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Periodontal disease is characterized by the destruction of
periodontal tissues. Various methods of regenerative peri-
odontal therapy, including the use of barrier membranes,
bone replacement grafts, growth factors and the combination
of these procedures have been investigated. The development
of biomaterials for tissue engineering has considerably
improved the available treatment options above. They fall
into two broad classes: ceramics and polymers. The available
ceramic-based materials include calcium phosphate (e.g.,
tricalcium phosphate and hydroxyapatite), calcium sulfate
and bioactive glass. The bioactive glass bonds to the bone
with the formation of a layer of carbonated hydroxyapatite in
situ. The natural polymers include modified polysaccharides
(e.g., chitosan,) and polypeptides (collagen and gelatin).
Synthetic polymers [eg, poly(glycolic acid), poly(L-lactic acid)]
provide a platform for exhibiting the biomechanical properties
of scaffolds in tissue engineering. The materials usually work
as osteogenic, osteoconductive and osteoinductive scaffolds.
Polymers are more widely used as a barrier material in guided
tissue regeneration (GTR). They are shown to exclude epithelial
downgrowth and allow periodontal ligament and alveolar
bone cells to repopulate the defect. An attempt to overcome
the problems related to a collapse of the barrier membrane in
GTR or epithelial downgrowth is the use of a combination of
barrier membranes and grafting materials. This article reviews
various biomaterials including scaffolds and membranes used
for periodontal treatment and their impacts on the experi-
mental or clinical management of periodontal defect.

Introduction

Periodontitis is a disease that is characterized by the destruction of
periodontal tissues: gingiva, alveolar bone, periodontal ligament
and cementum. If left untreated, it will lead to tooth loss,
phonetic and aesthetic problems. Approximately 48% of US
adults have chronic periodontitis, and similar results were reported
in other nations.1

Phases including scaling and root planing (SRP) or open flap
debridement (OFD) are conventional methods used for treatment
of periodontitis. But the use of specific biomaterials/biologicals
was more effective than OFD in improving attachment levels in
periodontal defects.2-4

Periodontal regeneration developed in the last few decades and
includes soft tissue grafts, bone replacement grafts, root surface
biomodifications, guided tissue/bone regeneration (GTR/GBR)
and delivery of growth factors or gene therapies.5 Various types of
materials are used in the treatment. An ideal graft material should
be biocompatible, safe, non-allergenic, non-toxic and have no risk
of disease transmission. They should be strong enough to
maintain space and the rate of degradation should be appropriate.6

Four major graft materials commonly used in clinics are
autogenous grafts, allografts, xenografts and synthetic grafts or
alloplasts. Autografts are graft materials obtained from the same
individual and are thought of as the “gold standard” with the ideal
properties of grafts. It is easy to collect the slurry during the
periodontal surgery, but the volume of bone may be limited and
the resorption may be unpredictable.7 Also, the autogenous bone
collected during the surgery may be contaminated by the
microorganisms in the oral cavity.8 Allografts are graft material
derived from a donor of the same species, which may be a fresh
frozen bone (FFB), freeze-dried bone allograft (FDBA) or
demineralized freeze-dried bone allograft (DFDBA). It can act
not only as osteoconductive scaffolds, but also as osteoinductive
material, due to the remaining proteins (BMP, etc.).9 Xenografts
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are graft materials derived from another species and are widely
used in the clinic.

Besides the bone grafts above, there are alloplastic materials
including ceramics and polymers. These biomaterials are either
natural, synthetic or biocompatible bone-graft substitutes. They
are easy to get and with allografts no need of a donor site as is
necessary. They have no risk for disease transmission, which may
accompany the use of allografts and xenografts.10 Much more
attention was therefore paid to them. In this review, our focus will
be on alloplastic or synthetic biomaterials used in periodontal
regeneration, its properties and applications and also the future
prospects.

Periodontal Regeneration

Different treatment modalities have been suggested to regenerate
the periodontal tissues damaged in cases of both gingival recession
and periodontitis. All of these strategies aim to correct defects due
to disease, and regenerate new periodontal tissues. Periodontal
regeneration is defined as the regeneration of the tooth-supporting
tissues including cementum, periodontal ligament (PDL) and
alveolar bone.11 The development of new cementum with PDL
fibers connected to alveolar bone is the main goal of periodontal
regeneration.12,13 As in a healthy tooth, the newly formed
periodontal fiber should orient perpendicularly to the cementum
and alveolar bone. During the healing period of periodontal
therapy, epithelial cells, which have the fastest migration rate,
form the long junctional epithelium.14 This type of healing retards
other apparatus regeneration. In order to prevent the downgrowth
of the epithelium along the tooth-root surface, placement of
membrane can be applied or process, which is called guided tissue
regeneration (GTR). In recent years, a number of combinations of
conventional regenerative techniques have been evaluated: GTR,
hard tissue graft and application of tissue growth factors.

Calcium Phosphate (CaP)

Calcium phosphate (CaP) biomaterials have outstanding prop-
erties: a similar composition to bone mineral, bioactivity
(formation of bone apatite like material or carbonate hydro-
xyapatite), ability to promote cellular function and expression
leading to formation of a uniquely strong bone-CaP biomaterial
interface and osteoconductivity. In addition, CaP biomaterials
with appropriate three-dimensional geometry are able to bind and
concentrate endogenous bone morphogenetic proteins in circula-
tion, may become osteoinductive (capable of osteogenesis), and
can be effective carriers of bone cell seeds. Therefore, CaP
biomaterials are potentially useful in tissue engineering for
regeneration of hard tissues.

Hydroxyapatite (HA). Hydroxyapatite (HA) is one of the most
widely used CaP graft biomaterials in both the research and
clinical fields. HA has a similar composition and structure to
natural bone mineral.15 It is known to chemically bond directly to
bone when implanted.16 This initial bone matrix on the implant
surface was either composted of globular deposits or an organized
network of collagen fibers, which may have enhanced bonding of

the bone matrix to the hydroxyapatite.17 De novo bone formation
was observed primarily on the HA surface without fibrous tissue
interposition after the subcutaneous implantation of marrow
stromal stem cells.18 The osteoblastic cells were found on the HA
surface, which initiated partially mineralized osteoid formation.
This osteoid matured into fully mineralized bone, resulting in
firm bone bonding to the HA surface. With the 6 mo
implantation in periodontal defect, small apatite crystals appeared
in the center of the aggregates between the relatively large crystals
of synthetic hydroxyapatite.19 They were similar to those found in
adjacent alveolar bone and gave similar diffraction patterns.
Clinical and radiological parameters such as probing depth (PD),
clinical attachment level (CAL), intrabony defect depth and
percent of defect fill are usually used to evaluate the periodontal
regeneration. A 9-mo investigation showed that the superior
regenerative effects observed with HA compared with an OFD
group.20

Though it’s a type of material widely used in clinic, the
inconsistent cell reactions depending on the surface properties
limit its application in clinic.21 Some HA with modifications was
proved to improve protein adsorption.22 A customized hydro-
xyapatite nano-particle was prepared using the sol-gel process. Ca
(NO3)2-4H2O and (OC2H5)3P were used as precursors of the
HA sol. Porous n-HA block scaffolds were prepared using
prefabricated n-HA powders and a polymeric sponge. With the
application in one-wall intrabony defect, the material was well
maintained within the defect site and minimal inflammation was
observed in the periodontal defects.23 New attachment formed
between the remaining HA block and the denuded root surface.
At the base of the defect, the new attachment included a thick,
cellular, mixed-fiber, stratified cementum and many fibers
inserting into the newly formed cementum. However, the bone
regeneration was limited.

In order to develop HA coating to promote rapid attachment to
bone, HA was immobilized on the poly(ethylene-co-vinyl alcohol)
(EVA) by alternate soaking method followed by introduction of
carboxyl groups through ozone exposure.24 HA-EVA might
stimulate PDL cells to differentiate to osteoblastic cells, which
makes it possible to prepare a further highly organized hybrid graft
possessing PDL and cementum on the surface of artificial dental
implant.

Tricalcium phosphate (TCP). The use of TCP as a bone
substitute has been growing in recent years. The a and β phases of
TCP have excellent resorbability. Though these two substitutes
are chemically identical, they have different behavior in a
physiological environment. β-tricalcium phosphate (β-TCP) has
been shown to exhibit good biocompatibility and osteoconduc-
tivity in both animal and clinical studies.

TCP has been used in human clinical studies to repair marginal
and periapical periodontal defects, as well as apexification and
miscellaneous alveolar bony defects.25 In a clinical evaluation
6 mo following therapy, the PD reduction and CAL reduction
were observed.26 Sites treated with OFD + β-TCP showed a
significant defect fill compared with those treated with OFD
alone.26 However, the regenerative potential of β-TCP was similar
to that of autogenous bone, demineralized freeze-dried bone,
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anorganic bovine allograft(DFDBA) and collagen sponge.27 On
the other hand, the periodontal regeneration was clinically and
histologically evaluated with the implantation granular β
tricalcium phosphate (β-TCP) and OFD. The data indicates that
the treatment of intrabony periodontal defects with TCP has
substantial clinical improvements to some extent, such as PD
reduction and CAL gain, but it does not seem to regenerate
cementum, periodontal ligament or bone.28

In recent years, highly purified β-TCP has been shown to have
osteoconductive activity and biodegradable nature in human
bone.29 Cerasorb1 M (Curasan) is a new synthetic pure-phase β-
TCP. The special micro-, meso- and macro-porosity of the
granules enormously expands the surface area of the material,
making it better for wetting by plasma and tissue fluids and the
adhesion of special proteins for regeneration. With the application
of this material in dogs, early osteogenesis and bone formation
were induced.30

The resorption of TCP is controversial. Two different modes
were hypothesized: a process dependent on interstitial fluids and
one based on cellular processes.31 The first mode of resorption
mechanism is dissolution by biological fluids because of the
absence of osteoclasts around the materials.32 Another hypothesis
is the cell-mediated bioresorption. Considerable numbers of
osteoclast-like giant cells were observed in defect areas in many
studies,33 which suggests the role of cells in material resorption.

Other calcium phosphate materials. Degradation rate is an
important factor assessing optimal biomaterials. The biodegrada-
tion of calcium phosphate depends on many factors, such as
porosity, degree of bony contact, specific surface, type of bone,
species of animal, etc.34

In order to intensify the biodegradation, biphasic calcium
phosphate (BCP) was developed for bone defect. This is a
composite of HA and β-TCP, and the ratio of the two materials
was changed. The first implantation of BCP was developed in
1986 with the weight ratio of HA/β-TCP 20:80.35 Alveolar bone
dehiscence defects were surgically created bilaterally at the labial
aspects of maxillary third incisors in 12 beagle dogs.36 The defects
were either filled with BCP (40 HA/60 β-TCP) or cured with
OFD. It was indicated that BCP may enhance periodontal
regeneration in acute-type labial dehiscence defects.

Calcium Sulfate (CS)

CS has a compressive strength greater than that of cancellous
bone.37 It can also act as a barrier, which makes it ideal for using
as an adjunct with other graft materials. Fortoss1 Vital
(Biocomposites) is a combination of β-TCP and CS, which does
not require a membrane, reduces surgical time, lowers cost and
has the potential to treat periodontal intrabony defects spanning
more than two teeth.38 The treatment of periodontal defects with
such biomaterials has led to a significant improvement in the
clinic.38,39

CS is usually applied as a barrier to improve the periodontal
regeneration.40 The use of CS may minimize post-surgical
recession compared with the collagen membrane in a 12-mo
randomized controlled clinical trial.41 In a treatment with either

medical grade calcium sulfate hemihydrate (MGCSH) or
polytetrafluoroethylene (ePTFE), the latter group showed greater
horizontal defect fill. However, attachment level gains were
achieved with MGCSH 12 mo later.42 The short-term (90 d)
histological results using CS barrier showed incomplete regenera-
tion of bone and connective tissue.43

The CS is usually mixed with demineralized bone matrix
(DBM) or autogenous bone graft and used without a membrane,
since the periodontal regeneration of mixture and bone graft with
bioabsorbable membrane showed no difference between each
other.44,45 The clinical results suggest an alternative to membrane
position during the operation, especially the non-resorbable
membrane (e.g., ePTFE),46 which may decrease the time of
practice. The mixture of demineralized freeze-dried bone allograft
(DFDBA) with CS enhanced the clinical outcome more than
calcium sulfate alone for the treatment of class II mandibular
molar furcation defects.47

Bioactive Glass (BG)

Most of the biomaterials are osteoconductive, which are involved
with a three-dimensional process. This is proved when porous
structures are implanted, osteoprogenitor cells and other tissues
migrate into the porous space and form new bone.48 In contrast,
osteoinductive materials alter the bone healing process by affecting
the osteoblast gene expression during cell differentiation.49 Heat
treatment of an MgO-CaO-SiO2-P2O5 glass gave a glass ceramic
containing crystalline apatite [Ca10(PO4)6O,F2)] and β-wollasto-
nite (CaO.SiO2) in an MgO-CaO-SiO2 glassy matrix, and this
CaO, SiO2-based glass is called bioactive glass (BG).50 It showed
bioactivity and a fairly high mechanical strength which decreased
only slowly, even under load-bearing conditions in the body. An
in vivo study showed that BG nanoparticles induced cemento-
blasts to proliferate. The ionic products from BG nanoparticles
increased cementoblast viability, mitochondrial activity and
induced cell proliferation, indicating that they could be a
potential material for use in cement regeneration through tissue
engineering.51

Ions such as calcium and silicon from BG were indeed
concerned with the formation of nodules on the periodontal-
ligament cells.52 Commercial BioglassTM [45S5 (Mo-Sci)] and
experimental bioactive coating glass (6P53-b) were used for the
evaluation of periodontal ligament fibroblast osteocalcin expres-
sion.53 After being dissolved in cell culture, a glass conditioned
medium was made. The ionic products were Ca2+, PO4

3-, Si4+ and
Na+ for 45S5 glass conditioned media (GCM) and Mg2+, K+,
Ca2+, PO4

3-, Si4+ and Na+ for 6P53-b GCM. The enhanced
expression of type I collagen, osteocalcin and alkaline phosphatase
gene expression and osteocalcin protein expression indicated the
osteogenic potential of bioactive coating glass.53 The studies above
suggest that BGs are osteoinductive, which was demonstrated by
others.54

The property of bone formation in bioactive glass has been
called osseostimulation by Schepers and Ducheyne.55 Using a
periodontal defect model in monkeys, the new bone formation on
the bioactive glass particles were located distant from the defect
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walls.56 It was thought that there was an active deposit of osteoid
matrix directly on the surface of the particles, which is different
from osteoindution or osteoconduction and acts as nuclei for
subsequent bone repair. Autogenous grafts are osteoinductive and
result in the formation of new bone faster than alloplastic
materials.57 BG grafts can be used as a supplement when the
mount of the harvested autogenous grafts is not sufficient.58

In clinical evaluation, bioactive glass, such as PerioGlas (U.S.
Biomaterials Corp.),59 has the ability of inhibiting the down-
migration of epithelium. Mengel et al.60 evaluated the effect of
BG in the treatment of intrabony in the patients with generalized
aggressive periodontitis. Highly statistically significant improve-
ments in the parameters PD, CAL and distance from the alveolar
crest to the defect base were recorded after 6 and 12 mo. The 5-y
results of bioactive glass were still optimal.61 The systematic
review of literature demonstrates the significant improvement in
both PD and CAL compared with OFD.62

However, Nevins et al.63 suggested that although the clinical
results are encouraging while clinical examination and radiographs
revealed improvement, the human histological analysis evidenced
limited regenerative outcomes of BG. Poor regeneration was also
shown by another re-entry operation.64

Chitosan

Chitosan is an important ingredient in medicine and food. It’s a
polysaccharide comprising copolymers of glucosamine and
N-acetylglucosamine and can be derived by partial deacetylation
of chitin from crustacean shells.65 In addition to the properties of
good biocompatibility, degradation appears to have no toxicity, an
appropriate degradation rate and hemostatic activities. It has
bacteriostatic properties, the ability to inhibit growth of gram-
negative and gram-positive bacteria, Actinobacillus actinomycetem-
comitans and Streptococci mutans.66 The application of chitosan gel
in patients with chronic periodontitis showed reduction of the
gingival inflammation markers, due to the antimicrobial
properties.67

Chitosan has been reported as an effective delivery system for
DNA68 and growth factors69,70 in vitro and holds promise for the
future. In recent studies, composites of bone paste with HA
nanocrystals incorporated with chitosan could be produced using
a wet chemical method at low temperature71 or by using a freeze-
drying process.72 In another study, chitosan/collagen sponge was
evaluated for the periodontal regeneration ability.73 Eight weeks
after operation of one wall intrabony defect in dogs, histological
examination showed that the material inhibited apical migration
of epithelium and increase and formation of new bone and
cementum. An especially conspicuous increment of new
cementum was observed due to the application of chitosan,
which demonstrated that chitosan may induce the differentiation
of mesenchymal cells into cementoblasts. Yeo et al. reported that
chitosan non-woven membrane effectively contributed to the
formation of new bone and cementum in surgically created one-
wall intrabony defects in beagle dogs.74 This biodegradable
membrane was easy to manipulate and had a porous structures.
These properties make it a promising material in the GTR/GBR.

Polylactic Acid (PLA)

Along with hydrogels, such as chitosan and alginate, a variety of
membrane materials have been synthesized for GBR and GTR.
The biomaterials used as membrane should meet several
prerequisites, such as being biocompatible, non-immunogenic
and non-toxic.66 To avoid surgical re-entry and the removal of the
membrane after healing, biodegradable materials would be better.
Other factors such as space maintaining, cell occlusivity and tissue
integration should be taken into consideration.75

In the early stages of GTR, membranes such as expanded
polytetrafluoroethylene (ePTFE) and dense-polytetrafluoroethylene,
belong to the first generation of GTR membranes, which are
characterized by being non-absorbable. And the second regeneration
of membrane is absorbable and currently popular for periodontal
regeneration since there is minimal membrane exposure and no need
of membrane retrieval.76 But the bioabsorbable membrane may
provide a greater bone area than the non-resorbable membrane.77

PLA is a bioabsorbale membrane. In a 3-y follow-up study,
treatment outcomes of GTR were investigated with a synthetic
absorbable PLA membrane [Atrisorb1 (Atrisorb, Atrix
Laboratories Inc.)] in intrabony defects, and treatment with
OFD was the control group. The parameters includes PPD, GR,
CAL and ABL. The results showed that the outcome of treatment
with membrane may be similar to open flap debridement.78 A
randomized controlled clinical trial showed that there was no
regeneration when bioresorbable PLA barrier (Atrisorb1) was
used with autogenous bone grafting.79 Astrisorb is a commercia-
lized PLA biomaterial (DL-lactide polymer, Atrix Laboratories
Inc.) was introduced in 1996. It’s composed of 37% of a liquid
polymer of lactic acid that is dissolved in 63% N-methyl-2-
pyrrolidone (NMP). The potential of periodontal regeneration
ability was ensured in both animal and human class II furcation
defect.80,81 The evaluation was conducted with parameters such as
PD, CAL, GR, PLI and GI. It showed a favorable regeneration.
Long-term study and histologic observations of tissue healing are
needed to evaluate this kind of material.

Many kinds of membranes combined with other polymers are
developed so as to improve the properties and the clinical results are
promising. A biodegradable GTR barrier membrane was constructed
by a biodegradable PLA/poly (glycolide-co-lactide) copolymer
(PLGA) membrane with polyglycolic acid (PGA) mesh.82 It exhibits
suitable permeability of nutrients, ability of retaining space, good
biocompatibility and non-cytotoxicity in animal tests.

Poly(lactic-co-glycolicacid) (PGLA)

PLGA is another type of synthetic biomaterial for drug and
growth factor delivery and barrier in GTR/GBR. It is a
combination of PLA and poly (glycolic acid) (PGA) in various
proportions. A three-dimensional PLGA scaffold was developed to
evaluate the potential of periodontal regeneration using cloned
cementoblasts (OCCMs), periodontal ligament fibroblasts (SV-
PDLs), and dental follicle (SV-F).83 This porous PLGA scaffold
was conducive for mineral formation by cementoblasts and has no
toxic effect on the other cells.83
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As the application in dental area for GTR, a novel film made
from PLGA was developed with MePEG or diblock copolymer.84

This film is elastic at room/body temperature which is easy for
handling, but it gets swollen and stiffened in water to inhibit
epithelium and gingival connective tissue from down migration.
Membrane degradation occurs over a 2–6 mo period so that re-
entry is not needed. It can be enhanced by casting topographical
cues so as to accelerate osteoblast repopulation and differentiation.

Future Perspectives of Biomaterials

Many advances have been made over the past few decades for
the regeneration of periodontal apparatus. Grafts have been

developed from the application of one type of material to
combinations of different biomaterials and finally to a
delivery system to biological factors. Developments in
scaffolds as cell, protein and gene deliveries have demon-
strated to promote periodontal regeneration.85,86 More
research needs to be focused on in vivo systems to improve
the outcome of biomaterial-based delivery systems. Further
approaches in this field will rely on a combination of
therapies.
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