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Abstract

Size constancy is one of the well-known visual phenomena that demonstrates perceptual
stability to account for the effect of viewing distance on retinal image size. Although theories
involving distance scaling to achieve size constancy have flourished based on psychophys-
ical studies, its underlying neural mechanisms remain unknown. Single cell recordings
show that distance-dependent size tuned cells are common along the ventral stream, origi-
nating from V1, V2, and V4 leading to IT. In addition, recent research employing fMRI dem-
onstrates that an object’s perceived size, associated with its perceived egocentric distance,
modulates its retinotopic representation in V1. These results suggest that V1 contributes to
size constancy, and its activity is possibly regulated by feedback of distance information
from other brain areas. Here, we propose a neural model based on these findings. First, we
construct an egocentric distance map in LIP by integrating horizontal disparity and vergence
through gain-modulated MT neurons. Second, LIP neurons send modulatory feedback of
distance information to size tuned cells in V1, resulting in a spread of V1 cortical activity.
This process provides V1 with distance-dependent size representations. The model sup-
ports that size constancy is preserved by scaling retinal image size to compensate for
changes in perceived distance, and suggests a possible neural circuit capable of imple-
menting this process.

Introduction

Humans make stable judgments about an object’s actual size despite changes in its retinal size
with distance, which is known as size constancy phenomenon. Previous research proposed a
size-distance invariance hypothesis (SDIH) to explain the size constancy. It states that some
function of retinal size combines multiplicatively with perceived distance to obtain the per-
ceived size of an object [1-4] Many size illusions, such as the Ponzo and moon illusions, are
suggested to be based on this size-distance relationship [5-9]. The SDIH has long been pro-
posed, however, its underlying neural mechanisms remain unclear.

Single cell recordings in awake and anesthetized monkeys confirm the existence of distance-
dependent size tuned cells along the ventral pathway from visual cortical area V1, V2 and V4
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[10] leading to inferotemporal (IT) cortex [11]. In particular, Dobbins et al. [10] found that a
large number of cells in V1, V2, and V4 preferred the same retinal image size, but varied their
firing rates with different viewing distances. Among these cells, some showed a monotonic
increase in mean firing rate with decreasing distance (nearness cells), some with increasing dis-
tance (farness cells), and a few that are distance-independent. These results suggest that size
tuned cells whose activities are scaled by distance are common in the visual cortex. In addition,
recent functional magnetic resonance imaging (fMRI) studies [12-14] demonstrate that an
object’s perceived size modulates its cortical retinotopic representation. A distant object would
appear to be larger than a closer object with the same retinal image size. Surprisingly, the
apparently larger object causes activation at a more eccentric locus in the primary visual cortex,
compared to the apparently smaller object. In other words, the same visual angle projected on
the retina could occupy different proportions of V1, depending on the perceived size of the cor-
responding object. Although these findings contradict the traditional view that retinotopic
mapping in V1 is precise and hardwired, emerging evidence supports that visual processing in
V1 depends on both retinal image and distance information [15]. The distance may be signaled
by feedback of three-dimensional (3D) spatial representation from other brain regions, such as
the lateral intraparietal cortex (LIP) [16].

Distance estimation is crucial to size constancy. Egocentric distance, i.e., the distance of an
object from an observer, can be estimated by horizontal disparity (HD) combined with viewing
distance. Viewing distance usually refers to the distance to the fixation point. It can be recov-
ered by depth cues, such as vergence angle and vertical disparities [17, 18]. Besides disparity
and vergence, there are many other depth cues, such as motion parallax, occlusion, familiar
size, and linear perspective, which could contribute to distance perception. However, given the
limited viewing conditions used in the single cell and imaging studies, it is assumed that dispar-
ity and vergence play a dominant role in distance perception. In this article, we only focus on
these two depth cues. If an object is directly in front of the observer, its distance, Dgcoy,, can be
recovered by a function of HD, &, vergence, v, and interocular distance, I (see S1 Table for the
full list of variables). According to the geometrical layout in Fig 1, the equation is as follows:

I

Dy, = m

(1)

where I normally range from 6 mm to 7 mm. When disparity increases, Eq (1) initially under-
estimates and then overestimates the perceived distance [19-20]. By modifying , Eq (1) can
approximate perceived distance quite accurately [21]. This modified 6 is called corrected dis-
parity, see S1 File for details.

Estimation of perceived distance depends on disparity, while disparity estimation may also
depend on distance. Many studies have shown that disparity tuned cells are modulated by
viewing distance. Trotter et al. [22, 23] found that in alert, behaving monkeys, the responses of
a large majority of disparity-tuned neurons in V1 were distance-dependent. They suggested
that extraretinal signals, probably vergence or accommodation, could be integrated with dis-
parity early in the visual processing pathways for 3D spatial representation. Other studies sup-
ported that vergence can be used as a reliable cue for distance perception [24-26]. Since it is
known that cells in V1 are sensitive to HD [27-30], disparity signals in our proposed neural
model arise from V1. While studies have suggested multiple loci in the brain responsible for
vergence control [31-33], we select the frontal eye fields (FEF) to provide vergence signal in
our model [34, 35]. These two depth cues give rise to distance perception. We predict that area
MT may be responsible for integrating vergence and disparity signals. Although so far we lack
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0 : object angle
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v : vergence angle
I : interocular distance
D, : distance to object
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Fig 1. Geometry for stereopsis. "F” marks the fixation point;”P” marks the position of an object. Dgeom,
indicates the distance from object, and | indicates interocular distance. The horizontal disparity, &, is equal to
the difference of the vergence angle, v, and the object angle, 6. & = &, + J;, where &, and &, correspond to the
disparity on the left and right retina respectively.

doi:10.1371/journal.pone.0129377.g001

direct neurophysiological evidence to confirm this point, monosynaptic connections have long
been found from V1 to MT [36, 37] and FEF to MT [35].

Single cell recordings found that LIP provides a distributed representation of egocentric
space [16, 38-40]. It seems that LIP receives inputs from MT and MST, generating a 3D spatial
representation that acts as a premotor signal for directing saccades [16]. Based on these finding,
we hypotheses that MT feeds the integrated depth information forward to LIP, where a dis-
tance map is constructed. Then, LIP feeds the distance information back to MT [39, 41], and
even further back to V1, where it regulates responses of size tuned cells to achieve a distance-
dependent size representation.

We propose a neural model that simulates the results from Dobbins et al. [10] and Speran-
dio et al. [14]. The model comprises of a distance module and a size module (Fig 2). In the dis-
tance module, first a horizontal disparity signal arises from V1 and vergence signal arises from
FEF; then MT neurons gate disparity tuning by vergence; finally, the information in MT neu-
rons pass on to LIP to construct a 3D spatial representation. In the size module, the distance
information obtained from LIP provides a feedback signal to gain modulate neural responses
of size tuned cells and the spread of cortical activity in V1. Table 1 summarizes the brain areas
involved in our model and their proposed functions. However, these proposed functions need
to be tested.

Although there are neural models proposed to simulate the cortical representation of ego-
centric distance [21], no previous modeling work has clearly demonstrated the neural mecha-
nisms of size constancy. Here, our model simulates the neural responses of distance-dependent
size tuned cells in V1, based on the current findings of the neurophysiology and fMRI studies.
Our model supports that size constancy could be preserved by scaling retinal image size to
compensate for changes in viewing distance, and suggests a neural circuit of how this process is
achieved.
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Fig 2. Proposed brain areas and their connections for distance-dependent size perception. Red arrows indicate pathways involved in distance
perception: fibers carrying signals from V1 (disparity) and FEF (vergence) terminate in MT; MT then projects to LIP, where a map of distance information is
constructed. Blue arrows indicate pathways involved in size perception: the distance information from LIP provides feedback signals to MT, which further
projects to V1, modulating neural responses of size tuned cells and cortical activity spread in V1. Thus, a distance-dependent size representation is
achieved.

doi:10.1371/journal.pone.0129377.9002

Methods
Model overview

Our model consists of two sequential stages: first, the distance module where a distance map is
created; second, the size module where size tuning is regulated by distance. In the first stage
(Fig 2, red arrow), cells in area V1 code for HD using Gaussian functions, while cells in area
FEF code for vergence using sigmoidal functions. MT cells integrate the outputs from both V1
and FEF by means of a set of basis functions; the outputs of MT cells feed forward to cells in
LIP to construct a distance map. In the second stage (Fig 2, blue arrow), the distance informa-
tion from LIP feeds back to MT for distance scaling and then back to V1, modulating the activ-
ity of size tuned cells. A size representation based on distance therefore can be constructed.

Distance Module

We propose that the distance module consists of bidirectional connections from V1 and FEF to
MT and further to LIP (Fig 3). Area MT can be deemed as a layer of processing units

Table 1. Brain areas and their proposed functions in the model.

Model areas Distance module (Ref.) Size module (Ref.)

\'Al disparity coding [22] size coding [10, 14]

FEF vergence coding [34] —

MT disparity & vergence (prediction) distance scaling (prediction)
LIP distance coding [32] distance

doi:10.1371/journal.pone.0129377.1001
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Fig 3. Distance module. Disparity selective cells (see variable a in Egs (4)—(6)) in V1 are gain-modulated and simulated by Gaussian functions. Vergence
selective cells (see variable v in Eq (7)) in FEF are simulated by sigmoidal functions. At the level of MT (see variable B in Eq (3)), vergence and disparity are
integrated. At the level of LIP, a distance map (see variable D in Eq (2)) is estimated from a linear combination of MT outputs.

doi:10.1371/journal.pone.0129377.9003

integrating inputs of disparity signals from V1 and vergence signals from FEF. It serves as an
intermediate transformation between the inputs from V1 and FEF, and outputs to LIP.

The final output of the distance module is a distance map, D(6, v), in LIP. It is estimated
from a linear combination of the outputs of MT:

D= Z w,B,(J,v) (2)

where w; is the connection weight from each cell in MT to LIP. B,(8,v) corresponds to the
responses of gain-modulated MT neuron, i, which is specified as follows:

B,(0,v) = a,(0)z(v) (3)

where a;(6) and z;(v) indicate the tuning curves of disparity- and vergence- selective cells,
respectively (see S1 Table for the full list of variables). It is known that disparity-selective cells
in V1 are gain-modulated, and can be categorized into one of the six cell types [28, 30] (see Fig
9 of [30]): tuned excitatory (TE)/tuned inhibitory (TI) cell, which gives maximal/minimal
responses at zero disparity; tuned near (TN)/tuned far (TF) cell, which has similar disparity
tuning function as TE cells but peaks at negative/positive disparity; far (FA)/near (NE) cell,
which activates over a wide range of positive/negative disparities. The disparity tuning of V1
neurons are generally described using either Gabor [42-44] or Gaussian functions [21, 45]. In
our model, the tuning profile of V1 cells are defined by Gaussians for mathematical simplicity:
Near/tuned near (with preferred disparity, 6, within [-4°, -1.5°]) cells,

(5-5,)2 <‘5*(‘”"i2))2

T T2 - 2

a,(0)=Ae T — Ay i+ A, (4)

Far/tuned far (with preferred disparity, di, within [1.5°, 4°]) cells,

. 5022
_(0-9p? B (0-(3-07))

a,(0)=Ae T — A T4 A, (5)
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Fig 4. Simulated tuning curves of disparity-selective cells. The cell tuning curves in V1 [28, 30] are
simulated by subtracting Gaussians. Each curve corresponds to the response of a single cell and exhibits a
similar response pattern as Fig 9 in Gonzalez and Perez [30]. For example, the red dashed line resembles
the TE cell’s response, which gives maximal responses at zero disparity; the blue open-circle line resembles
the TN cell’s response, which has similar disparity tuning function as TE cells but peaks at negative disparity;
the green star line resembles the FA cell’s response, which activates over a wide range of positive disparities.
TF and NE cells are simulated but not marked in the figure. Tl cells are not included in the simulation, since
their responses could be simulated by assigning negative output weights to the TE cells.

doi:10.1371/journal.pone.0129377.g004

Tuned excitatory units (with preferred disparity, 67, within [-1.5°, 1.5°]) cells,

a(d)=Ae 7 (6)

where i is the peak of response for a given curve, and o; describes the width of the tuning
curve for the full list of variables), which is chosen to equal the absolute value of the disparity
corresponding to the peak response, except for the curves whose peaks are within the disparity
range [-10, 10’], for which o; is set to 10 arcmin. Forty disparity tuned cells were assigned.
Their tuning curves, a;(5), are shown in Fig 4 (every other cell responses are shown). Resem-
bling Fig 9 in Gonzalez and Perez [30], our model tuning curves exhibit similar response pat-
terns of tuned near, tuned far, tuned excitatory, near and far cells found in primates.
Parameters, A, A,, and A3 were chosen such that each cell types’ tuning curve a; would have
approximately the same maximum value.

Vergence tuning curves in FEF, z,(v), are modeled as sigmoids:

z(v) = — = (7)

where v is the vergence angle, v; and T; are the thresholds and the slopes of the sigmoids,
respectively. The threshold controls the position of the sigmoid and the vergence axis, and the
slope controls the steepness of the sigmoid. We chose five different thresholds, therefore
obtaining five vergence tuning curves. The vergence tuning curves are shown in Fig 5. Resem-
bling cell responses recorded from the primate visual cortex (refer to Fig 3b in Gamlin [34]),
our model tuning curves show that cell activity increases as vergence angle increases.
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Fig 5. Simulated tuning curves of vergence cells. The modeled tuning curves of multiple vergence cells in
FEF are simulated by sigmoids. Each curve corresponds to the response of a single cell to vergence. Similar
to Fig 3b in Gamlin [34], our model tuning curves show that cell activity increases as vergence angle
increases.

doi:10.1371/journal.pone.0129377.g005

Disparity and vergence signals are integrated by a multiplication operator, defined in Eq (3).
Since there are forty disparity tuned cells and five vergence tuned cells, we obtain 200 gain-
modulated cells in MT. Distance information is estimated in LIP as a linear combination of the
weighted outputs from MT. It has been generally assumed that humans accurately perceive
geometrical distance based on disparity and vergence. However, people tend to overestimate
close viewing distances and underestimate far distances in reality [24], even within the arm’s
reaching space [26]. Therefore, we transformed geometrical distance into perceived distance
(see S1 File for details). This perceived distance can be a teaching signal to train the network to
gain the optimal weights. The delta rule, an iterative optimization technique, is used to find a
set of optimal weights for the network.

Size Module

The size module consists of feedback connections from LIP to MT and further back to V1
(Fig 6). As we described above, the output of the distance module is a distance map estimated
from a set of vergence and disparity input pairs. The distance information feeds back to the
size selective cells in V1 through MT, where a distance scaling function is constructed. The dis-
tance scaling function modulates the response of size tuned cells in V1. This function can be
used to obtain nearness, farness, and distance-independent cells identified in Dobbins et al.
[10].

The size-selective cell, s;, is defined by Gaussian:

-

s=e (8)

where f; is the peak of response for a given curve, ¢; describes the width of the tuning curve,
and K indicates a distance scaling factor incorporated by MT cells. f is within [0°, 3.2°].
Because there are nearness, farness, and distance-independent cells, different distance scaling
functions are set to accommodate the diversity in cell responses. For distance-independent
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Fig 6. Size module. The distance information (see variable D, Eq (2)) in LIP feeds back to size tuned cells (see variable s, Eq (8)) in V1 through MT. size
tuned cells in V1 are gain-modulated and have Gaussian-shaped tuning curves. In area MT, distance scaling functions are constructed. The activity of the
size tuned cells is modulated by distance information through distance-dependent shunting equation (Eq (9)).

doi:10.1371/journal.pone.0129377.9006

cells, the distance scaling function equals a constant, i.e., K = C, cell response does not change
over distance. For farness cells, K = CD(6, v), where D(8, v) is the distance information obtained
from the distance module, cell response increases over distance. For nearness cells, K = D(8,v),
cell response decreases over distance. Fig 7 shows that the shape and the position of a simulated
nearness/farness cell in response to stimuli with equal retinal image sizes are constant, but the
amplitude of the response decrease/increase as the distance increases, just as shown in Fig la
and 1b in Dobbins’ study.

The model thus far has shown a distance-dependent property of size representation. In
addition, in order to reflect size constancy in V1, cortical activity should be relatively constant
when viewing an object (with constant physical size) at varying distances. Conversely, when
viewing an object with constant angular size at varying distances, the spread of cortical activity
in V1 should change [14]. That is to say, with a fixed angular size, the farther the object is,
more eccentric parts of V1 get involved. Here, we used a similar stimuli paradigm as in

Simulated response of nearness cell Simulated response of farness cell
Distance 1 < Distance 2 < Distance 3 Distance 1 < Distance 2 < Distance 3
Z 1 1’ T Z 4 1 1
J s
é 08 08 08} € 08 08 08
© [
B 06 06 06} D 0s 06 06
N ot
= 04 04/ 04/ T 04 04 0.4
E \ £
S 02 0.2} 0.2 —d/\ 5 02 0.2 0.2
2 \ z
0 ol 0 0 0 - 0
2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 1632 2 4 8 16 32 2 4 8 16 32
Retinal image size(deg) Retinal image size(deg)

Fig 7. Simulated tuning curves of nearness and farness cells. The cell tuning curves in V1 are simulated by Gaussians. Similar to Fig 1a and 1bin
Dobbins et al [10], the magnitudes of the responses of nearness (farness) cells decrease (increase) with viewing distance (Distance 1 < Distance
2 < Distance 3), but the shape and position of the peaks of the tuning curves are similar.

doi:10.1371/journal.pone.0129377.9007
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Sperandio et al. to demonstrate the spread of cortical activity: on each trial, stimuli were pre-
sented twice (Sperandio et al. used an afterimage instead of a second stimulus presentation).
The second stimulus presentation was at one of the three different viewing distances, provok-
ing maximum activation of the corresponding three size tuned cells. In order to demonstrate
the cortical activity spread, our model used distance-dependent shunting network equations
[46] to simulate the dynamics of change in activity of the size tuned cells. The distance-
dependent shunting equation involves basic membrane, or so-called shunting, equation cou-
pled by distance-dependent interactions. Responses of cells provoked by stimulus inputs are
regulated by these interactions, and therefore demonstrate distance-related properties. For
example, topographic shifts of cell responses in a neural population may be observed in accor-
dance with the spatial shifts of stimulus. In our model, size tuned cells in V1 obey the distance-
dependent shunting equations, whereby stimulus input I at cell k is regulated by Gaussian
defined excitatory and inhibitory connections among cells (si; and s’%;, where k # 7). It is critical
to simulate the dynamics of cells’ activity, from which we can see the temporal shifts in cell
responses affected by distance-dependent interactions. The equation is defined as follows:

dSI n n /
a —B,S, — (B, =) § Lsy — (B3 +5) E LSy (9)
k=1 k=1

where §; is the response of distance-dependent size tuned cell, i. In the early visual cortex, most
feature-selective cells are organized topographically such that neighboring cells respond to sim-
ilar quantities of a feature [47]. In our model, we employ the same orderly organization pattern
for size-selective cells in V1, so neighboring cells are selective to similar angular sizes. Thus, the
excitatory and inhibitory Gaussian kernels are defined by Eq (8). The decay rate of cell activity,
B, was also regulated by the distance scaling function. In this simulation, B; was scaled by CD
(6, v) to simulate the farness cell response. Parameters B, and B; are chosen to constrain the
permitted values of S;, S; > 0.

Results

At the level of MT, disparity and vergence signals are integrated. Fig 8 shows four typical exam-
ples of MT cells depicted in the previous section (Eq (3)). Each panel illustrates the simulated
activity of a single model MT cell in response to HD and vergence. As shown in the figure, the
responses of disparity-selective cells were gated by vergence signals.

The results of LIP simulation are shown in Fig 9. The top panel depicts geometric distance
as a function of vergence and disparity; the middle panel displays the approximate perceived
distance; the bottom panel illustrates the approximations by a network of gain modulated
units. This distance information output from the model’s LIP then feeds back to MT and to V1
to modulate the activity of size tuned cells.

The cortical activity spread in V1 reported by Sperandio et al. [14] is demonstrated in Figs
10 and 11a. The perceived eccentricity differences are reflected by shifts in the distribution of
activity across the surface of V1. Activation in response to perceptually larger stimuli (an after-
image) occurred in a more eccentric position in V1 compared to perceptually smaller stimuli
with the same angular size.

Fig 11b shows the simulated cortical activity in V1. As specified in the Methods section, the
stimulus was first present at the beginning of the time courses, then it was turn off. After a
short interval, the stimulus was turned back on at one of the three different viewing distances,
distance 1 < distance 2 < distance 3. Comparing the three panels on the right shows that at the
beginning, the activity was strongest at the least eccentric region of interest (Eccentricity 1,

PLOS ONE | DOI:10.1371/journal.pone.0129377 July 1,2015 9/19
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Simulated tuning curves of three MT cells
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Fig 8. Simulated tuning curves for MT cells in response to vergence and disparity. MT cell responses to
disparity is gated by vergence, Three examples of cell activity are shown, corresponding to disparity cells (a)
tuned to crossed, uncrossed and zero disparity in V1, and vergence cells (v) in FEF with different tuning
amplitudes.

doi:10.1371/journal.pone.0129377.g008

marked in red) for all three viewing distances tested, consistent with experimental data from
Sperandio et al. [14]. When a stimulus with the same angular size (or an afterimage) was pre-
sented at a greater distance, corresponding activity was stronger in the more eccentric region of
interest (ROI). For example, compare the bottom panel (distance 3) to the above two panels
(distance 1 & distance 2), the ROI related to the largest eccentricity (Ecc 5, marked in purple)
gradually increases its activity with viewing distance, and shows the greatest activity at the far-
thest viewing distance. In other words, the larger the stimuli appeared, the more eccentric the
activation in V1.

Quantitative comparison

We used three measures to compare the quality of the simulation fits to the empirical data: 1)
cosine of correlation angle (CCA); 2) difference in root mean square (ARMS); 3) Pearson prod-
uct-moment correlation coefficient, r.

Cosine of correlation angle (CCA). The CCA is defined as the inner product of the simu-
lation and the BOLD signal curve vectors divided by their norms (see Eq (10)). If the two vec-
tors are parallel with each other, CCA equals 1. The closer it gets to 1, the better the fit is.

(F,$)

CCA = i——
[IEI- 118l

(10)

where F is the vector of the BOLD signal change, and S is the vector of the model simulation.
Difference in root mean square (ARMS). Root mean square is anther metric that can be

extracted directly from the time-domain signal. It is defined as the square root of the average
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Fig 9. Distance cell response as a function of vergence and disparity in LIP. The top left panel:
geometric distance; middle left: approximate perceived distance, calculated by correcting disparity signal in
geometric distance (see text and S1 File); bottom left: distance cell response in LIP, simulated by training a
network of gain-modulated units of disparity and vergence cells using perceived distance as teaching signal.
The right panels show two examples of distance approximation as a function of vergence/disparity, taken
from the cross sections (indicated by the red arrows) of the distance response on the left. Y-axes labels for
the right panels are the same as of the left ones.

doi:10.1371/journal.pone.0129377.g009

squared value of the signal and can also be called the normalized energy of the signal:

(11)

Ecc 3

Ecc 2
Ecc 1\ \

N\

O

Calcarine

Fig 10. Cortical activity in V1 modulated by perceived size. When a stimulus is presented at a close distance, the activity is strongest in the smaller
eccentricity along the calcarine sulcus; when the stimulus with the same angular size (or an afterimage) is presented farther, the activity is stronger in the
more eccentric areas. In other words, the bigger the stimuli perceived, the more eccentric the activation in V1. Different colors mark the different eccentric
activation corresponding to different viewing distance, e.g., red marks the smallest eccentric activation and purple marks a largest eccentric activation in V1.

doi:10.1371/journal.pone.0129377.9010
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Fig 11. Comparison between experimental data and simulated cortical activity in V1. Panel (a) shows the BOLD signal change recorded from human
visual cortex V1 [14]; Panel (b) shows the simulated cortical activity in V1 by our model, which resembles the experimental data on the left. At the beginning of
the time courses, when the stimulus is presented at the nearest distance, the activity was strongest in the smaller eccentricity ROls (marked in red and
orange); when the stimulus with the same angular size is presented at a farther distance (one of the three viewing distances tested), the activity is stronger in
the more eccentric ROIs (purple and blue) as viewing distance increased. Distance 1 < Distance 2 < Distance 3. Refer to Fig 10 for color marking. Panel (a) is
adapted from Sperandio et al. [14].

doi:10.1371/journal.pone.0129377.g011

The dRMS is defined as

RMS(F — 9)
RMS(F) + RMS(S)

dARMS = (12)

which shows how much the curves are off from each other, normalized by their own values.
The closer it gets to 0, the less the difference is.
Pearson product-moment correlation coefficient, r. Pearson’s r is defined as

_ cos(F,S)
T var(F)var(S) (13)

Quantitative comparison shows that 1) the CCA equals .903, with 95% confidence interval (CI)
of [.806, 1.000]; 2) the dRMS equals .288, with 95% CI of [.098, .479]; 3) Pearson’s r equals
622, < .001.
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Discussion

We propose a neural model that achieves distance-dependent size tuning in V1. The model
consists of bidirectional connections from V1 and FEF to LIP through MT. A subset of dispar-
ity-selective cells in V1 and vergence-selective cells in FEF contribute to the creation of a 3D
spatial map in LIP through feedforward interareal connections via MT. The distance informa-
tion from the 3D representation feeds back to a subset of size tuned cells in V1, modulating
their responses and the spread of cortical activity. Our simulation of this model is consistent
with neurophysiological findings [10, 14], which suggests that distance-dependent size repre-
sentation in V1 is a manifestation of size constancy mechanisms.

Under normal viewing conditions, size constancy of humans is nearly perfect for distances
under 100 feet [48-50]. Researchers have proposed that this prominent perceptual ability can
be achieved by scaling retinal size to compensate for viewing distance. In accordance with a
large body of psychophysical evidence [1-4], Dobbins et al.’s neurophysiological findings sup-
port this hypothesis, that the magnitudes of size tuned cells’ responses in V1, V2 and V4 are
modulated by viewing distance [10]. They suggested that distance-dependent modulation of
cell’s responses is possibly a common property of neurons along the ventral visual pathway,
from V1 to IT. Apart from size, other features may share this property. For example, disparity
tuned cells in V1 show similar activity patterns in response to change in viewing distance [22].
In addition, distance and angle of gaze modulate neural responses in parietal cortex as well as
on the dorsal pathway from V1 to parietal cortex [16]. These results suggest that spatial modu-
lation exists in both the dorsal and ventral visual cortical streams, and appears to be a funda-
mental attribute of the visual cortex.

In order to realize spatial modulation, an estimate of distance is necessary for visual percep-
tion so that distance scaling can be applied to all related visuocortical areas. A few neural mod-
els have been proposed to address the distance estimation problem. In particular, Pouget et al.
[21] proposed a neural network showing that cortical representation of egocentric distance
could be computed by combining the outputs from gain-modulated Gaussian units and sig-
moids, simulating the responses of disparity- and vergence- selective cells, respectively.
Although Pouget et al. did not tackle the problem of size constancy, they mentioned that the
neural mechanisms underlying perceptual constancies might adopt a strategy similar to the
strategy of distance estimation (gating the activity of disparity-selective neurons by vergence
signals). In other words, the activity of certain feature-selective neurons was gated by distance
signals to achieve constancy. Other than their study, a few neural models were proposed to
address similar topics [51, 52]. But till present, no previous modeling work has explicitly dem-
onstrated the neural mechanism of size constancy.

Our model adopts a similar method, as proposed in Pouget et al., to estimate distance. Dis-
tance information modulates the neural activity of size tuned cells, providing distance-
dependent size tuning reported by Dobbins et al. [10]. In addition, our model simulates recent
findings that demonstrate associations between the spatial extent of activation in human pri-
mary visual cortex and an object’s perceived size [12-14]. Activity in V1 becomes more eccen-
tric as the perceived size of a real stimulus, or an afterimage, increases, even though the size of
the retinal image remains the same. The retinal signals reaching V1 are modulated by distance
information in a fashion that reflects the implementation of size-constancy mechanisms. It is
suggested that the spread in cortical location can hardly be explained by local interactions
between the stimuli and the 3D scene (e.g., local contrast), because the local interaction would
have increased or decreased the overall magnitude of neural activity, rather than induced the
cortical activity spread. In addition, attention allocation is required to perform size constancy,
which rules out stimulus-based explanations for the spatial spread in activity [13]. Feedback
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from higher visual areas would seem to make an important contribution to this effect. Specifi-
cally, extracting distance information from depth cues, such as linear perspective and texture
cues, requires that the information be integrated over a large area with large receptive fields
comparable in size to those found in higher visual areas.

In our proposed model, depth cues are integrated along the dorsal pathway leading to LIP.
Empirical studies show that LIP may provide egocentric distance representation [16, 38-40].
We further propose that integration of vergence and disparity takes place in MT. Although
Chowdhury et al. [53] showed that vertical disparity cues to viewing distance did not modulate
MT horizontal disparity tuning, currently no study has directly examined whether the
responses of disparity selective cells in MT are gated by vergence signals. Given MT’s anatomi-
cal connectivity with LIP, V1, and FEF [35-37], we suggest that it is an appropriate candidate
for integrating disparity and vergence. In addition, there are studies showing that the role of
MT is not limited to processing moving objects. For example, many MT neurons exhibit robust
disparity tuning in response to stationary random-dot patterns [54], and are involved in repre-
senting implied motion from static images [55, 56]. On the other hand, in the ventral stream, a
possible integration area is V3v. A recent study showed that left V3v may be involved in inte-
grating retinal size and distance information [57]. But to our knowledge, currently no area
found along the ventral stream directly codes distance information. Therefore one possibility is
that V3v receives distance feedback from LIP via MT and V3A. However, these proposed func-
tions of the brain areas require further investigation and confirmation.

Fig 11b simulates the spread of cortical activity in V1 reported by Sperandio et al. [14].
Quantitative comparison shows that the simulation curve fits the BOLD signal well. Although
the overall shape of the simulation and the empirical data matches, there are small differences.
The simulated curves have two distinctive phases while the empirical data does not. This can
be attributed to the fact that BOLD signal change reflects the activity of a population of neu-
rons, while simulated data reflects activity from a single neuron. For the empirical data, Eccen-
tricity 1-3 showed more activity during the light-on duration (and consequently followed by
the light-off duration) than Eccentricity 4&5, because the annuli sizes of the ROI localizers for
Ecc 1-3 were close to the light size used to induce the afterimage (in terms of retinal projec-
tion). The lack of high amplitude in BOLD response in Ecc 4&5 was followed by a gradual
amplitude elevation within the light-off period and continued further during afterimage inter-
val. This indicates that there are time-consuming neural processes going-on to build up and
feedback the higher eccentricity parts of V1. These all give the appearance to the empirical data
as if in Ecc 4&5 there are no two distinctive phases. Although the positions of peaks of the
BOLD signal curves almost stay the same through Distance 1 to 3, the higher-eccentricity parts
of V1 in response to the afterimages viewed at larger distances (and hence perceptually larger)
seemed to have delayed peaks (as if there is a right peak shift). This delayed BOLD amplitude
elevation could also be due to the time-consuming neural processes in bringing activities back
to higher-eccentricity parts in V1. In our simulation, there was a surge of activities at the start
of the afterimage, and this rebound of activity gave the bi-phasic appearance to the simulated
curves. This is that the simulation shows cell response, while the fMRI data is”low-pass filtered”
in time domain and hence the rebound of activity could be smoothed out. Besides this, other
aspects are consistent with the fMRI data.

The simulation results were achieved by first modulating the responses of size tuned cells in
V1 with distance scaling, which is derived in MT through feedback from LIP. Second, our
model of V1 is topographically organized by size selectivity; this allows spreading of cortical
activation when using distance-dependent shunting equations to simulate the dynamics of cell
activity. The result supports that the topographic representation in V1 is dependent on the ego-
centric distance estimation. The model predicts that the neurons classical receptive fields shift
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to more eccentric cortical locus. As the perceived distance increases, more neurons are acti-
vated, therefore shows a spatial spread of cortical activity. Moreover, in order to simulate the
response pattern seen in Fig 11a, distance feedback needed to modulate the activities of V1 far-
ness cells in the simulation. Therefore, the model predicts that the type of size-selective cell (see
Fig 7) affects the size of neurons population receptive fields. For example, when an object gets
farther away, the farness cells get more involved and the size of their population RF increases.
In addition, an important implication of the model is that the spatial spread of cortical activity
may be found in other brain areas where cells show topographic organization, and where their
activity (possibly in response to features other than size) is affected by distance. The distance
information, once extracted, can be used to rescale retinotopic representations in other visual
areas. It is possible that the cortical activity spread is a neural marker coding for changes in
viewing distance. This prediction can be tested in neurophysiological experiments that may
further shed light on the neural mechanisms of distance-related feature perception. For exam-
ple, neurophysiological methods could assess whether cells selective for curvature or contrast
demonstrate similar response properties (like dependent spreading of cortical activation). It
has been shown that perceptual constancies may be intercorrelated, e.g, size and contrast con-
stancy, and it is possible that these phenomena share a common scaling factor [8, 9].

In our model, disparity and vergence are the only two depth cues used. In addition to these
two cues, numerous psychophysical studies have shown that the vertical disparity (VD) can
provide viewing distance information independent of vergence [58-60]. Rogers & Bradshaw
[18] showed that it can be used to judge absolute distance and disparity scaling. Durand et al.
[61, 62] found that VD encoding shared a common neural process with the HD encoding, with
narrower widths of the tuning curves and narrower range for VD. The range extended to a
larger eccentric angular scale in parafoveal V1, while centered on a VD value of 0° in foveal V1
[63]. This discrepancy might due to the fact that VDs do not naturally occur in central vision,
typically for objects smaller than 20° [18, 64]. Although VD is unlikely to be effective in specific
experimental situations that our model addressed, it can be easily integrated into our model.
Since egocentric distance is usually constrained in laboratory settings, it is reasonable to assume
that disparity and vergence are the dominant depth cues in our simulation.

In the real world, distance can be infinitely far where disparity and vergence cues become
less effective if not absolutely ineffective. Many other depth cues may be used, like pictorial and
motion-related depth cues. Although not conventionally deemed as depth cues, looming or
optic flow, which provides information about an observer’s self-motion, could be integrated to
estimate distance travelled as well. Therefore, other depth cues may gradually take over the
dominant role and contribute significantly in distance estimation. For instance, one computa-
tional model has tackled the problem of time to contact by integrating disparity and looming
cues, weighted by stimulus size [53]. Estimating time to contact shares some common factors
with estimating distance, like involving integration of different depth cues. In principle,
the more coherent depth cues can be utilized, the more accurate the distance estimate. It is
therefore important for a neural model to have compatibility. Our model can accommodate
such situations, e.g., vertical disparity, optic flow, etc. Vertical disparity can be included by
extension in the input representation. Besides disparity and vergence, it can be a third variable
used in the basis function set to estimate distance. As for optic flow, it is known that neurons in
MST are selective for its direction and speed [65]. With cortical connections from MST to MT
[66], depth information extracted from optic flow can feed MT, where it integrates other depth
cues.

The visual areas used in our model are by no means exhaustive, and it is extremely likely
that many other visual areas are involved. Further research may shed light on other possible
brain areas contributing to constancy mechanisms. Investigating these questions may clarify
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how distance information can be estimated or used to modulate cell activity, and therefore
improve our understanding of perceptual constancy phenomena.

Conclusions

Recent research has shown that the activity of size tuned cells in V1 is possibly regulated by
feedback of distance information from other brain areas, demonstrating size constancy. We
propose a physiologically based neural model that simulates activity of distance-dependent size
tuned cells in V1 [10, 14]. The model suggests that many brain areas may share a common set
of distance scaling functions, which is essential for three-dimensional spatial coding in visual
processing. In addition, we speculate that the topographic spread of cortical activity may be
found in other brain areas whose activity (possibly in response to features other than size, like
contrast) is modulated by distance information.
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