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SUMMARY
Non-alcoholic fatty liver disease (NAFLD) is a complex disease linked to several chronic diseases.We aimed at
identifying genetic variants associated with NAFLD and evaluating their functional consequences. We per-
formed a genome-wide meta-analysis of 4 cohorts of electronic health record-documented NAFLD in partic-
ipants of European ancestry (8,434 cases and 770,180 controls). We identify 5 potential susceptibility loci for
NAFLD (located at or near GCKR, TR1B1, MAU2/TM6SF2, APOE, and PNPLA3). We also report a potentially
causal effect of lower LPL expression in adipose tissue on NAFLD susceptibility and an effect of the FTO ge-
notype on NAFLD. Positive genetic correlations between NAFLD and cardiometabolic diseases and risk fac-
tors such as body fat accumulation/distribution, lipoprotein-lipid levels, insulin resistance, and coronary artery
disease and negative genetic correlations with parental lifespan, socio-economic status, and acetoacetate
levels are observed. This large GWAS meta-analysis reveals insights into the genetic architecture of NAFLD.
INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is one of themost prev-

alent chronic liver diseases.1,2 According to recent estimates,

�25% of the adult population worldwide may have NAFLD.3,4

This disease has been predicted to become the most frequent

indication for liver transplantation in Western countries by

2030.5 NAFLD is a progressive liver disease with potential con-

sequences for several other chronic disorders such as cardio-

vascular disease (CVD) (the leading cause of death in patients

with NAFLD),6–9 type 2 diabetes (T2D),10,11 dyslipidemia,12 and

other extrahepatic manifestations such as chronic kidney dis-

ease13 and gastrointestinal neoplasms.14

To better understand the etiology of complex diseases such as

NAFLD and to develop therapies that may help patients with this
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disease living longer and healthier, the genetic architecture of

NAFLD needs to be better understood. Although genome-wide

association studies (GWASs) have identified genetic variants

associated with liver fat accumulation,15,16 liver enzymes,17

and different forms of liver diseases,18,19 less than a handful of

small GWASs sought to identify genetic variants associated

with a clinical diagnosis of NAFLD. The GWAS of the Electronic

Medical Records and Genomics (eMERGE) network included

1,106 NAFLD cases and 8,571 controls identified only 1 NAFLD

susceptibility locus (PNPLA3). The NAFLD GWAS of the UK

Biobank included 1,664 NAFLD cases and 400,055 controls

identified only 2 regions robustly associated with NAFLD

(PNPLA3 and PBX4/TM6SF2). The UK Biobank analysis did

not exclude participants with secondary causes of NAFLD

(e.g., hepatitis, alcoholism) and used a rather vague definition
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Figure 1. Main results of the meta-analysis of genome-wide association studies (GWASs)

(A) Manhattan plot depicting single-nucleotide polymorphisms (SNPs) associated with non-alcoholic fatty liver disease in the GWAS meta-analysis of the

eMERGE, FinnGen, UK Biobank, and Estonian Biobank cohorts. Identification of genetic variants linked with NAFLD via a risk factor-informed Bayesian GWAS

based on (B) Bayes Factors (BFs), (C) direct effects, and (D) posterior effects. Genetic loci harboring SNPs associated with NAFLD (p < 5.0e�8) are shown.
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of NAFLD (phecode 571.5: other forms of nonalcoholic liver dis-

ease). Genetic variation at these 2 loci is also associated with

NAFLD in the data freeze #4 of the FinnGen cohorts (651 NAFLD

cases and 176,248 controls).

Here, we present the results of a meta-analysis of electronic

health record (EHR)-based GWASs to identify genetic variants

associated with NAFLD. This analysis included GWAS summary

statistics from the eMERGE and FinnGen cohorts, an updated

NAFLD GWAS in the UK Biobank (2,558 cases and 395,241 con-

trols), and a new GWAS performed in the Estonian Biobank

(4,119 cases and 190,120 controls), for a total of 8,434 NAFLD

cases and 770,180 controls.

RESULTS

Identification of genetic variants associatedwith NAFLD
To identify genetic variants associated with NAFLD, we per-

formed 2 newGWASes in the UK Biobank and Estonian Biobank

and performed a meta-analysis of 4 cohorts (UK Biobank, Esto-

nian Biobank, eMERGE, and FinnGen), totaling 8,434 NAFLD

cases, all identified through EHRs, and 770,180 controls. We

identified 4 genetic loci that harbored at least 1 SNP that passed

the genome-wide significance threshold of p £ 53 10�8 (TRIB1,

MAU2 [TM6SF2], APOE, and PNPLA3). Figure 1A presents

the Manhattan plot of the NAFLD GWAS meta-analysis identi-

fying genetic regions with a p value for association with NAFLD

£5 3 10�8. The associated quantile-quantile plot is presented
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in Figure S1. The genomic inflation factor (l) was 1.02 and the

linkage disequilibrium score regression (LDSC) intercept was

1.002. To identify potentially new relevant NAFLD genetic loci,

we used a Bayesian approach (bGWAS) recently described by

Mounier and Kutalik.20 This method seeks to identify new vari-

ants associated with complex diseases using inference from

risk factors of these diseases. By leveraging GWAS summary

statistics from risk factors likely causally associated with NAFLD

in a previous magnetic resonance imaging (MRI) study21 (body

mass index [BMI] and triglyceride levels) as priors, this analysis

revealed genetic variation at 3 additional loci (GCKR, LPL, and

FTO) associated with NAFLD (Table S1; STAR Methods). Fig-

ure S2 presents the multivariable causal effect estimates for

the 2 risk factors (BMI and triglycerides) used to create the prior.

Variation at these loci act through selected NAFLD risk factors on

Bayes factors, meaning that these SNPs are acting on NAFLD

through their effect on risk factors (Figure 1B), rather than

through direct effects (Figure 1C) or posterior effects (Figure 1D)

(i.e., not acting through selected risk factors). The association of

lead SNPs at these loci with NAFLD as well as those from the

conventional GWAS are presented in Table S2 in each cohort

separately and in the GWAS meta-analysis. Because some of

these SNPs showed evidence of heterogeneity, p values are pre-

sented from fixed effects and random effects meta-analysis.

Through a combination of conventional GWAS and risk factor-

informed GWAS, our analysis identified genetic variation at 7

loci that may influence susceptibility to NAFLD.



Table 1. Association of previously identified functional variants linked with liver diseases in the present genome-wide association

study

Gene CHR SNP Impact on protein Minor allele Major allele

Association with NAFLD

b (minor allele) SE p

MTARC1 1 rs2642438 missense (p.A165T) A G �0.0674 0.0178 1.54E�4

GCKR 2 rs1260326 missense (p.P446L) T C 0.0755 0.0167 5.98E�6

HSD17B13a 4 rs72613567 splice variant C G �0.0304 0.0186 1.02E�1

MBOAT7 19 rs641738 linked to 3’ UTR T C 0.0519 0.0164 1.53E�3

APOE 19 rs429358 missense (p.R130C) C T �0.1366 0.0239 1.14E�8

TM6SF2 19 rs58542926 missense (p.E167K) T C 0.2676 0.0320 6.90E�17

PNPLA3 22 rs738409 missense (p.I148M) G C 0.2869 0.0198 1.23E�47
aThe effect of a SNP in linkage disequilibrium (r2 = 0.96) with this variant (rs10433879) is presented.
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Impact of the 7 variants on NAFLD after accounting for
obesity
To determine whether these 7 SNPs were associated with

NAFLD independently of obesity, we performed another GWAS

meta-analysis using the same models described in the Method

details section but adding BMI as a covariate. The GWAS from

eMERGE already provided summary statistics adjusted for

BMI. Because BMI was not available for every participant of

the UK and especially the Estonian Biobank, we performed

another GWAS in slightly fewer individuals in the UK Biobank

(2,541 cases and 394,053 controls) and in the Estonian Biobank

participants with available BMI values (2,817 cases and 133,909

controls). The total number of NAFLD cases for this analysis was

6,464 and the total number of controls was 536,533. The Man-

hattan plot of this GWASmeta-analysis is presented in Figure S3.

The impact of the 7 SNPs on NAFLD in BMI-adjusted analyses

are presented in Table S3. The effect of the 7 variants on NAFLD

appeared to remain in the same range, with the exception of

FTO, which was no longer statistically significant after adjusting

for BMI. Interestingly, the association between the variant at the

GCKR locus (rs1260326) became associated with NAFLD, with a

p value below the GWAS significance threshold of £5 3 10�8.

This analysis did not reveal any new NAFLD susceptibility loci

beyond the variant at the GCKR locus.

Evaluation of the functionality of variants associated
with NAFLD
Some of the top variants linked with NAFLD in this analysis may

have functional consequences. For instance, the rs1260326 at

GCKR is a missense variant (p.P446L). The rs1260326 at APOE

is also a missense variant (p.R130C). The lead variant at MAU2/

TM6SF2 rs73001065 is in linkage disequilibrium (r2 = 0.90) with

the missense variant p.E167K at TM6SF2, and the lead variant

at PNPLA3 is in high linkage disequilibrium (r2 = 0.98) with the

missense variant p.I148MatPNPLA3. Table 1 presents the details

of these results aswell as the effect of other previously associated

variants with NAFLD (p.A165T at MTARC1, a splice variant

HSD17B13, and another variant at MBOAT7). This analysis

confirmed previous NAFLD functional variants at MTARC1 and

MBOAT7, but not atHSD17B13. Genetic variation at thePNPLA3,

TM6SF2, and GCKR have been linked with NAFLD-related traits

in previous studies.15,22,23 Recent studies identified APOE,
TR1B1, and FTO as potential new loci for liver enzymes.24,25

Our study extends the results of these studies by linking variation

at these loci with a clinical diagnosis of NAFLD and identifies LPL

as a potential new susceptibility locus for NAFLD. Interestingly,

the minor allele (C) at rs13702 associated here with protection

against NAFLD has been predicted to disrupt a microRNA recog-

nition element seed site for human microRNA miR-410, resulting

in higher LPL expression.26 We therefore sought to determine

whether genetically predicted LPL expression was associated

with NAFLD. We performed a transcriptome-wide association

study for NAFLD to map genetically regulated genes from the

Genotype Tissue Expression (GTEx, version 8) consortium27

with NAFLD using S-PrediXcan. This analysis did not reveal new

NAFLD genes outside those that had a genome-wide signal

such as PNPLA3 and TM6SF2 (data not shown). Genetically pre-

dicted LPL expression could be estimated in 11 tissues. The as-

sociation between genetically predicted LPL expression in

these 11 tissues and NAFLD is presented in Table S4. This anal-

ysis suggests a negative association between genetically pre-

dicted LPL expression in subcutaneous adipose tissue and

NAFLD (p = 3.1e�4). The LocusCompare plot (Figure 2) further

suggests shared genetic etiology at this locus with the rs13702

variant being significantly associated with both subcutaneous

adipose tissue expression of LPL and NAFLD.28 In summary,

most of the 7 SNPs identified in this analysis or SNPs in close

proximity may be considered functional SNPs.

Association of variants associated with NAFLD with
NAFLD-related phenotypes
We investigated the effect of these variants in another cohort and

with NAFLD-related traits such as liver fat accumulation and liver

enzymes in the UK Biobank. In the Mass General Brigham

Biobank, 4,312 patients with non-alcoholic steatohepatitis

(NASH) or NAFLD (diagnosed by computed tomography and/

or MRI) were compared to 26,404 controls. The direction of the

effects of the 7 SNPs were concordant with those observed in

the GWASmeta-analysis. All SNPs were significantly associated

with NAFLD in the Mass General Brigham Biobank, with the

exception of the variants at the FTO and at the LPL loci (Table

S5). Liver fat accumulation in the UK Biobank was quantified

via machine learning of abdominal MRI images, as previously

described.29 We analyzed liver fat accumulation as a continuous
Cell Reports Medicine 2, 100437, November 16, 2021 3



Figure 2. Shared genetic etiology at the LPL

locus

LocusCompare plot depicting colocalization of the

top SNPs associated with subcutaneous adipose

tissue LPL expression and NAFLD. Each dot rep-

resents a SNP at the LPL locus. In the left panel,

these SNPs are plotted to represent their effect on

LPL expression (top right) against their effect on

NAFLD (bottom right).
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trait in 32,976 study participants. The direction of the effects of

the 7 SNPs on liver fat accumulation was concordant with those

observed in the GWAS meta-analysis, and all SNPs were signif-

icantly associated with liver fat accumulation, with the exception

of the variant at the LPL locus (Table S5). Finally, the association

between the 7 variants associated NAFLDwith the liver enzymes

ALT (alanine aminotransferase), AST (aspartate aminotrans-

ferase), GGT (g-glutamyl transferase), and ALP (alkaline phos-

phatase) was investigated in 361,194 participants of the UK Bio-

bank. Results presented in Table S5 suggest that all of the

variants were positively associated with liver enzymes, except

that the variant at GCKR was not associated with ALT levels,

the variant at APOE was not associated with AST levels, and

the variant at PNPLA3 was not associated with GGT levels. Var-

iants at the GCKR, LPL, TRIB1, and APOE were positively asso-

ciated with ALP levels, the variant at FTO was not associated

with ALP levels, and the variants atMAU2/TM6SF2 and PNPLA3

were negatively associated with ALP levels. Overall, the results

of this analysis suggest that the 7 variants associated with

NAFLD are associated with NAFLD-related traits such as liver

fat accumulation and/or liver enzymes.

Association of NAFLD with human metabolic and
phenotypic traits
We performed cross-trait genetic correlation analyses between

NAFLD and 240 human traits centralized in the LD Hub data-
4 Cell Reports Medicine 2, 100437, November 16, 2021
base. LD Hub includes GWAS publicly

available summary statistics on hundreds

of human traits and enables the assess-

ment of LD score regression among those

traits. The results presented in Figure 3

show high levels of genetic correlation be-

tween NAFLD and cardiometabolic traits

and diseases such as obesity, insulin resis-

tance, triglycerides, coronary artery dis-

ease (CAD), T2D, and negative genetic

correlation with parental lifespan, educa-

tion, and the ketone body acetoacetate.

DISCUSSION

We performed 2 genome-wide association

studies for NAFLD in the UK Biobank and

in the Estonian Biobank and combined

these results with those of 2 publicly avail-

able NAFLD GWASs (from the eMERGE

network and FinnGen). This GWAS meta-
analysis included 8,434 NAFLD cases available via EHRs and

770,180 controls, making it the largest genome-wide analysis

for a clinical diagnosis of NAFLD. In combination with a risk fac-

tor-informed bGWAS, this analysis identified 2 known suscepti-

bility loci for NAFLD (TM6SF2 and PNPLA3) and 5 potentially

new candidate genetic regions for a clinical diagnosis NAFLD

based on EHRs (GCKR, TRIB1, LPL, FTO, APOE).

Our conventional GWAS analyses (adjusted for BMI or not)

report that variation at the GCKR, TRIB1, MAU2/TM6SF2,

APOE, and PNPLA3 loci may be linked to NAFLD. While genetic

variants at these loci have been associated with some liver phe-

notypes,16,18,22,23 this GWAS meta-analysis revealed important

information on the genetic architecture of NAFLD. Using

bGWAS, our study identified known and potentially new loci for

NAFLD (LPL and FTO) that may be associated with NAFLD

through their effects on NAFLD risk factors (BMI and triglycer-

ides). A recent preprint identified a variant at the FTO locus as

a susceptibility locus for having high ALT levels in theMillion Vet-

eran Program30 Although the biological relevance of variation at

the FTO locus is still a matter of debate, FTO is a well-character-

ized genetic locus for obesity.31 Upon adjusting for BMI, the as-

sociation between the variant at the FTO locus was no longer

significantly associated with NAFLD, confirming that the effect

of this variant on NAFLD is dependent on its effect on body

weight. Although variants at the GCKR locus were not associ-

ated with NAFLD in the main analysis, the bGWAS analysis



Figure 3. Results of the LD regression analysis between NAFLD and other human diseases and traits
LD regression analyses were performed in LD Hub to test the genetic correlation of NAFLD with 240 human diseases and traits. Statistically significant (p < 0.05)

genetic correlation coefficients (Rg) and their 95% confidence intervals are presented. adjBMI, adjusted for body mass index; FEV1/FVC, forced expiratory

volume in 1 s/forced vital capacity; HOMA-IR, homeostatic model of insulin resistance; VLDL, very-low-density lipoproteins.
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and the conventional GWAS adjusted for BMI identifiedGCKR as

a susceptibility locus for NAFLD. Other studies reported an asso-

ciation of variants at the GCKR loci and liver fat accumulation15

and liver enzymes.17 This analysis suggests that genetic varia-

tion at the GCKR locus may modulate NAFLD risk associated

with obesity and/or elevated triglyceride levels. The same may

be true for variants at the LPL locus, the gene that encodes lipo-

protein lipase (LPL). LPL is a key enzyme that regulates the

catabolism of triglycerides-rich lipoproteins such as chylomi-
crons and very-low-density lipoproteins in adipose tissue, skel-

etal muscle, and the heart. Gain-of-function mutations in LPL

were associated with lower triglyceride levels and lower risk of

CAD.32 In the present study, we found a potentially causal in-

verse association between genetically predicted LPL expression

in subcutaneous adipose tissue and NAFLD. These results are in

linewith the recent study ofMaltais et al.,33 who reported that 4 in

10 patients with familial chylomicronemia syndrome and almost

3 in 4 patients with multifactorial chylomicronemia syndrome
Cell Reports Medicine 2, 100437, November 16, 2021 5
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(2 disorders of impaired LPL function) met the criteria of NAFLD

independently of their BMI. It should be noted that although the

variant at the LPL locus linked with higher NAFLD was associ-

ated with higher liver enzymes levels in the UK Biobank, it was

not associated with liver fat accumulation in the UK Biobank or

with NAFLD in the Mass General Brigham Biobank. In addition,

although these results did not reach the level of genome-wide

significance, we found significant associations at the MTARC1

and MBOAT7 loci, thereby confirming the role of these genes

in the etiology of NAFLD.

Previous studies have shown that NAFLD could be associated

with or predict the risk of chronic diseases such as CVD or T2D.

Our genetic correlation analyses revealed associations with

these diseases as well as risk factors for these diseases such

as obesity and insulin resistance. We also report interesting

negative correlations between NAFLD and the ketone body ace-

toacetate (as previously suggested in an observational study),34

as well as parental lifespan, suggesting that NAFLD may be a

critical component of long-term disease risk potentially influ-

encing human lifespan. Whether the resolution of NAFLD will in-

fluence these traits and outcomes remains to be determined.

Interestingly, combined with the results of other studies that

have linked variation at LPL as being associated with lower lipid

levels and risk of CAD, our analysis suggests that targeting the

LPL pathway may prevent NAFLD as well as other diseases

such as hyperlipidemia and CAD without increasing the risk of

other human diseases. Drugs targeting the LPL pathway under

investigation for NAFLD include the angiopoietin-like protein-3

(ANGPTL3) inhibitors,35 glucagon-like peptide-1 (GLP-1) recep-

tor agonists,36 and dual glucose-dependent insulinotropic pep-

tide (GIP)/GLP-1 receptor agonists.37 Drugs targeting obesity

such as semaglutide were also recently associated with NASH

resolution without worsening in liver fibrosis.38

Limitations of the study
Our study has limitations. For instance, although we have

excluded secondary causes of NAFLD whenever possible, an

EHR-based diagnosis of complex diseases such as NAFLD

may be prone to misclassification of cases and controls. Our

analysis revealed FTO and LPL, 2 potentially new NAFLD loci.

However, although the top variants at these loci were associated

with liver fat accumulation and/or liver enzymes in the UK Bio-

bank, these variants did not replicate in a smaller NAFLD

GWAS. It should also be re-emphasized that variation at these

loci act on NAFLD through selected risk factors and therefore

may lead to NAFLD via indirect mechanisms. Although our study

reports 2 conventional GWAS analyses (adjusting or not adjust-

ing for BMI), we could not perform a GWAS meta-analysis

adjusting for triglyceride levels. Therefore, studies with larger

sample sizes and accounting for triglyceride levels will be

needed to document whether variation at the LPL locus are

strongly associated with NAFLD and whether their effects are

entirely mediated by triglyceride levels.

In conclusion, we conducted a large NAFLD GWAS based on

EHRs from 4 cohorts to identify genetic variants of NAFLD

susceptibility. We identified known NAFLD variants and show

that variants associated with liver fat accumulation and liver en-

zymes may also be associated with the presence of NAFLD. Our
6 Cell Reports Medicine 2, 100437, November 16, 2021
analysis revealed a potentially causal effect of lower adipose-tis-

sue expression of LPL and NAFLD that will need confirmation by

other, larger studies.
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Nagaraja, R., Orrú, M., Usala, G., et al. (2007). Genome-wide association

scan shows genetic variants in the FTO gene are associated with obesity-

related traits. PLoS Genet. 3, e115.

32. Stitziel, N.O., Stirrups, K.E., Masca, N.G., Erdmann, J., Ferrario, P.G.,

König, I.R., Weeke, P.E., Webb, T.R., Auer, P.L., Schick, U.M., et al.;

Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia In-

vestigators (2016). Coding variation in ANGPTL4, LPL, and SVEP1 and

the risk of coronary disease. N. Engl. J. Med. 374, 1134–1144.

33. Maltais, M., Brisson, D., and Gaudet, D. (2021). Non-Alcoholic Fatty Liver

in Patients with Chylomicronemia. J. Clin. Med. 10, 669.

34. Männistö, V.T., Simonen, M., Hyysalo, J., Soininen, P., Kangas, A.J., Ka-

minska, D., Matte, A.K., Venesmaa, S., Käkelä, P., Kärjä, V., et al.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study participants
To obtain a comprehensive set of NAFLD GWAS summary statistics, we performed a GWAS meta-analysis of four cohorts: The

Electronic Medical Records and Genomics (eMERGE)50 network, the UK Biobank, the Estonian Biobank and FinnGen. The NAFLD

GWAS in the eMERGE network has previously been published. The study sample included 1106 NAFLD cases and 8571 controls

participants of European ancestry. Of them, 396 NAFLD cases and 846 controls participants (47% males) were derived from a

pediatric population and 710 NAFLD cases and 7725 controls participants (42% males) were derived from an adult population.

NAFLD was defined by the use of EHR codes (ICD9: 571.5, ICD9: 571.8, ICD9: 571.9, ICD10: K75.81, ICD10: K76.0 and

ICD10: K76.9. Exclusion criteria included, but were not limited to alcohol dependence, alcoholic liver disease, alpha-1 antitrypsin

deficiency, Alagille syndrome, liver transplant, cystic fibrosis, hepatitis, abetalipoproteinemia, LCAT deficiency, lipodystrophy, dis-

orders of copper metabolism Reye’s syndrome, inborn errors of metabolism, HELLP syndrome, starvation and acute fatty liver (as

suggested by the American Association for the Study of Liver Disease [AASLD]). We performed a new GWAS for NAFLD in the UK

Biobank (data application number 25205). NAFLD diagnosis was established from hospital records (ICD10: K74.0 and K74.2 (he-

patic fibrosis), K75.8 (NASH), K76.0 (NAFLD) and ICD10: K76.9 (other specified diseases of the liver). Exclusion criteria were the

same as those used in the eMERGE study. In the UK Biobank analysis, we included 2558 NAFLD cases and 395,241 controls. We

also performed a GWAS for NAFLD in the Estonian Biobank. This study and the use of data from 4119 cases and 190,120 controls

was approved by the Research Ethics Committee of the University of Tartu (Approval number 288/M-18). We used the same case

definition and inclusion/exclusion criteria as in the UK Biobank. In the FinnGen data freeze 4 (November 30, 2020), 651 patients

had a NAFLD diagnosis (EHR code K76.0). They were compared to 176,248 controls. The Mass General Brigham Biobank is a

hospital-based biorepository with genetic data linked to clinical records as previously described.51 Patients were defined as hav-

ing NAFLD or NASH according to diagnosis codes in the electronic health care record and were compared to controls without

such diagnoses.

METHOD DETAILS

In the eMERGE study, logistic regression analysis was performed on over 7 million SNPs with MAF > 1% adjusted for age, gender,

body mass index, genotyping site and the first three ancestry based principal components. In the UK Biobank genome-wide geno-

typingwas available for over 28million geneticmarkers directly genotyped or imputed by theHaplotype Reference Consortium (HRC)

panel. In FinnGen, GWAS was performed using over 16 million genetic markers genotyped with the Illumina or Affymetrix arrays or

imputed using the population specific SISu v3 reference panel. Variables included in the models were gender, age, the 10-main

ancestry-based principal components and genotyping batch.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome-wide association study summary statistics NAFLD
We used the SAIGE (Scalable and Accurate Implementation of Generalized Mixed Models) method to perform the GWAS in the UK

Biobank and in the Estonian Biobank52. This method is based on generalized mixed models and was developed to control for case-

control imbalance, sample relatedness and population structure. In this analysis, gender, age and the 10 main ancestry-based prin-

cipal components were used as covariates. Age, gender and the 10-main ancestry-based PCs were used as covariates. Finally,

SAIGE was also used to obtain GWAS summary statistics of the FinnGen cohort. We performed a fixed-effect GWAS meta-analysis

of the eMERGE, UK Biobank, FinnGen and Estonian Biobank cohorts using the METAL package.40 When variants showed evidence

of heterogeneity, we performed a random effect meta-analysis. A total of 6,797,908 SNPs with a minor allele frequency equal or

above 0.01 were investigated. The genomic inflation factor and the LDSC intercept were computed using the GenomicSEM R

package.41

Risk-factor informed Bayesian genome-wide association study
We used bGWAS to identify more SNPs associated with NAFLD.20 The aim of bGWAS is to identify new variants associated with

complex diseases using inference from risk factors of focal traits. We used GWAS summary statistics from two risk factors causally

associated with NAFLD in a previous MR study21 (BMI and triglyceride levels) as priors and worked with default parameters of the

package as these two risk factors showed significant multivariable causal effects (Figure S2). The bWAS approach increases power

over conventional GWAS by comparing the observed Z-statistics (the observed effect size for each SNP divided by its standard error)

from the focal phenotype (i.e., NAFLD) to prior effects using Bayes Factors (Bayesian effects). The prior effects are calculated from

publicly available GWAS summary statistics for related risk factors and are included in the bGWAS package. These were obtained

from the Global Lipids Genetic Consortium and the Genetics of Anthropometric Traits (GIANT). Briefly, bGWAS derives informative

prior effects from these risk factors and their causal effect on NAFLD using multivariable MR. Prior estimates (mu) are calculated for

each SNP by multiplying the SNP-risk factor effect by the risk factor-NAFLD causal effect estimates. By combining observed effects

from the NAFLD GWASmeta-analysis and prior effects, Bayes factors, posterior effects and direct effects and their corresponding p
e2 Cell Reports Medicine 2, 100437, November 16, 2021
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values are generated. The direct effect of each SNP is the part of the observed effect that is not mediated through the selected risk

factors.

Transcriptome-wide association study of NAFLD
Tissues from the GTEx consortium (version 8) with less than 70 samples were not used to provide sufficient statistical power for eQTL

discovery, resulting in a set of 48 tissues. Only non-gender-specific tissues (N = 43) were analyzed. Alignment to the human reference

genome hg28/GRCh38 was performed using STAR v2.6.1d, based on the GENCODE v30 annotation. RNA-seq expression outliers

were excluded using a multidimensional extension of the statistic described byWright et al.53 Samples with less than 10million map-

ped reads were removed. For samples with replicates, replicate with the greatest number of reads were selected. Expression values

were normalized between samples using TMM as implemented in edgeR.42 For each gene, expression values were normalized

across samples using an inverse normal transformation. eQTL prediction models were performed using elastic net, a regularized

regressionmethod, as implemented in S-PrediXcan.43,44We used SNPswith aminor allele frequency greater than 1% fromEuropean

ancestry participants. Locuscompare function from the LocuscompareR R package28 was used to depict the colocalization event at

the LPL locus. Locuscompare enables visualization of the strengths of eQTLs and outcomes associations by plotting p values for

each within a given genomic location, thereby contributing to distinguish candidates from false-positive genes.

Replication of variants associated with NAFLD in the Mass General Brigham Biobank
In this cohort, genotyping was performed using the Illumina MEGA array. Association of each of the seven variants associated with

NAFLD was assessed using logistic regression of disease status with age, gender and five principal components of ancestry as

covariates.

Impact of NAFLD variants on liver fat accumulation in the UK Biobank
As part of the study protocol of the UK Biobank, a subset of individuals who underwent detailed imaging between years 2014 and

2019 including abdominal MRI.54 Liver fat in this cohort was quantified via machine learning of abdominal MRI images as previously

described.29 We excluded samples that had no imputed genetic data, a genotyping call rate < 0.98, a mismatch between submitted

and inferred gender, sex chromosome aneuploidy, exclusion from kinship inference, excessive third-degree relatives, or that were

outliers in heterozygosity or genotype missingness rates, all of which were previously defined centrally by the UK Biobank55 Due to

the small percentage of samples of non-European ancestries, to avoid artifacts from population stratification we restricted our GWAS

to samples of European ancestries, determined via self-reported ancestry of British, Irish, or other white and outlier detection using

the R package aberrant, resulting in a total of 32,976 individuals.We did not remove related individuals from this analysis aswe used a

linear mixed model able to account for cryptic relatedness in common variant association studies.46 For analysis of liver fat as a

continuous trait, we applied a rank-based inverse normal transformation. We took the residuals of liver fat in a linear model that

included gender, year of birth, age at time of MRI, age at time of MRI squared, genotyping array, MRI device serial number, and

the first ten principal components of ancestry. We then performed the inverse normal transform on the residuals from this model,

yielding a standardized output with mean 0 and standard deviation of 1. We measured the association of genetic variants with

rank inverse normal transformed liver fat via a linear mixed model using BOLT-LMM (version 2.3.4) to account for ancestry, cryptic

population structure, and sample relatedness. The default European linkage disequilibrium panel provided with BOLT was used.

Impact of NAFLD variants on liver enzymes in the UK Biobank
Age, gender and ancestry-based principal components-adjusted GWAS summary statistics on ALT, AST, GGT and ALP concentra-

tions in 361,194 participants of the UKBiobank of European ancestry were obtained from the Neale lab. Details on the protocols used

to measure these biomarkers is available on the UK Biobank website: https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/

serum_biochemistry.pdf.
Cell Reports Medicine 2, 100437, November 16, 2021 e3
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