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Abstract

The MAGE-C1/CT7 encodes a cancer/testis antigen (CTA), is located on the chromosomal region Xq26–27 and is highly
polymorphic in humans. MAGE-C1/CT7 is frequently expressed in multiple myeloma (MM) that may be a potential target for
immunotherapy in this still incurable disease. MAGEC1/CT7 expression is restricted to malignant plasma cells and it has
been suggested that MAGE-C1/CT7 might play a pathogenic role in MM; however, the exact function this protein in the
pathophysiology of MM is not yet understood. Our objectives were (1) to clarify the role of MAGE-C1/CT7 in the control of
cellular proliferation and cell cycle in myeloma and (2) to evaluate the impact of silencing MAGE-C1/CT7 on myeloma cells
treated with bortezomib. Myeloma cell line SKO-007 was transduced for stable expression of shRNA-MAGE-C1/CT7.
Downregulation of MAGE-C1/CT7 was confirmed by real time quantitative PCR and western blot. Functional assays included
cell proliferation, cell invasion, cell cycle analysis and apoptosis. Western blot showed a 70–80% decrease in MAGE-C1/CT7
protein expression in inhibited cells (shRNA-MAGE-C1/CT7) when compared with controls. Functional assays did not indicate
a difference in cell proliferation and DNA synthesis when inhibited cells were compared with controls. However, we found a
decreased percentage of cells in the G2/M phase of the cell cycle among inhibited cells, but not in the controls (p,0.05).
When myeloma cells were treated with bortezomib, we observed a 48% reduction of cells in the G2/M phase among
inhibited cells while controls showed 13% (empty vector) and 9% (ineffective shRNA) reduction, respectively (p,0.01).
Furthermore, inhibited cells treated with bortezomib showed an increased percentage of apoptotic cells (Annexin V+/PI-) in
comparison with bortezomib-treated controls (p,0.001). We found that MAGE-C1/CT7 protects SKO-007 cells against
bortezomib-induced apoptosis. Therefore, we could speculate that MAGE-C1/CT7 gene therapy could be a strategy for
future therapies in MM, in particular in combination with proteasome inhibitors.
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Introduction

Multiple Myeloma (MM) is the second most frequent

hematological malignancy. It is a cancer characterized by the

infiltration and growth of malignant monoclonal plasma cells in

the bone marrow microenvironment, presence of monoclonal

immunoglobulin in the blood and/or urine, and lytic bone lesions

[1–5]. The characterization of the mechanisms responsible for

expansion MM cells is difficult due to many genetic alterations

identified in malignant plasma cells as well as changes in bone

marrow microenvironment leading to tumor growth and immune

system failure [6]. MM remains an incurable disease despite all

current treatments with median survival varying from 3 to 5 years

[7–9].

Currently three drugs are being widely used in the treatment of

patients with MM: bortezomib (Velcade; Millennium Pharmaceu-

ticals, Inc., Cambridge, MA, Johnson and Johnson Pharmaceu-

ticals Research and Development & L.L.C., Raritan, NJ), as part

of the first line therapy in candidates for autologous transplanta-

tion or for those who have poor prognostic factors; thalidomide

(Thalomid; Celgene Corp., Summit, NJ), used in combination

with dexamethasone, was approved in 2006 for the treatment of

newly diagnosed MM; lenalidomide (Revlimid; Celgene Corp.,

Summit NJ) thalidomide analogue, used in combination with

dexamethasone, and recommended as part of the first line

treatment for patients who present no poor prognostic factors [7].

Cancer/testis antigens (CTAs) are tumor-associated genes

originally discovered in patients with malignant melanoma, with
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the ability to elicit cytotoxic T cells and humoral immunity [10–

14]. These antigens are expressed in a broad range of human

tumors, but in normal tissues, their expression is limited to testis,

fetal ovary, and occasionally placenta, and confined to immature

cells such as spermatogonia, oogonia, and trophoblasts [15–19].

CTAs are grouped into more than 40 distinct families based on

their strongly immunogenic properties, expression profiles and by

bioinformatics methods [19–21]. Many CTAs are considered

attractive targets for cancer immunotherapy because the gonads

are immune protected organs and anti-CTA immune responses

will therefore target tumors specifically [21,22]. It is possible that

CTA have specific biological roles in different tumor types, but

their exact function in tumorigenesis and/or promotion of the

malignant phenotype remain to be elucidated [23,24].

The MAGE-C1/CT7 CTA gene is located on the chromosomal

region Xq26-27 and was identified simultaneously by representa-

tional difference analysis (RDA) and serological analysis of

recombinant cDNA expression libraries (SEREX) [25,26]. MAGE-

C1/CT7 is highly polymorphic in humans, due to variations in the

number of repeat units between different alleles. The function of its

protein is not yet understood but it seems to be associated with a

more aggressive clinical behavior in some human epithelial cancers

[25,27].

In multiple myeloma (MM), MAGE-C1/CT7 expression is

restricted to malignant plasma cells [10,28]. Andrade et al. [29]

studied bone marrow aspirates obtained at diagnosis of MM and

observed MAGE-C1/CT7 expression in 77% of all MM patients

and one of three monoclonal gammopathy of undetermined

significance (MGUS) cases analyzed. Atanackovic et al. [21] have

suggested that especially MAGE-C1/CT7 might promote the

progression of MM, since it seems to play a role as a ‘gatekeeper’

gene for other CTA antigens and can be associated with a more

aggressive phenotype.

Prompted by the hypothesis that the MAGE-C1/CT7 gene could

have an important biological role in MM tumorigenesis, we

planned: (1) to identify MM cell lines with MAGEC1/CT7 expres-

sion, (2) to obtain a stable and efficient silencing of MAGE-C1/CT7

gene by small hairpin RNA (shRNA) in a MAGE-C1/CT7-positive

myeloma cell line to perform functional studies, and (3) to evaluate

the impact of silencing MAGE-C1/CT7 on cells treated with novel

proteasome inhibitor anti-myeloma agent bortezomib.

Results

Expression pattern of MAGE-C1/CT7 in SKO-007, U266,
SK-MM-2 and RPMI-8226 analyzed cell lines

In this functional study, we investigated the level of MAGE-C1/

CT7 expression in four MM cell lines (SKO-007, U266, SK-MM-

2 and RPMI-8226) by RT-PCR.

All four cell lines expressed MAGE-C1/CT7 as revealed by RT-

PCR, however, RPMI-8226 showed a less intense band in gel

electrophoresis (Fig. 1A). This result was confirmed by real-time

quantitative PCR [qPCR] (Fig. 1B) and western blot (Fig. 1C).

The expression level of MAGE-C1/CT7 was higher in cell line

SKO-007 than in any other cell line [U266, SK-MM-2 and

RPMI-8226] (Fig. 1B). Therefore, we chose SKO-007 cells for

silencing of MAGE-C1/CT7 expression using interfering RNA

(RNAi).

We used a short hairpin RNA (shRNA) specific for MAGE-C1/

CT7 that was previously inserted in the pRETRO-SUPER [pRS]

retroviral vector (Fig. 2A). The pRS-shRNA-MAGE-C1/CT7 con-

struct was co-transfected with pCL-amphotropic packing vector

into HEK293T cells to produce virus particles. Virus particles with

shRNA-MAGE-C1/CT7 were transduced and selected in myeloma

cell line SKO-007. Cell line SKO-007 was divided into three

derivatives: (1) empty vector (pRS), (2) ineffective shRNA (‘scramble’,

antisense strand deleted – GC bases), and (3) inhibited (shRNA-

MAGE-C1/CT7) cells. Analyzing MAGE-C1/CT7 by qPCR in all

three derivatives and wild-type cells we found a 70–80% down-

regulation of MAGE-C1/CT7 mRNA expression in inhibited

(shRNA-MAGE-C1/CT7) cells when compared to controls

(Fig. 2B). This finding was paralleled by analyses performed on

the protein level using western blot (Fig. 2C-D).

MAGE-C1/CT7 is not related to cell proliferation and
invasion in myeloma cell line SKO-007

Cell proliferation of SKO-007 cell derivatives (empty vector,

ineffective shRNA and inhibited [shRNA-MAGE-C1/CT7]) were

assessed by growth curve and [3H] thymidine incorporation.

SKO-007 inhibited (shRNA-MAGE-C1/CT7) growth curves did

not show any statistically significant change in cell proliferation

when compared with control cells (Fig. 3A). This result suggests

that MAGE-C1/CT7 may not be involved in the proliferation of

myeloma cell line SKO-007. Accordingly, no significant difference

was seen with regard to DNA synthesis in inhibited (shRNA-

MAGE-C1/CT7) cells compared with controls (empty vector and

ineffective shRNA) in three independent experiments of [3H]

thymidine incorporation (Fig. 3B).

Finally, we could also not detect any statistically significant

change in cellular invasion when we compared inhibited SKO-007

cells (shRNA-MAGE-C1/CT7) with controls [empty vector and

ineffective shRNA] (Fig. 3C).

Stable silencing of MAGEC1/CT7 induces changes in cell
cycle phases in myeloma cell line SKO-007

In a next step, we asked whether the MAGE-C1/CT7 gene

might be involved in cell cycle regulation because Jungbluth et al.

[10] had suggested a link between CTA antigen expression and

the dysregulation of cell cycle control in MM. Inhibited (shRNA-

MAGE-C1/CT7) cells and controls (empty vector and ineffective

shRNA) were stained with propidium iodide (PI) and the cell cycle

status was analyzed by flow cytometry. Results showed a

statistically significant increase in the percentage of cells in the

G0/G1 phase and a decrease in the percentage of cells in the G2/

M phase among inhibited cells compared to controls (Fig. 4).

There was no difference regarding the proportion of cells in the S

phase of the cell cycle when inhibited cells and controls were

compared.

Bortezomib potentiates the reduction of
MAGE-C1/CT7-inhibited cells in the G2/M phase

We evaluated the ability of both MAGE-C1/CT7 silencing and

bortezomib to induce alteration in the regulation of the cell cycle

in myeloma cell line SKO-007. Empty vector (pRS), ineffective

shRNA [both control cells] and inhibited (shRNA-MAGE-C1/

CT7) cells were treated with 10 nM bortezomib for 48 h, stained

with PI and analyzed by flow cytometry.

The results were normalized comparing bortezomib-treated

with untreated cells (Fig. 5). The G0/G1 and S phase were not

significantly altered after treatment with bortezomib among

inhibited cells as well as controls. However, we also observed a

statistically significant decrease in cells in the G2/M phase among

inhibited (shRNA-MAGE-C1/CT7) cells, but not in controls, after

treatment with bortezomib (Fig. 5A). These combined observa-

tions suggest that MAGE-C1/CT7 gene might plays a role in cell

cycle in MM and that silencing of MAGE-C1/CT7 enhances the

anti-myeloma effect of bortezomib.

Functional Study of MAGE-C1/CT7 in Myeloma
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MAGE-C1/CT7 silencing increases bortezomib-induced
apoptosis in myeloma cell line SKO-007

Using Annexin V/PI staining, we next assessed if silencing of

MAGE-C1/CT7 could potentiate bortezomib-induced apoptosis in

myeloma cell line SKO-007. Inhibited (shRNA-MAGE-C1/CT7)

cells and controls were treated with 10 nM and 15 nM of

bortezomib for 48 h. 10 nM bortezomib induced apoptosis in

three MM cell line SKO-007 derivatives, but no difference was

observed in the percentage of apoptotic cells (Annexin V+/PI- or/

and Annexin V+/PI+) between inhibited cells and controls (empty

vector and ineffective shRNA) (data not shown). However, when

inhibited cells and controls (empty vector and ineffective shRNA)

were treated with 15 nM bortezomib for 48 h (Fig 6), we observed

a 43% increase in apoptosis (Annexin V+/PI- and Annexin V+/

PI+) in inhibited (shRNA-MAGE-C1/CT7) cells compared to

controls (Fig. 6D). Inhibited cells showed statistically significant

increase in the number of early apoptotic cells (Annexin V+/PI-)

compared to control cells (Fig. 6E) and there was no significant

increase in the number of late apoptotic cells/necrotic cells

(Annexin V+/PI+) between the three SKO-007 cell derivatives

(empty vector, ineffective shRNA and inhibited) (Fig. 6F).

There was no difference in the percentage of apoptotic cells

(Annexin V+/PI- and Annexin V+/PI+) between the three SKO-

007 cell derivatives (empty vector, ineffective shRNA, inhibited)

bortezomib-untreated (Fig. S1). Therefore, it seems that MAGE-

C1/CT7 silencing increases the sensitivity of myeloma cells to

bortezomib-induced apoptosis.

Discussion

We found that silencing of MAGE-C1/CT7 resulted in a

statistically significant increase in the percentage of myeloma cells

in G0/G1 phase. On the other hand, silencing of MAGE-C1/CT7

significantly decreased the number of cells in the G2/M phase of

the cell cycle. This decrease was even more pronounced when the

inhibited cells were treated with bortezomib, suggesting that

myeloma cells with a decreased expression of MAGE-C1/CT7

might be more susceptible to the effects of bortezomib than

controls.

In an attempt to delineate the biological role of MAGE-C1/CT7

in MM, we first evaluated the expression of CTA mRNA in four

MM cell lines (SKO-007, U266, SK-MM-2 and RPMI-8226) by

RT-PCR, qPCR and western blot. Myeloma cell line SKO-007

evidenced the highest basal MAGE-C1/CT7 expression as

indicated by qPCR. Therefore, this cell line, which is derived

from myeloma line U266, was chosen for subsequent functional

analyses. Interestingly, Song et al. [30] have previously shown that

in the case of myeloma cell line SKO-007, but not U266, cell

growth is significantly inhibited following ERK activation in the

presence of INFa. This finding suggests that SKO-007 and U266

cells may indeed behave differently with regard to key biological

functions.

Analyzing growth curves and [3H] thymidine incorporation, we

could not detect an influence of MAGE-C1/CT7 silencing on cell

proliferation of inhibited and control cells. This observation would

be in line with findings of Atanackovic et al. [31] who, performing

transient silencing of two CTAs (MAGE-C1/CT7 and MAGE-A3),

found only very modest effects on myeloma cell proliferation. On

the other hand, Yang et al. [32] have previously indicated that

Figure 1. MAGE-C1/CT7 expression in Multiple Myeloma (MM)
cell lines. A) RT-PCR products in 8% polyacrylamide gel electrophoresis
and visualized by silver staining. RT-PCR products from cDNAs
demonstrating qualitative difference in mRNA expression of MAGE-C1/
CT7 in normal testis and four multiple myeloma cell lines (SKO-007,
U266, SK-MM-2 and RPMI-8226). PCR control = PCR amplification
without cDNA template to rule out contamination. M = 100 bp ladder
(Invitrogen). B) Quantitative expression of MAGE-C1/CT7 in four MM cell
lines (SKO-007, U266, SK-MM-2, RPMI-8226) by SYBR green real time
quantitative PCR (qPCR). qPCR was performed with cDNA made from
MM cell lines using optimized gene-specific primers to analyze mRNA
expression levels of MAGE-C1/CT7 and normalized with GAPDH
expression in corresponding MM cell lines. Bars represent the levels
of relative MAGE-C1/CT7 expression in each MM cell line. The
convectional RT-PCR and SYBR green real time quantitative PCR (qPCR)
were performed as described in Materials and Methods section. Du145

prostate cell line was used as negative control for MAGE-C1/CT7
expression.
doi:10.1371/journal.pone.0027707.g001

Functional Study of MAGE-C1/CT7 in Myeloma
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silencing of MAGE genes might decrease proliferation in neoplastic

mast cells in vitro and in vivo; however, MAGE-C1/CT7 was not

analyzed in that study.

It is important to note that our study is the first to report that

myeloma cell line SKO-007 does have invasive potential,

providing an important basis for future in vivo studies analyzing

the potential of anti-myeloma therapies. However, in our current

study, using Matrigel we did not detect any difference in cell

invasion between inhibited (shRNA-MAGE-C1/CT7) cells and

controls (empty vector and ineffective shRNA).

A number of studies have indicated that the expression of CTAs

in tumor cell lines might induce resistance to chemotherapeutic

drugs in vitro [33,34]. Based on these observations, we decided to

analyze the cell cycle in inhibited (shRNA-MAGE-C1/CT7) cells

and controls after treatment with bortezomib. Bortezomib

(Velcade) is a boronic acid inhibitor of the 26S ubiquitin/

proteasome (formed by the 20S core complex and the 19S

regulatory particle) demonstrates potent antitumor activity against

several human cancers and has been clinically used in MM

treatment [35–37]. The ubiquitin/proteasome system has been

implicated in cell cycle progression, differentiation, survival,

apoptosis, and adhesion [35,37]. We found that Bortezomib-

treated and inhibited (shRNA-MAGE-C1/CT7) myeloma cells

showed a significant decrease in cells in the G2/M phase when

Figure 2. Silencing of MAGE-C1/CT7 expression in SKO-007 MM cell line transduced with the pRS-shRNA-MAGE-C1/CT7 construct.
Short hairpin RNA (shRNA) constructs against MAGE-C1/CT7 was stably transduced in MM cell line SKO-007 and effective knockdown was confirmed
by qPCR and western blot. A) Schematic representation of the pRETRO-SUPER (pRS) retroviral vector used for silencing of shRNA-MSAGE-C1/CT7
transcribed from the H1-RNA promoter. B) MAGE-C1/CT7 expression was 4-5-fold lower in inhibited cells when compared with wild type, empty vector
and ineffective shRNA control cells. Du145 prostate cell line was used as negative control of MAGE-C1/CT7. C) Western blot using anti-MAGE-C1/CT7
monoclonal antibody (clone CT7.33). a/b-Tubulin protein was used as an internal control. Notably, wild type, empty vector and ineffective shRNA
control cells showed constitutive expression of MAGE-C1/CT7 protein. MAGE-C1/CT7 protein expression was approximately four times lower in
inhibited cells when compared with wild type, empty vector and ineffective shRNA control cells [124 kDa - MAGE-C1/CT7 protein; 55 kDa - a/b-
Tubulin protein]. D) Inhibited cells transduced with pRS-shRNA-MAGE-C1/CT7 construct had an approximately 4-fold (70–80%) decrease in MAGE-C1/
CT7 protein expression when compared with control cells. Bars represent the densitometric analysis of protein bands normalized to a/b-Tubulin
bands presents in Fig. 2C.
doi:10.1371/journal.pone.0027707.g002

Functional Study of MAGE-C1/CT7 in Myeloma
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Figure 3. Analysis cell proliferation and invasive potential in myeloma cell line SKO-007. A) Comparison of empty vector (pRS), ineffective
(‘scramble’, antisense strand deleted - GC bases) and inhibited shRNA-MAGE-C1/CT7 (shRNA construct specific for silencing of MAGE-C1/CT7
expression by RNAi) cells yielded no significant difference between the three growth curves. B) Comparison of thymidine incorporation between
empty vector, ineffective shRNA and inhibited shRNA-MAGE-C1/CT7 cells. There was no significant difference in the DNA synthesis between the three
SKO-007 cell derivatives (empty vector, ineffective shRNA and inhibited) by One-Way ANOVA with Tukey multiple comparison test (post test),
confirming the result obtained with the growth curves. C) In vitro invasion assay using Matrigel for empty vector, ineffective shRNA and inhibited
(shRNA-MAGE-C1/CT7) cells. There was no significant difference between the number of cells invasion by One-Way ANOVA with Tukey multiple
comparison test (post test). All the experiments were independently performed three times and in duplicate.
doi:10.1371/journal.pone.0027707.g003

Functional Study of MAGE-C1/CT7 in Myeloma
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compared with control cells (empty vector and ineffective shRNA).

We believe that the bortezomib-treated and inhibited cells in the

G2/M phase might represent dying cells because the number of

cells did not change in phases G0/G1 and S but increased in Sub-

G1 (cell death).

Inhibition of the 26S proteasome by bortezomib results in

the accumulation of cyclins A, B, D, E, p21 and p27, thereby

disrupting the cell cycle and promoting cell death via multiple

pathways [35,38]. Tamura et al. [35] have shown that bortezomib

increases the expression levels of cyclin B1, the formation of the

cdc1/cyclin B complex, the phosphorylation specific residues

on cdc2 and the ubiquitination of cyclin B1 and wee1. These

modifications are G2/M-phase-related cell cycle suggesting that

bortezomib suppresses the G2/M transition, rather than causing

Figure 4. Analysis cell cycle profile by PI staining flow-cytometry in myeloma cell line SKO-007. A) Histograms representing one set of
four experiments performed independently. The amount (%) of cells in each cell cycle phase is demonstrated next to each histogram. Inhibited cells
showed decrease of cell percentage in G2/M phase and increase of cells in G0/G1 phase when compared with control cells (empty vector and
ineffective shRNA). B) Results show mean values (6 standard error of means [S.E.M.]) of four independent experiments in duplicate and asterisks
(*) indicate statistically significance between inhibited (shRNA-MAGE-C1/CT7) cells and controls (empty vector and ineffective shRNA). Inhibited cells
showed significant difference in the number of PI stained cells in G0/G1 (**p,0.01) and G2/M (*p,0.05) phases. There was no significant difference
(p.0.05) between the three SKO-007 cell derivatives (empty vector, ineffective shRNA, inhibited) in the S phase and cell death (Sub-G1) by One-Way
ANOVA with Tukey multiple comparison test (post test). The cells were stained with PI and analyzed for DNA content by flow cytometry as described
in Materials and Methods.
doi:10.1371/journal.pone.0027707.g004

Functional Study of MAGE-C1/CT7 in Myeloma
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Figure 5. Stable Silencing of MAGE-C1/CT7 expression in myeloma cell line SKO-007 transduced with pRS-shRNA-MAGE-C1/CT7 also
leads to cell cycle changes when treated with 10 nM bortezomib for 48 h. A) Normalized Results (bortezomib-treated cells vs. untreated
cells) show mean values (6 standard error of means [S.E.M.]) of four independent experiments in duplicate and asterisks (*) indicate statistically
significant between inhibited (shRNA-MAGE-C1/CT7) cells and controls (empty vector and ineffective shRNA). In G2/M phase, bortezomib-treated and
inhibited cells had lower percentage (48%) of PI stained cells when compared with control cells (empty vector [13%] and ineffective shRNA [9%]) [10
nM bortezomib by 48 h] (**p,0.01). The number of dead cells (Sub-G1) was higher in bortezomib-treated and inhibited (shRNA-MAGE-C1/CT7) cells

Functional Study of MAGE-C1/CT7 in Myeloma
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M-phase arrest. Accordingly, Ling et al. [39] have shown that

bortezomib leads to an increase in the accumulation and activa-

tion of G2/M-phase-related cycle regulators cyclin A and cyclin B

and to cell cycle blockade at the G2/M phase.

We found more apoptotic cells (Annexin V+/PI-) among

bortezomib-treated and inhibited (shRNA-MAGE-C1/CT7) mye-

loma cells than among controls. These results suggest that inhibited

cells are more susceptible to bortezomib than control cells and

indicate that probably the biological role of MAGE-C1/CT7 is

related to the protection of tumor cells against the effects of

cytotoxic drugs. Accordingly, Yang et al. [40] have demonstrated

that the MAGE genes are able to suppress apoptosis and that this

event was not affected by caspase inhibitors. Moreover, Atanackovic

et al. [31] have shown that MAGE-C1/CT7 and MAGE-A3 genes

play important roles in protecting myeloma cells from spontaneous

apoptosis and that silencing these genes further add to the cytotoxic

effects of anti-myeloma agents.

In conclusion, our study was the first to achieve stable silencing

of MAGE-C1/CT7 and suggests that this CTA gene might play a

role in cell cycle. Furthermore, our findings indicate that MAGE-

C1/CT7 is involved in protecting myeloma cells against sponta-

neous as well as drug-induced apoptosis. Silencing of MAGE-C1/

CT7 using shRNA has proven to be a relevant strategy to elucidate

the role of this gene, and maybe other CT genes, in myeloma

tumorigenesis. Most importantly, we could speculate that targeting

MAGE-C1/CT7 might represent a valuable therapeutic option for

myeloma, in particular when applied in combination with

proteasome inhibitors such as bortezomib.

Materials and Methods

Cell culture
The human MM cell lines SKO-007 [41], RPMI-8226 [42],

U266 [43] and SK-MM-2 [44] were maintained in RPMI 1640

(Gibco Laboratories, Grand Island, NY) supplemented with 10%

fetal bovine serum, 1% L-glutamine, 1% NEAA [non-essential

amino acids]) and gentamicin. The current study was approved by

the Ethics Committee Hospital São Paulo, Universidade Federal

de São Paulo, UNIFESP/EPM (#1495/07).

Antibodies and drug
Anti-MAGE-C1/CT7 (clone CT7.33) [45], monoclonal anti-

body was a gift from Dr. Otavia L. Caballero. Bortezomib is

commercially available (VelcadeH - Janssen-Cilag).

RT-PCR
Total RNA was prepared from cell line pellets using TRIzol

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s

instructions. Two micrograms of total RNA were reverse-

transcribed with SuperScript III Reverse Transcriptase (Invitrogen).

MAGE-C1/CT7 was analyzed by RT-PCR and 8% polyacrylamide

gel electrophoresis and visualized by silver staining. Normal testis

was used as template for positive control in all RT-PCR reac-

tions. PCR reactions were performed using Platinum Taq

DNA Polymerase (Invitrogen). The PCR steps performed in an

Applied Biosystems GeneAmp PCR 9700 thermocycler, and cycle

conditions are initial denaturation at 94uC for 2 min, 35 cycles of

denaturation 45 s at 94uC, annealing 63 uC, extending 1 min at

72uC, and final extending at 72uC for 7 min. The sequences of

MAGE-C1/CT7 primers were: forward 59-GACGAGGATC-

GTCTCAGGTCAGC-39 and reverse 59- ACATCCTCACCCT-

CA GGAGGG-39 [29].

SYBR Green Real Time Quantitative PCR
The optimization of real time quantitative PCR (qPCR)

reactions was performed following the manufacturer’s instructions

(PE Applied Biosystems, Foster City, CA, USA), but scaled down

to 20 mL per reaction using SYBR Green PCR Master mix

(Applied Biosystems), and 5 mL (20 ng of cDNA) of sample. The

primers (Integrated DNA Technologies, IDT, USA) used for

MAGE-C1/CT7 were forward 59-GAGCTGTAAGCCGGCC-

TTT-39 and reverse 59-TCCCAGCAGTAGGCATATCCTT-39.

GAPDH was used as an endogenous control gene for transcription

reactions (GAPDH forward 59-GTCCACTGGCGTCTTCAC-

CA-39 and reverse 59-GTGGCAGTGATGGCATGGAC-39).

qPCR was performed using an ABI 7300 Sequence Detection

System (PE Applied Biosystems) and universal cycling conditions

(2 min at 50uC, 10 min at 95uC, 40 cycles of 15 s at 95uC, and

1 min at 60uC). Calculations were made using the comparative

CT (2-DDCT) between target and constitutive genes. Dissociation

curves were recorded after each run to distinguish the main qPCR

products from primer dimers, and the products were also analyzed

by 8% polyacrylamide gel electrophoresis and visualized by silver

staining. All qPCR reactions were performed in duplicate.

Western Blot
Extracts from 56105 cells were prepared in 2X lysis buffer

(50 mM Tris-Cl pH 6.8, 2% SDS, 10% glycerol, and 0.1%

bromophenol blue), incubated at 95uC for 5 min, centrifuged at

4uC for 10 min at 12.000 rpm. Protein lysates were separated on

5% (MAGE-C1/CT7) or 10% (a/b tubulin control) polyacryl-

amide gels (SDS-PAGE) and electro-transferred to polyvinylidene

difluoride (PVDF) membrane (Amersham Hybond-P, GE Health-

care, Buckinghamshire, UK). For MAGE-C1/CT7 protein, the

membranes were blocked by incubation in PBST (1X PBS, 0.1%

Tween 20) with 3% bovine serum albumin (BSA) for 1 h, and then

incubated with the primary antibody (0.5 mg/mL, clone CT7.33)

overnight at 4uC in PBST with 3% BSA. After washing three times

in PBST for 10 min each, the membrane was incubated with

peroxidase-conjugated anti-mouse IgG (dilution of 1:5,000) for 1 h

at room temperature. For a/b tubulin protein, the membrane was

blocked by incubation in TBST (Tris-buffered saline [1X TBS],

0.1% Tween 20) with 5% non-fat dry milk for 1 h, and then

incubated with the primary antibody (dilution of 1:1,000)

overnight at 4uC in TBST with 5% non-fat dry milk. After

washing three times in TBST for 10 min each, the membranes

were incubated with peroxidase-conjugated anti-rabbit IgG

(dilution of 1:4,000) for 1h at room temperature. ECL Western

Blotting Detection Reagent (Amersham, GE Healthcare, Buck-

inghamshire, UK) was used to detect antibody binding. The

antibodies used were a monoclonal anti-MAGE-C1/CT7 (clone

CT7.33) for MAGE-C1 protein, and a rabbit polyclonal anti-a/b
tubulin antibody. WBs made for MAGE-C1/CT7 protein and

when compared with controls (empty vector and ineffective shRNA), but this difference was not statistically significant. There was also no significant
difference (p.0.05) between the three SKO-007 cell derivatives (empty vector, ineffective shRNA, inhibited) in the G0/G1 and S phases of cell cycle by
One-Way ANOVA with Tukey multiple comparison test (post test). B) Histograms representing one set of four experiments performed independently.
The amount (%) of cells in each cell cycle phase is demonstrated next to each histogram. Bortezomib-treated and inhibited cells showed significant
decrease of cell percentage in G2/M phase when compared with untreated counterpart. Cells were stained with PI and analyzed for DNA content by
flow cytometry as described in Materials and Methods.
doi:10.1371/journal.pone.0027707.g005
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loading control (a/b tubulin) were always performed in parallel

and revealed (together) in the same exposure time.

Vectors
The pCL-amphotropic packaging vector described by Naviaux

et al. [46] was used for viral production. RNA interference vector

construction for MAGE-C1/CT7 gene silencing includes the

retroviral vector pRETRO-SUPER (pRS) [47], which was kindly

provided by Dr. Lygia V. Pereira, Department of Genetics and

Evolutionary Biology, University of São Paulo, Institute of

Bioscience, Brazil. To generate pRS-shRNA-MAGE-C1/CT7,

the pRETRO-SUPER was digested with BglII and HindIII

restriction enzymes. The oligos (forward oligo 59-gatccccG-

CAGCCCAGTAGATGAATATttcaagagaATATTCATCTACT-

GGGCTGCttttggaaa-39 and reverse oligo 59-agcttttccaaaaaGCA

GCCCAGTAGATGAATATtctcttgaaATATTCATCTACTGG-

GCTGCggg-39 were annealed and ligated into the linearized

plasmid using T4 DNA ligase (Invitrogen). Chemically competent

DH10 E. coli was transformed and positive transformants were

isolated by ampicillin selection (100 mg/mL) and amplified using

standard methods. Presence of insert-containing pRS was

confirmed by EcoRI/HindIII double digest of the plasmid DNA

isolated from several bacterial colonies. Plasmid DNA from a

positive clone was isolated using a QIAGEN Midi-prep kit

(Valencia, CA, USA) and sequenced for additional verification.

The 20 nucleotides siRNA sequence for the human MAGE-C1/

CT7 (GenBank accession number NM_005462.4) was kindly

provided by Dr. Otavia L. Caballero.

Virus Production
Virus production was as described by Bajgelman et al. [48]. In

60 mm tissue culture dishes, 7.56105 HEK293T cells [49,50] were

plated and transfected the next day. To form the precipitate, 10 mg

of the plasmid DNA indicated in each experiment plus 10 mg of the

packaging vector pCL-amphotropic (prepared with the QIAGEN

Plasmid Midi Kit) was mixed with 250 mL of 0.25 M CaCl2, then

added drop-wise while vortexing to 250 mL of 2X HBS (40 mM

Hepes, 2.8 mM Na2HPO4, 274 mM NaCl), pH 7.05. Precipitate

was allowed to form for 10 min at room temperature, and then

added drop-wise to the HEK293T cells. After 4 h incubation at

37uC, the cells received a 3 min glycerol shock (15% glycerol in 1X

PBS), then they were washed once with 1X PBS, and covered with

1.5 mL fresh, complete DMEM. After 24 h of incubation, the virus

containing supernatant was collected, centrifuged for 5 min at

1,000 rpm. The supernatant was removed and stored at 270uC.

shRNA-MAGE-C1/CT7 DNA Sequencing Confirmation
Analysis to check the correct sequence of shRNA-MAGE-C1/

CT7 in retroviral vector pRETRO-SUPER (pRS) and confirma-

tion of shRNA-MAGE-C1/CT7 in the three derivative cells of

myeloma cell line SKO-007 (empty vector [pRS] Ineffective

shRNA [‘scramble’, antisense strand deleted - GC bases], inhibited

[shRNA-MAGE-C1/CT7]) by DNA sequencing.

Automated sequencing was Carried Out with the BigDye

Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer

Applied Biosystems, Foster City, CA) using an ABI Prism 3130

DNA confirmation of shRNA-MAGE-C1/CT7 and therefore there

is not need to send it to GeneBank.

Retrovirus Transduction of shRNA-MAGE-C1/CT7
On the day of transduction, SKO-007 cells were transduced

(16106 cells seeded) in 48-well plate along with recombinant

retrovirus encoding for shRNA against MAGE-C1/CT7 at

MOI of 1 (multiplicity of infection) in serum-free growth

medium containing 8 mg/mL polybrene at 37uC and 5% CO2.

The cells were incubated for 8 h and then cultured continu-

ously for 3 weeks in the presence of 2.0 mg/mL puromycin

(selection for stable expression of shRNA-MAGE-C1/CT7) in

RPMI 1640 supplemented with 10% FBS, 1% L-glutamine,

and 1% NEAA.

Growth Curve
We calculated the growth rate of cell lines by counting the total

number of cells in duplicate wells every day, for 7 days. 16105 cells

in 2 ml RPMI 1640 supplemented with 10% FBS, 1% L-

glutamine, and 1% NEAA were seeded into flat-bottomed 6-well

plastic culture plate (Corning Costar, Corning, NY). Cell viability

was determined by using trypan blue exclusion (Sigma, Saint

Louis, Missouri). Three separate experiments were performed in

duplicate.

[3H] Thymidine Incorporation
Proliferation assay was performed as described earlier [51], with

some modifications. Cells were seeded into flat-bottomed, 24-well

plastic culture plate (Corning Costar, Corning, NY, USA) at a

density of 56105 cells/well in 1 mL of complete medium for 24 h.

Cells were incubated with ‘hot’ methyl-[3H]-thymidine (final

concentration of 1.5 mCi) and ‘cold’ thymidine (final concentration

of 1028 M) for 18 h. After the incorporation period, cells were

transferred to 2 mL Costar microcentrifuge tubes (Corning

Costar, Corning, NY, USA) and centrifugated for 2 minutes at

2,000 rpm. After removal of the supernatant, 0.5 mL cold 10%

TCA (trichloroacetic acid) were added and incubated for 10 min

at room temperature, followed of the centrifugation at 2000 rpm

for 2 min. The supernatant was removed and pellets were

dissolved in 100 mL 0.5 N NaOH and precipitated. A cellulose

filter [1.8 cm60.8 mm] (3M Company, St. Paul, MN, USA) was

added to each microcentrifuge tube. Each cellulose filter was

washed once with 10% TCA, twice with 70% ethanol and once

with 100% acetone. The cellulose filters were dried for 2 h at 50uC
from drying. After drying, the cellulose filter was added to

scintillation tubes with 2 mL scintillation solution (POP, POPOP,

Figure 6. Stable silencing of MAGE-C1/CT7 expression in myeloma cell line SKO-007 leads to increase in apoptotic cells when
treated with bortezomib. A-C) Flow cytometry histograms one set of four independent experiments represents Annexin V-FITC staining in x axis
and PI in y axis. The numbers represent the percentage of early (Annexin V+/PI-) [lower right quadrant] and late (Annexin V+/PI+) [upper right
quadrant] apoptotic cells in empty vector (pRS), ineffective shRNA and inhibited (shRNA-MAGE-C1/CT7) cells treated with 15 nM bortezomib for 48 h.
The concentration of 30 nM bortezomib was used as a positive control for Annexin V and PI staining (data not shown). D) Results (bortezomib-treated
cells) show mean values (6 standard error of means [S.E.M.]) of four independent experiments and asterisks (*) indicate statistically significance
between inhibited (shRNA-MAGE-C1/CT7) cells and controls (empty vector and ineffective shRNA). Inhibited cells had a statistically significant increase
(43%) in the number of apoptotic cells (Annexin V+/PI- and Annexin V+/PI+) compared to control cells (empty vector and ineffective shRNA)
(**p,0.01) by One-Way ANOVA with Tukey multiple comparison test (post test). E) Inhibited cells showed statistically significant increase
(***p,0.001) in the number of early apoptotic cells (Annexin V+/PI-) compared to control cells by One-Way ANOVA with Tukey multiple comparison
test (post test). F) There was no significant increase in the number of late apoptotic cells (Annexin V+/PI+) between the three SKO-007 cell derivatives
(empty vector, ineffective shRNA and inhibited) by One-Way ANOVA with Tukey multiple comparison test (post test).
doi:10.1371/journal.pone.0027707.g006
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Toluene and Triton X-100). The radioactivity incorporated into

DNA counted was quantified in an LS 6500 Multi-purpose

scintillation counter (Beckman Coulter, Fullerton, CA, USA).

Experiments were performed at least three times in duplicate.

Transwell Invasion Assay
In vitro invasion assays were carried out using 6.5 mm Transwell

membranes (Corning Incorporated, Corning, NY, USA) to

measure tumor invasion. The Matrigel invasion chambers were

prepared at 1:3 dilution and incubated for 1 h at 37uC, 5% CO2.

Cells were washed with 1X PBS, resuspended in 0.1% fetal bovine

serum (FBS)-RPMI 1640 and 16105 cells (80 mL) were added to

the Matrigel-coated upper chamber. RPMI-1640 culture medium

(0,6 mL) containing 20% FBS was placed in the lower com-

partment of the chemotaxis chamber to serve as a source of

chemoattractants. The 24-well plastic culture plate was incubated at

37uC, 5% CO2 for 36 h. After incubation, the non-invading cells

and the Matrigel were removed. The invading cells were quantified

using flow cytometry BD FACSCalibur (Becton Dickinson, Franklin

Lakes, NJ, USA). Three independent experiments were performed

in duplicate.

Analysis of Cell Cycle using PI Staining
Briefly, 0.56106 cells were cultured in a 24-well plate (Corning

Costar, Corning, NY, USA) for 48 h at 37uC, 5% CO2, with 1 mL

complete medium (RPMI 1640 supplemented with 10% FBS, 1%

L-glutamine, and 1% non-essential amino acids) with or with-

out 10 nM bortezomib (Velcade) [31]. Cells were harvested,

centrifuged at 2000 rpm for 2 min resuspended in 0.5 mL of

hypotonic solution of PI [0.6 mL of 10 mg/mL PI; 100 mL of

20 mg/mL RNase; 0.058 g of NaCl, 0.121 g of Trisma base, and

0.1 mL of NP40; volume to 100 mL, pH 8.0] and incubated

overnight at 4uC in the dark to stain nuclear DNA [52]. The cells

were centrifuged for 2 min at 2,000 rpm, and resuspended in

0.5 mL 1X PBS. We identified percentages of cells in G1, S, and

G2/M phases of the cell cycle by flow cytometry (BD FACSCalibur)

excluding cell doublets. Analyses were performed using BD

CELLQuestTM Pro software version 3.3 (Becton Dickinson). Each

analysis was performed using at least 20,000 events. Four inde-

pendent experiments were performed in duplicate.

Detection of Apoptosis via FITC-Annexin V/PI Staining
Briefly, 16106 cells were cultured in 12-well plate (Corning

Costar, Corning, NY, USA) for 48 h at 37uC, 5% CO2, with 1 mL

complete medium (RPMI 1640 supplemented with 10% FBS, 1%

L-glutamine, and 1% non-essential amino acids) with or without

10 nM and 15 nM bortezomib (Velcade). 16105 cells of each plate

were collected and resuspended in 100 mL 1 X Annexin V Binding

Buffer (BD Biosciences, San Jose, CA, USA). 2 mL FITC-Annexin

V (BD Biosciences) [53] were added as well as 10 mL PI (Sigma,

Saint Louis, Missouri, USA) staining to a final concentration of

5 mg/mL and the cells were incubated at room temperature for

15 min in the dark. Then, 400 mL of Annexin V binding buffer

were added and flow cytometry was performed using a BD

FACSCalibur flow cytometer. Cells were considered to be

apoptotic if they were Annexin V+/PI- (early apoptotic) and

Annexin V+/PI+ (late apoptotic). Each analysis was performed

using at least 20,000 events. Four independent experiments were

performed.

Statistical Analysis
Statistical analyses were performed using GraphPad Software.

The one-way ANOVA (Tukey HSD, to verify the results) was used

to calculate differences between experimental conditions. Data are

presented as the means 6 S.E.M. (standard error of means) of at

least three independent experiments. A p value of less than 0.05

(p,0.05) was considered statistically significant.

Supporting Information

Figure S1 Stable silencing of MAGE-C1/CT7 expression
in myeloma cell line SKO-007 not leads to increase in
apoptotic cells when bortezomib-untreated. A-C) Flow

cytometry histograms one set of four independent experiments

represents Annexin V-FITC staining in x axis and PI in y axis. The

numbers represent the percentage of early (Annexin V+/PI-)

[lower right quadrant] and late (Annexin V+/PI+) [upper right

quadrant] apoptotic cells in empty vector (pRS), ineffective

shRNA and inhibited (shRNA-MAGE-C1/CT7) cells bortezomib-

untreated for 48 h. 30 nM bortezomib was used as a positive

control for Annexin V and PI staining (data not shown). D) Results

(bortezomib-untreated cells) show mean values (6 standard error

of means [S.E.M.]) of four independent experiments and asterisks

(*) indicate statistically significance between inhibited (shRNA-

MAGE-C1/CT7) cells and controls (empty vector and ineffective

shRNA). Inhibited cells was not observed a statistically significant

increase in the number of apoptotic cells (Annexin V+/PI- and

Annexin V+/PI+) compared to control cells by One-Way

ANOVA with Tukey multiple comparison test (post test). E)

Inhibited cells showed no significant increase in the number of

early apoptotic cells (Annexin V+/PI-). F) There was no significant

increase in the number of late apoptotic cells/necrotic cells

(Annexin V+/PI+) between the three SKO-007 cell derivatives

(empty vector, ineffective shRNA and inhibited).
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1. Ludwig H, Beksac M, Bladé J, Boccadoro M, Cavenagh J, et al. (2010) Current

multiple myeloma treatment strategies with novel agents: a european

perspective. Oncologist 15: 6–25.

2. Nadav L, Katz BZ, Baron S, Cohen N, Naparstek E, et al. (2006) The

generation and regulation of functional diversity of malignant plasma cell.

Cancer Res 66: 8608–8616.

3. Noborio-Hatano K, Kikuchi J, Takatoku M, Shimizu R, Wada T, et al. (2009)

Bortezomib overcomes cell adhesion-mediated drug resistance through

downregulation of VLA-4 expression in multiple myeloma. Oncogene 28:

231–242.

4. Shain KH, Yarde DN, Meads MB, Huang M, Jove R, et al. (2009) b1 integrin

adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells:

Functional Study of MAGE-C1/CT7 in Myeloma

PLoS ONE | www.plosone.org 11 November 2011 | Volume 6 | Issue 11 | e27707



implications for microenvironment influence on tumor survival and prolifera-

tion. Cancer Res 69: 1009–1015.

5. Broyl A, Hose D, Lokhorst H, Knegt Y, Peeters J, et al. (2010) Gene expression

profiling for molecular classification of multiple myeloma in newly diagnosed

patients. Blood 116: 2543–2553.

6. Ludwig H (2005) Advances in biology and treatment of multiple myeloma. Ann

Oncol 16: ii106–ii112.

7. Richardson PG, Mitsiades C, Schlossman R, Munshi N, Anderson K (2007)

New drugs for myeloma. Oncologist 12: 664–689.

8. White DJ, Paul N, Macdonald DA, Meyer RM, Shepherd LE (2007) Addition of

lenalidomide to melphalan in the treatment of newly diagnosed multiple

myeloma: the national cancer institute of Canada clinical trials group MY.11

trial. Curr Oncol 14: 61–65.

9. Kyle RA, Rajkumar V (2008) Multiple myeloma. Blood 111: 2962–2972.

10. Jungbluth AA, Ely S, Diliberto M, Niesvizky R, Williamson B, et al. (2005) The

cancer-testis antigens CT7 (MAGEC1) and MAGE-A3/6 are commonly

expressed in multiple myeloma and correlate with plasma-cell proliferation.

Blood 106: 167–174.

11. Condomines M, Hose D, Raynaud P, Hundemer M, Vos JD, et al. (2007)

Cancer/testis genes in multiple myeloma: expression patterns and prognosis

value determined by microarray analysis. J Immunol 178: 3307–3315.

12. Hoffmann O, Caballero OL, Stevenson BJ, Chen YT, Cohen T, et al. (2008)

Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci USA

105: 20422–20427.

13. Tinguely M, Jenni B, Knights A, Lopes B, Korol D, et al. (2008) MAGE-C1/

CT-7 expression in plasma cell myeloma: sub-cellular localization impacts on

clinical outcome. Cancer Sci 99: 720–725.

14. Lendvai N, Gnjatic S, Ritter E, Mangone M, Austin W, et al. (2010) Cellular

immune responses against CT7 (MAGE-C1) and humoral responses against

other cancer-testis antigens in multiple myeloma patients. Cancer Immun 10: 4.

15. Cho HJ, Caballero OL, Gnjatic S, Andrade VCC, Colleoni GW, et al. (2006)

Physical interaction of two cancer-testis antigens, MAGE-C1 (CT7) and NY-

ESO-1 (CT6). Cancer Immun 6: 12.

16. Peng J, Chen H, Mou D, Cao J, Cong X, et al. (2005) Expression of cancer/

testis (CT) antigens in chinese hepatocellular carcinoma and its correlation with

clinical parameters. Cancer Lett 219: 223–232.

17. Caballero OL, Zhao Q, Rimoldi D, Stevenson BJ, Svobodová S, et al. (2010)
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