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External Disruption of Ocular Development in 
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The intricate steps of human ocular embryology are impacted by cellular and genetic signaling pathways 
and a myriad of external elements that can affect pregnancy, such as environmental, metabolic, hormonal 
factors, medications, and intrauterine infections. This review focuses on presenting some of these factors 
to recognize the multifactorial nature of ocular development and highlight their clinical significance. 
This review is based on English-language articles sourced from PubMed, Web of Science, and Google 
Scholar; keywords searched included “ocular development in pregnancy,” “ocular embryology,” “maternal 
nutrition,” “ophthalmic change,” and “visual system development.” While some animal models show the 
disruption of ocular embryology from these external factors, there are limited post-birth assessments in 
human studies. Much remains unknown about the precise mechanisms of how these external factors can 
disrupt normal ocular development in utero, and more significant research is needed to understand the 
pathophysiology of these disruptive effects further. Findings in this review emphasize the importance of 
additional research in understanding the dynamic association between factors impacting gestation and 
neonatal ocular development, particularly in the setting of limited resources.
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INTRODUCTION

Fetal ocular development commences during early 
embryogenesis and continues progressing even in the 
postnatal period [1]. Human eye embryogenesis in utero 
is governed by a sequence of biological processes that be-
gin during the third week of gestation with gastrulation, 
marked by the differentiation of the single-layered blasto-
cyst into multi-layers encompassing the ectoderm, meso-
derm, and endoderm [1,2]. These three distinct germinal 
layers continue to give rise to different eye structures.

The invagination of the neuroectoderm during 
neurulation leads to the formation of the neural tube [3]. 
The protrusions on the side of the neural tube give rise to 
optic vesicles, which consist of both proximal and dis-
tal components [2]. Subsequently, the proximal vesicle 
differentiates into the optic nerve, and the distal vesicle 
differentiates into the optic cup, which consists of the 
retina, ciliary body, and iris [1,2].

The intricate steps of human ocular embryology are 
impacted by cellular and genetic signaling pathways and 
a myriad of external elements that can affect pregnancy, 
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such as environmental, metabolic, and hormonal factors, 
as well as intrauterine infections that transplacental-
ly affect the fetus. The blood-placental barrier plays a 
significant role in preventing maternal transmission of 
infections and serves as a defense mechanism in conjunc-
tion with the maternal immune system [4]. Similarly, the 
blood-brain barrier has efflux transporters that protect the 
developing brain from toxins [5]. Despite these physical 
barriers, some infections, such as the Zika virus, may tra-
verse them and lead to disruptions in ocular development 
[6].

This literature review will focus on presenting some 
of the external factors to recognize the multifactorial 
nature of human ocular development and highlight their 
clinical significance. Intrinsic factors, including genetics, 
also play a role in the embryologic development of the 
eyes, though these are out of the scope of this review. 
This review is based on English-language articles sourced 
from PubMed, Web of Science, and Google Scholar; 
keywords searched included: “ocular development in 
pregnancy,” “ocular embryology,” “maternal nutrition,” 
“ophthalmic change,” and “visual system development.”

TOPICS

Metabolic Factors
Comprehensive maternal nutrition with essential 

nutrients, such as choline, folic acid, vitamin A, and ome-
ga-3 fatty acids, supports the healthy development of the 
fetus during pregnancy [7].

Choline was shown to be necessary for the devel-
opment of neural progenitor cells in mice models [8]. 
Accordingly, mothers who supplemented their diet with 
excess choline had children who reported better visual 
outcomes than the children of mothers without dietary 
supplementation [9,10]. Conversely, low levels of choline 
have been associated with abnormal ocular development, 
specifically, the retina [8,11].

Folic acid is another necessary nutrient for mothers 
and is widely known for its role in preventing neural tube 
defects [7,12,13]. Folic acid plays a fundamental role in 
cellular division as a DNA and RNA synthesis cofactor 
[13]. In the US, the Centers for Disease Control and Pre-
vention (CDC) recommends that women of reproductive 
age prophylactically supplement their diet with 400 mcg 
of folic acid daily [14]. In the eye, folate receptors exist 
predominantly in the retina, including the Müller cells, 
ganglion cells, outer limiting membrane, and the outer 
plexiform layer, but also in the lens and other parts of the 
eye [12,13,15]. Low levels of folate have presented with 
sequelae, including amblyopia, central scotomas, and 
optic neuropathy [12]. During embryonic development in 
mice, maternal folic acid deficiency led to smaller eyes 

and morphological changes to the lens and the retina [16]. 
However, one report estimated that only 25% of neural 
tube defects are being prevented globally due to barriers 
to accessing supplements or fortified foods [17,18].

In addition, both folic acid and choline participate in 
the remethylation process that converts homocysteine to 
methionine (Figure 1). Folate is a universal methyl donor 
for methylation reactions [19]. Betaine, a metabolite of 
choline, also act as a methyl-group donor in the alterna-
tive pathway [20]. Folic acid deficiency may lead to ab-
normally elevated levels of homocysteine [21]. Increased 
homocysteine levels in the retina upregulate pro-inflam-
matory cytokines and microglia activation, inducing sys-
temic and local retinal inflammation [22]. Elevated ho-
mocysteine levels induce retinal neuron death, disrupting 
the inner and outer retinal and ganglion cell layers [23]. 
Homocystinuria is a rare autosomal recessive metabolic 
disease with raised body homocysteine secondary to cys-
tathionine beta-synthase deficiency. Approximately 90% 
of patients with homocystinuria may develop natural 
crystalline lens subluxation or displacement, namely, ec-
topia lentis. It has been hypothesized that elevated serum 
homocysteine interferes with the cross-linking process in 
lens zonular proteins, causing impairment of zonular in-
tegrity and lens instability and dislocation [24]. Interest-
ingly, an animal study also showed exogenously elevated 
levels of homocysteine in embryonic development can 
lead to lens dislocation and abnormal retinal development 
due to changes in neural crest cell migration [25].

Vitamin A supplementation is vital for early ocular 
development, organogenesis, and maintaining a robust 
immune system [26]. Its active form and derivatives, 
such as retinoic acid, play an integral role in developing 
the retina’s photoreceptors, such as the rods and the cones 
[26]. Xerophthalmia encompasses the ocular manifesta-
tions of vitamin A deficiency and characteristically can 
present with night blindness and, chronically, with corne-
al ulcerations and scarring [27,28].

While vitamin A deficiency continues to present sig-
nificant morbidity and burden among afflicted infants and 
children, excess vitamin A has also been associated with 
teratogenic effects in newborns [29]. Vitamin A toxicity is 
rare but can result from the overconsumption of supple-
ments or overutilization of pharmacologic agents, such 
as isotretinoin, indicated in severe cystic acne treatment 
[30-32]. Affected infants have been shown to present with 
characteristic retinoic acid embryopathy that encompass-
es neural tube defects and craniofacial defects [31]. It is 
hypothesized that high vitamin A concentrations are high-
ly toxic to neural crest cells and mediate homeobox gene 
regulation, thus negatively impacting neural development 
[31].
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There is limited data suggesting vitamin D and E 
affect ocular embryology in post-birth assessments in 
human studies, but some animal studies show an asso-
ciation. Vitamin D deficiency is associated with various 
ocular diseases, including diabetic retinopathy and dry 
eye syndrome, by impacting signaling in human ocular 
barrier cells [33,34]. In Zebrafish embryos, vitamin D 
has been found playing an important role in regulating 
ocular angiogenesis [35]. Vitamin E-free diets in a rodent 
study led to significant retinal photoreceptor damage and 
retinal pigment epithelial cell disfunction [36]. Vitamin 
E deficiency in Zebrafish embryos is hypothesized to 
impact lipid peroxidation and affect ocular development, 
but further research is needed to understand the exact 
mechanism [37].

Docosahexaenoic acid (DHA) is an omega-3 fatty 
acid highly concentrated in the retina and plays a signif-
icant role in maintaining myelin and synaptic terminals 
[7]. While there is equivocal evidence to ascertain the 
importance of taking DHA prenatally or postnatally, one 
study showed that DHA intake during the third trimester 
was significantly associated with improvement in infants’ 
visual acuity [38-41]. DHA intake can support patients 
into adulthood; supplementation of DHA was shown to 
protect against retinal diseases [42]. Among adult pa-
tients, DHA was shown to be decreased in adult patients 
with retinal diseases, such as age-related macular degen-
eration and retinitis pigmentosa [43-46].

Medications
Polysubstance use during pregnancy can affect new-

borns with significant congenital disabilities and devel-
opmental disorders that impact their growth and develop-
ment into adulthood [47]. Despite these known risks, it is 
estimated that approximately 5% to 10% of women use 
substances during pregnancy [47,48].

Alcohol use during pregnancy notably presents with 
fetal alcohol syndrome, characterized by fetal growth re-
strictions, distinctive physical features, and ocular abnor-
malities, including shortened palpebral fissures, ocular 
hypertelorism, and epicanthic folds [29,49]. Infants with 
fetal alcohol syndrome also may present with strabismus, 
microphthalmia, and decreased visual acuity [49-51]. 
Fundus exams have shown optic nerve hypoplasia and 
tortuous retinal vessels among affected infants [50,51]. 
It is hypothesized that ethanol impacts the survival of 
glial cells, leading to decreased optic nerve myelination 
[51,52]. Concurrently, some animal models have shown 
decreased retinal thickness and ganglion cell loss in an-
imals who were exposed to ethanol. Zebrafish models 
showed a dose-dependent and temporal relationship be-
tween ethanol exposure and photoreceptor changes, with 
more dramatic changes seen with chronic and higher 
doses [51].

One study estimated that approximately over 40% 
of women who used alcohol during pregnancy reported 
using additional substances [47,53]. Similarly to alcohol, 
fetal exposure to cocaine has also been associated with 

Figure 1. Schematic representation of folate, choline, and homocysteine metabolism. THF, tetrahydrofolate.
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bella virus has been associated with congenital glaucoma, 
strabismus, and uveitis [65]. Toxoplasma gondii infection 
can present with a characteristic pigmented retinal scar 
representative of retinochoroiditis [63].

The pathogenesis of ocular abnormalities associated 
with TORCH infections is poorly understood; however, 
it is hypothesized that TORCH infections disrupt ocular 
development with cell division inhibition [63]. Rubella 
virus is thought to impact actin filaments, leading to actin 
depolymerization [63]. CMV and HSV prevent neural 
stem cells from further differentiation, inducing apopto-
sis [63]. Increased placental inflammation occurring after 
infection is also thought to impact neurodevelopment. As 
an intracellular parasite, Toxoplasma gondii can produce 
tissue cysts in the retina and cause inflammation, eventu-
ally leading to tissue necrosis [63].

The sequelae of these infections can be devastating; 
TORCH infections remain one of the leading causes 
of congenital blindness [63,66,67]. Prenatal maternal 
screening and medical management have alleviated some 
of the burden in developed countries, but this concern 
remains in particularly resource-limited settings [64].

Zika virus is transmitted with a bite of the Aedes 
mosquito and can be vertically transmitted to the fetus 
in utero [68]. From 2007, there was a series of Zika virus 
outbreaks around the world, predominantly in tropical 
areas, that eventually led to the 2015-2016 Zika virus 
epidemic [68,69]. Congenital Zika infection can lead 
to the collection of characteristics known as Congenital 
Zika Syndrome, which encompasses microcephaly with 
a partially collapsed skull, decreased brain tissue with 
brain damage, damage to the posterior eye, limited joint 
movement, and hypertonia after birth [68,70]. Cases of 
fetuses with congenital Zika syndrome showed ocular 
abnormalities in various tissues, including the pupillary 
membranes and immature anterior chamber angle [71]. 
Posteriorly, there were losses of retinal pigment epithe-
lium, undifferentiated retinal nuclear layers, choroidal 
thinning, and optic nerve atrophy [71,72].

Most recently, maternal infection with the SARS-
CoV-2 virus, introduced to the population during the 
COVID-19 pandemic, has yet to be associated with 
ocular malformations among infants [73]. However, fur-
ther research may be needed to identify any long-term 
sequelae associated with the aftermath of the COVID-19 
pandemic.

Environmental Factors
Amniotic fluid provides the fetus with essential nu-

trients and components of the immune system, protect-
ing the vulnerable fetus from harmful pathogens [74]. 
The unique cellular profile of amniotic fluid can also be 
utilized to detect and progress ocular conditions [75]. 
Infants with retinopathy of prematurity (ROP) were as-

fetal growth restrictions and delays [53]. Infants exposed 
to cocaine were shown to present with signs of palpebral 
edema, structural ocular abnormalities, and strabismus 
[29,53-55]. However, it is unclear whether these abnor-
malities were attributable solely to the effects of cocaine, 
given the shared nature of polysubstance use among 
mothers [53].

The use of certain anticonvulsants, such as valproic 
acid, carbamazepine, and phenytoin, has been associated 
with teratogenic effects on neural tubes [29]. Infants ex-
posed to valproic acid were shown to present with ocular 
abnormalities, most commonly with early-onset myopia 
and strabismus [56]. It is hypothesized that valproic acid 
can decrease the amount of type 2 collagen in the vit-
reous, leading to vitreous degeneration and high myopia 
[29].

Thalidomide is an immunomodulator indicated for 
the treatment of multiple myeloma, graft versus host 
disease, leprosy, HIV, Crohn’s disease, and other cancers 
[57]. Historically, thalidomide was available over the 
counter in the 1950s as an antiemetic to treat morning 
sickness in pregnant women in Europe and Australia 
[57,58]. In 1961, there were over 10,000 reported cas-
es of thalidomide-induced severe congenital disabilities 
in newborns, and the drug was subsequently withdrawn 
from the market [58]. Thalidomide is a potent angio-
genic inhibitor with rapid hydrolysis [59]. It is theorized 
to cause teratogenic damage by disrupting embryonic 
angiogenesis and can affect a wide array of organs and 
tissues in the body [58]. In the UK, reported ocular mal-
formations of thalidomide embryopathy encompassed 
colobomas, external ophthalmoplegia, anophthalmos, 
and microphthalmos [60,61]. One study in Sweden re-
ported incomitant strabismus as the most common ocular 
anomaly, followed by aberrant lacrimation [59]. Mater-
nal thalidomide use led to devastating malformations 
in affected children, and to this day, the medication still 
carries significant contraindications [57].

Infections
Maternal intrauterine infections can impact fetal 

development primarily through hematogenous vertical 
transmission, where the infection is transmitted transpla-
centally from the mother to the fetus, but also by ascend-
ing infections [62]. The delivery process and method can 
also expose infants to a plethora of microbiomes.

TORCH infections, comprised of toxoplasma gondii, 
rubella virus, cytomegalovirus (CMV), herpes simplex 
virus, and others such as Zika, Syphilis, and HIV, mani-
fest in a constellation of characteristic ocular sequelae for 
affected infants [62-64]. The development of cataracts, 
microphthalmos, and chorioretinitis are common ocular 
complications of TORCH infections but can present sig-
nificant variability in presentation [29]. Notably, the ru-
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metals, such as molybdenum, have been found to impact 
visual acuity in infants, though this association requires 
further research [87].

Radiation exposure from X-rays during pregnancy 
can lead to significant changes during organogenesis due 
to radiation-induced cell death; common manifestations 
include microcephaly and microphthalmia [88,89]. In 
Zebrafish embryos, exposure to higher doses of radiation 
impacted the diameter of the eye and the inner nuclear 
cell layer and resulted in lens opacification [90,91]. Even 
exposure to low doses of radiation has been shown to 
interrupt human retinal ganglion cell development [92]. 
Limited studies in humans report similar findings, such 
as microphthalmia and increased risk of refractive errors 
[93].

CONCLUSION AND OUTLOOK

Human ocular development is a complex process 
that begins in utero during the third week of gestation 
and continues even in the postnatal period. The regular 
progress of this development, which relies on an intri-
cate array of cellular and genetic signaling pathways, 
can be impeded by a various external factors, including 
maternal medication use, infectious, metabolic, hormon-
al, and environmental components. It is crucial to learn 
the mechanisms of ocular development to understand the 
origination of the various structures that comprise the eye 
and discern which components are affected during ocular 
malformations when these pathways are disrupted. Much 
remains unknown about the precise mechanisms of how 
these external factors can disrupt normal ocular devel-
opment in utero, and more significant research is needed 
to understand the pathophysiology of these disruptive 
effects further.

Future research may also prioritize how the detri-
mental effects of these external factors on newborn health 
can be best mitigated in resource-limited settings. As in 
many domains of health care, pediatric ocular outcomes 
vary dramatically depending on socioeconomic factors. 
Achieving societal objectives to alleviate health dispari-
ties necessitates both research and clinical efforts to un-
derstand these problems and implement solutions.
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