluded, yielded a similar AUC of 0.84 (95% CI
0.84-0.85).

Lastly, separate analyses were performed by grouping hospitals
together by admission rates. The model performed well in the hospi-
tals with low (0-20% admissions, AUC 0.83, 95% CI 0.82-0.85) and
intermediate (20-40% admissions, AUC 0.81, 95% CI 0.80-0.82) admis-
sion rates and moderately well in the hospitals with high admission
rates of over 40% (AUC 0.78 (95% C1 0.77-0.79, Appendix 9).

3.7. Digital calculator
Based on the cross-validated and externally validated prediction

rule described above, a digital calculator was developed to illustrate
and facilitate clinical use (Fig. 2). A > 75% admission risk was chosen



Table 4

Sensitivity and specificity of the combined model (general patient characteristics, vital signs, NICE alarming signs) for the prediction of hospitalisation®

Risk threshold N below N above Sensitivity in % Specificity in % Positive likelihood Negative likelihood Positive predictive Negative predictive
threshold (%) threshold (%) (95% CI) (95% CI) ratio (95% CI) ratio (95% CI) value value
Any admission
>5.5% 5,633 (15) 32,791 (85) 97.5(97.2-97.8) 18.9(18.4-19.3) 1.20(1.19-1.21) 0.13(0.12-0.15) 0.29 (0.29-0.30) 0.96 (0.95-0.96)
>7.5% 9,167 (24) 29,257 (76) 95.4(95.0-95.8) 30.5(30.0-31.1) 1.37(1.36-1.39) 0.15(0.14-0.16) 0.32(0.32-0.33) 0.95 (0.95-0.96)
> 10% 13,968 (36) 24,457 (64) 89.6 (89.0-90.2) 45.4 (44.8-45.9) 1.64 (1.62-1.66) 0.23(0.22-0.24) 0.36 (0.36-0.37) 0.93(0.92-0.93)
>15% 20,834 (54) 17,591 (46) 80.0(79.2-80.8) 66.1 (65.5-66.7) 2.36(2.32-2.41) 0.30(0.29-0.31) 0.46 (0.45-0.46) 0.91(0.90-0.91)
> 25% 25,997 (68) 12,427 (32) 67.9 (67.0-68.8) 80.0(79.5-80.4) 3.39(3.30-3.48) 0.40 (0.39-0.41) 0.54 (0.53-0.55) 0.88(0.87-0.88)
> 40% 30,646 (80) 7,778 (20) 49.6 (48.6-50.6) 90.0 (89.9-90.3) 4,94 (4.74-5.14) 0.56 (0.55-0.57) 0.63 (0.62-0.64) 0.84(0.83-0.84)
> 50% 33,436 (87) 4,988 (13) 35.8(34.9-36.8) 95.0 (94.7-95.2) 7.09 (6.70-7.51) 0.68 (0.67-0.69) 0.71(0.70-0.72) 0.81(0.81-0.81)
> 75% 36,625 (95) 1,799 (5) 15.3 (14.6-16.0) 99.0 (98.9-99.1) 15.1(13.4-17.1) 0.86 (0.85-0.86) 0.84 (0.82-0.86) 0.77 (0.77-0.78)
Admission>24 hours
>4.0% 5,643 (15) 32,781 (85) 98.0(97.7-98.3) 17.6(17.2-18.1) 1.19(1.18-1.20) 0.11 (0.09-0.13) 0.22 (0.21-0.22) 0.97 (0.97-0.98)
>5.0% 11,043 (29) 27,381 (71) 94.9 (94.3-95.4) 34.2(33.7-34.8) 1.44 (1.43-1.46) 0.15(0.14-0.17) 0.25 (0.25-0.26) 0.97 (0.96-0.97)
>6.0% 14,297 (37) 24,127 (63) 90.0 (89.4-90.8) 43.6 (43.0-44.1) 1.60 (1.58-1.62) 0.23(0.21-0.24) 0.27 (0.27-0.28) 0.95 (0.95-0.95)
>10% 21,270 (55) 17,155 (45) 80.0(79.0-80.9) 63.6 (63.0-64.1) 2.20(2.16-2.24) 0.32(0.30-0.33) 0.34 (0.33-0.35) 0.93(0.93-0.93)
>17.5% 27,662 (72) 10,762 (28) 62.8 (61.7-63.9) 80.0(79.6-80.5) 3.16 (3.07-3.25) 0.46 (0.45-0.48) 0.42 (0.41-0.43) 0.90 (0.90-0.91)
> 25% 32,103 (84) 6,321 (16) 43.9 (42.7-45.0) 90.0 (89.6-90.3) 4.4(4.2-4.5) 0.62 (0.61-0.64) 0.50 (0.49-0.52) 0.87(0.87-0.88)
> 40% 34,785 (91) 3,639 (9) 28.6 (27.5-29.6) 95.0 (94.7-95.2) 5.69 (5.36-6.05) 0.75 (0.74-0.76) 0.57 (0.55-0.59) 0.85(0.85-0.85)
> 65% 37,473 (97) 951(3) 8.7(8.1-9.4) 99.0 (98.9-99.0) 8.63(7.56-9.85) 0.92(0.92-0.93) 0.67 (0.64-0.70) 0.82(0.82-0.83)
PICU admission
>0.1% 19,592 (51) 18,832 (49) 98.1(94.1-99.5) 51.2(50.7-51.7) 2.01(1.96-2.0.6) 0.04 (0.01-0.11) 0.01(0.01-0.01) 1.00 (1.00-1.00)
> 0.15% 28,761 (75) 9,663 (25) 94.9 (89.9-97.6) 74.5(74.1-75.0) 3.73(3.58-3.88) 0.07 (0.03-0.13) 0.02 (0.01-0.02) 1.00 (1.00-1.00)
>0.25 31,821(83) 6,603 (17) 90.4 (84.5-94.4) 83.1(82.7-83.4) 5.36 (5.07-5.66) 0.11 (0.07-0.19) 0.02 (0.02-0.03) 0.98 (0.97-0.98)
> 0.5% 34,483 (90) 3,941 (10) 82.1(75.1-87.6) 90.0 (89.8-90.3) 8.27 (7.64-8.95) 0.20(0.14-0.28) 0.03 (0.03-0.04) 1.00 (1.00-1.00)
>1.0% 36,432 (95) 1,879 (5) 0.71 (0.63-0.78) 95.1(94.9-95.3) 14.5(13.0-15.4) 0.31(0.24-0.39) 0.06 (0.05-0.07) 1.00 (1.00-1.00)
>5% 37,946 (99) 478 (1) 49.0 (41.0-57.1) 99.0 (98.8-99.1) 46.8 (38.8-56.4) 0.51 (0.44-0.60) 0.16 (0.13-0.20) 1.00 (1.00-1.00)
Admission with an intervention™*
>2.5 5,738 (15) 32,685 (85) 98.0(97.5-98.4) 16.6 (16.2-17.0) 1.17(1.17-1.18) 0.15(0.10-0.15) 0.13(0.12-0.13) 0.99 (0.98-0.99)
>3.0 10,805 (28) 27,619(72) 95.7 (95.0-96.2) 31.1(30.6-31.6) 1.39(1.38-1.40) 0.14(0.12-0.16) 0.15(0.14-0.15) 0.98 (0.98-0.99)
>4.0% 15,409 (40) 23,019 (60) 90.0 (88.7-90.6) 43.8 (43.2-44.3) 1.60 (1.57-1.62) 0.24 (0.22-0.26) 0.17(0.16-0.17) 0.97 (0.97-0.97)
>6% 22,350 (58) 16,074 (42) 80.0(78.8-81.2) 62.9 (62.4-63.4) 2.16(2.12-2.20) 0.32(0.30-0.34) 0.21(0.21-0.22) 0.96 (0.96-0.96)
>10% 28,826 (75) 9,582(25) 65.6 (64.1-67.0) 80.0(79.7-80.5) 3.29(3.19-3.39) 0.43 (0.41-0.45) 0.29 (0.28-0.30) 0.95 (0.95-0.95)
>15% 32,980 (86) 5,444 (14) 48.2 (46.7-49.7) 90.0 (89.8-90.4) 4.86 (4.65-5.08) 0.58 (0.56-0.59) 0.38(0.36-0.39) 0.93 (0.93-0.94)
>25% 35,223 (92) 3,201 (8) 35.0(33.6-36.5) 95.0 (94.8-95.2) 7.02 (6.60-7.46) 0.68 (0.67-0.70) 0.47 (0.45-0.48) 0.92 (0.92-0.92)
>45% 37,407 (97) 1017 (3) 15.8 (14.7-16.9) 99.0 (98.9-99.0) 15.6 (13.8-17.7) 0.85(0.84-0.86) 0.66 (0.63-0.69) 0.90 (0.90-0.91)

* Baseline risk general admission: 26%; admission>24 hours: 19%, PICU admission 0,4%.

** Defined as either intravenous antibiotic treatment, oxygen therapy or any immediate life-saving interventions (e.g. haemodynamic support or emergency medications)
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Fig. 2. Screenshot of digital admission risk calculator.

as a cut-off to consider admission at triage as this corresponded with
a specificity of 99.0% (95% CI 98.9-99.1%), a positive likelihood ratio of
15.1(95% C1 13.4-17.1) and a positive predictive value of 0.84 (95% CI
0.82-0.86) (Table 4).

3.8. (linical vignette

An 11-month-old, previously healthy girl, presents to the ED with
fever and shortness of breath. She was referred by her GP. Her triage
urgency is “very urgent”, she has a heart rate of 164 bpm, a respira-
tory rate of 60 bpm, oxygen saturation of 93% in room air and
increased work of breathing.

Advice:

This girl has an 75% probability that she will be admitted.

An online demonstration of the digital calculator can be found at
www.rimon.nl/arc.

4. Discussion
4.1. Main findings

We developed and validated a prediction model that can be used
during the triage process for early admission of febrile children
attending the ED. The combined model of vital signs and clinical
alarming signs available at triage performed well and can identify
febrile children at high risk for hospital admission. The prediction
model can be used to improve flow by arranging admission during or
immediately after triage for children classified high risk, even while
they are still awaiting test results and treatment effects.

Although our prediction model was developed for “ruling-in” hos-
pitalisation at triage, this does not imply that children not identified
as “high-risk”, can safely be discharged. First of all, at a different
threshold, the prediction model can be used to identify a group of
children with a low admission risk. Children classified as low risk for
hospitalisation still require evaluation, as they might still require
diagnostic testing or treatment; however, they might classify for a
“fast track” evaluation and identifying those children can help to
improve patient flow and ED crowding as well. Secondly, there is a

remaining “intermediate risk” group in which the decision to admit
or discharge cannot be made at triage and further evaluation is
needed before deciding on optimal disposition. Lastly, clinicians
should be aware of the fact that the prediction model provides an
estimation and can aid in expediting admission, but should not be
used as a substitute for clinical judgement and a thorough evaluation.

We hypothesise that febrile children requiring hospitalisation are
a heterogenous group and are admitted for different reasons, for
example intravenous drug therapies, observation, unable to take oral
fluid or medication, worried parents, or lack of transportation. As we
created our prediction model based on current hospitalisation practi-
ces of febrile children, our model might be a better predictor of cur-
rent admission practices than of actual necessary admission.
However, the main aim of this study was to develop a prediction
model that can be used to improve patient flow and ED crowding,
regardless of the reason for admission. Furthermore, as the prediction
model performed well for children admitted to the ICU, children
admitted for over 24 hours and children that were admitted with a
medical intervention, the prediction model seems to correspond well
with necessary admissions. Lastly, many of the participating hospitals
were university hospitals, in which available beds are scarce and
actual admission is expected to correspond with necessary admis-
sions.

4.2. Findings in relation to previous literature

Traditionally many studies have focused on either identifying
children with severe bacterial infections or identifying which febrile
children can be safely discharged. However, not all children with SBI
have to be admitted and not all children that require hospital admis-
sion suffer from SBI, emphasizing the complexity of caring for febrile
children and illustrating how hospital admission and serious bacterial
infections are two different clinical outcomes.

In their review on clinical prediction models regarding the safe
discharge of children at the ED, Irwin et al. outlined four possible out-
comes of febrile children: serious bacterial infection (SBI) requiring
admission (e.g. sepsis, meningitis), SBI but no admission required (e.
g. urinary tract infection, uncomplicated pneumonia), presumed viral
illness requiring admission (e.g. bronchiolitis with hypoxia, gastroen-
teritis with dehydration), or presumed viral illness not requiring
admission (other viral infections) [23-27].

In line with this, previous studies showed that the NICE alarming
signs seem to be better predictors for children requiring hospital
admission than for SBI.

Regarding the use of vital signs in our prediction model, even
though fever is known to impact heart rate and respiratory rate, a
previous study showed that absolute heart rate was a better predictor
for SBI than temperature corrected heart rate [28]. Furthermore, we
included temperature in the original prediction model, but it was left
out in the final model as it did not significantly improve the model.

The final model including general patient characteristics and vital
signs did improve the model containing only NICE alarming signs for
all types of admission. Furthermore, as these variables are routinely
assessed at triage and can easily be incorporated into the “admission
risk calculator”, adding them is not time-consuming at triage.

To our knowledge, two previous single-centre studies have looked
into the prognostic value of NICE red alarming signs in predicting
hospitalisation in febrile children, showing good performance
[26,27].

In addition to these two studies, several previous studies have
developed prediction models for admission of ED patients. However,
many of those have focused on adult patients, specific paediatric
patients such as children with asthma, are single setting studies, or
use variables not available at triage, thus limiting their use to
improve patient flow [8,29-33].
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As our study focused on a broad group of febrile children and used
a large cohort from different settings with large differences in patient
case miX, the generalisability of our results is expected to be high
[2,12,34,35]. Furthermore, our prediction model uses variables that
are available at the triage process and can thus be used to improve
patient flow and crowding.

Lastly, our prediction model can be automated and integrated into
the triage process and, based on the “rule-out” and “rule-in” thresh-
olds, can be used to provide advice regarding hospital admission to
ED health care workers. A similar clinical calculator, the validated
“feverkidstool” developed by our research group, can be used as an
aid on antibiotic treatment in febrile children, showed high compli-
ance, a reduction of inappropriate antibiotics and an improved tar-
geting of antibiotic use [36,37].

4.3. Implications for clinical practice and research

Our prediction model can be used to improve patient flow and ED
crowding by providing a tool that can be used at triage to initiate and
expedite hospital admission for those children that will be admitted
anyway. Test results and treatment effect can then further be moni-
tored on the ward.

The negative effects of ED waiting times and crowding have
motived UK policy makers to introduce the 4-hour rule, which states
that 95% of all ED patients should be discharged or admitted within
four hours [34].

Although this target has reduced waiting times, it shows that
introduction of waiting time targets can also have unwanted side
effects and other measures are also needed to improve ED crowding,
flow, and patient care. For example, our previous European study
showed that settings with a 4-hour rule have a significantly larger
number of short admissions in comparison to settings that have not
implemented such a rule [34].

Admitting high-risk patients at triage could potentially benefit all
patients, as it can improve crowding as well as waiting times for both
patients that were admitted at triage as well as patients remaining at
the ED for further evaluation, by improving allocation of resources.
Furthermore, it is expected to reduce health care costs, improve
patient and health care worker satisfaction and possibly reduce
unnecessary short admissions.

Studying the actual impact of the prediction model on outcomes
such as patient safety, ED length of stay, ED crowding, use of resour-
ces, health care costs and patient and healthcare worker satisfaction
is an important next step in implementation. Ideally, the prediction
model would be integrated into the triage process, maximising the
potential benefits of early admission.

Furthermore, assessment of clinician’s acceptability and barriers
and facilitators for implementation should be part of a future imple-
mentation study that includes the use of the digital calculator. Based
on previous research, the following potential barriers can be identi-
fied for implementation of the prediction model: an intuitive rather
than analytical decision-making process, patient factors not included
in the prediction model and difficulty among clinicians dealing with
probabilistic knowledge. Possible facilitators include adding an
actionable recommendation rather than just showing the calculated
risk, integrating and automating the prediction model with the clini-
cian’s workflow, providing the evidence behind the prediction model
and using an outcome that is perceived as clinically relevant by
physicians and patients [38]. Furthermore, the fact that we used a
limited number of variables that are available at triage and variables
that are already used in daily practice as they are part of the fever
guideline is expected to increase ease of use and acceptability.

Based on these recommendations, we would suggest integrating
the prediction model with the triage process and providing the clini-
cian with an actual “admission advice” rather than merely a risk

calculation. A previous study by our research group showed high
compliance with a prediction model for antibiotic therapy [36,39].
Using a digital tool, either as part of the patient electronic health
record or a stand-alone tool, offers benefits in terms of efficiency and
accuracy but should be subjected to local and regional regulations,
such as CE marking, before being implemented into routine care.

4.4. Strengths and limitations

The main strength of our study is the large number of patients and
the fact that data were collected year-round from 12 EDs in eight
European countries and included different hospitals with different
patient case mixes, which largely increases the generalisability of the
results. Furthermore, the model performed equally well after cross-
validation and external validation, showing that the model performs
well in settings with a different patient case mix and different admis-
sion rates. Although the prediction model was developed and cross-
validated in a large number of hospitals with large differences in
patient case mix, those were mainly university hospitals. However,
external validation on a mixed set of other EDs, with a higher number
of non-university and regional hospitals showed good performance.
The validation was limited by the dominance of children with a low
admission risk, thereby the validity of our model in febrile children
with a high admission risk may need further confirmation. Further-
more, it would be valuable to validate the model in other settings,
such as non-teaching hospitals and low- and middle-income settings.

The use of patient characteristics that are available directly at or
within minutes after triage, increases the applicability of our predic-
tion tool.

Although the alarming signs from the NICE fever guideline we
used is targeted at children until the age of five and we included chil-
dren until the age of 18, the majority of our study population was
below the age of five. Furthermore, these alarming signs have been
applied to older children in several previous studies [24,27] and have
considerable overlap with alarming signs from the NICE sepsis guide-
lines for children of all ages [15].

Our results should be interpreted in light of the limitations of
using routinely collected data. To improve data quality and complete-
ness, all settings received instructions regarding the accurate docu-
mentation of patient characteristics such as NICE alarming signs and
quality checks were preformed regularly. Except for “pale skin”,
which was not routinely collected, the amount of missing data was
limited. Data were missing with the following frequencies: general
patient characteristics: 0-5%, vital signs: 0-23% NICE alarming signs
1-18% and disposition 0.1%. Missing data is described in more detail
in Table 1.

The effects of missing data were further reduced by using multiple
imputation for missing values [40].

Unfortunately, as the database was anonymised, there were no
data available on recurrent admissions of the same child. However,
we did try to adjust for revisits and “frequent visitors" in two ways.
First, any previous medical care in the last five days was included in
the original model, but was left out of the final model as it did not sig-
nificantly improve the final model.

Secondly, we performed a separate analysis in a dataset in which
all children with comorbidity were excluded, which showed a similar
AUC as in the original dataset.

Although we evaluated several potential predictors, it is possible
that not all variables related to hospitalisation were captured. For
example, blood pressure was only performed in a minority of chil-
dren and thus was not included in the prediction model. Although a
previous study showed that although hypotension is associated with
serious illness in children, its sensitivity is limited as a routine mea-
surement in all children attending the ED [41] and it is a late sign in
critically ill children in comparison to adults.
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Furthermore, it is possible that some children in our dataset were
admitted for non-medical reasons, such as lack of transportation or
inability to understand and follow-up on safety netting advice. As we
did not collect data on these social reasons it is difficult to assess in
what proportion social reasons had an impact on hospital admissions
and whether this was different in the different settings. However, as
most participating settings offered tertiary university care and avail-
able beds in these settings in general is limited the number of admis-
sions for social reasons is expected to be low.

Although it is possible that different settings used different admis-
sion criteria [42], combining data from 12 settings and performing a
cross-validation analysis and external validation, shows the robust-
ness of our model.

In order to improve and standardise data quality a digital training
was used to optimise clinical assessment. This might have impacted
clinical care in the study period and might have improved the back-
ground rate of accurate decision-making regarding admission. How-
ever, the clinical alarming signs that were part of the training module
and data collection were part of the fever guideline that was already
applied at the participating EDs.

5. Conclusion

The combination of general patient characteristics, vital signs and
NICE alarming signs available at triage, can be used to identify febrile
children at high risk for hospitalisation at ED triage. A digital calcula-
tor is available to facilitate clinical use.
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