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Abstract Cholangiocarcinoma is a highly aggressive and lethal malignancy, with limited
treatment options available. Recently, FGFR inhibitors have been developed and utilized
in FGFR-mutant cholangiocarcinoma; however, resistance often develops and the genomic
determinants of resistance are not fully characterized. We completed whole-exome se-
quencing (WES) of 11 unique tumor samples obtained from a rapid research autopsy on
a patient with FGFR-fusion-positive cholangiocarcinoma who initially responded to the
pan-FGFR inhibitor, INCB054828. In vitro studies were carried out to characterize the novel
FGFR alteration and secondary FGFR2 mutation identified. Multisite WES and analysis of
tumor heterogeneity through subclonal inference identified four genetically distinct cancer
cell populations, two of which were only observed after treatment. Additionally, WES re-
vealed an FGFR2 N549H mutation hypothesized to confer resistance to the FGFR inhibitor
INCB054828 in a single tumor sample. This hypothesis was corroborated with in vitro cell-
based studies in which cells expressing FGFR2–CLIP1 fusion were sensitive to INCB054828
(IC50 value of 10.16 nM), whereas cells with the addition of the N549H mutation were resis-
tant to INCB054828 (IC50 value of 1527.57 nM). Furthermore, the FGFR2N549H secondary
mutation displayed cross-resistance to other selective FGFR inhibitors, but remained sensi-
tive to the nonselective inhibitor, ponatinib. Rapid research autopsy has the potential to
provide unprecedented insights into the clonal evolution of cancer throughout the course
of the disease. In this study, we demonstrate the emergence of a drug resistance mutation
and characterize the evolution of tumor subclones within a cholangiocarcinoma disease
course.
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INTRODUCTION

Cholangiocarcinoma is an aggressive and deadly rare cancer arising from bile duct epithelial
cells with a 5-yr overall survival rate of <2% for advanced stage disease (PDQ Adult
Treatment Editorial Board 2002; Razumilava and Gores 2014). Most patients with cholangio-
carcinoma present with metastatic unresectable cancer, thus precluding curative therapy
(Valle et al. 2010; Razumilava and Gores 2014). Given its poor prognosis and limited
treatment options beyond first-line chemotherapy, development and optimization of novel
therapies for cholangiocarcinoma are urgently needed.

The fibroblast growth factor receptor (FGFR) signaling pathway is aberrantly activated
in ∼20% of cases of intrahepatic cholangiocarcinoma through various genomic alterations
including point mutations, copy-number amplifications, and gene fusions (Roychowdhury
et al. 2011; Wu et al. 2013). Extending beyond cholangiocarcinoma, alterations in the
FGFR signaling pathway have been reported in non-small-cell lung carcinoma, endometrial
cancer, and urothelial cancer (Roychowdhury et al. 2011; Wu et al. 2013). Currently, several
tyrosine kinase inhibitors, covalent and noncovalent, nonselective and selective FGFR
inhibitors are being assessed clinically in patients withmetastatic cancer and have shown ear-
ly responses in those patients with metastatic FGFR-mutant cancers (Gozgit et al. 2012;
André et al. 2013; Angevin et al. 2013; Tabernero et al. 2015; Paik et al. 2017; Javle et al.
2018). Although genomic alterations in FGFR correlated with initial clinical responses to
FGFR inhibitors, multiple secondarymutations in FGFR and other cellular signaling pathways
have been identified in patients after treatment with FGFR inhibitors. Thus, elucidating the
various acquired mechanisms of drug resistance to FGFR inhibitors will be critical for the de-
velopment of new therapies to overcome resistance and improve the outcome of patients
with FGFR-mutant cancers.

Tumor heterogeneity has been shown to negatively impact therapeutic response and
contribute to treatment resistance in cancer patients, and thus it remains a major impedi-
ment to cancer treatment (Dexter and Leith 1986; Heppner and Miller 1989; Bedard et al.
2013; Fisher et al. 2013; Burrell and Swanton 2014). Both genetic and epigenetic mecha-
nisms within the tumor itself as well as changes in the tumor microenvironment can drive
the development of tumor heterogeneity (Heng et al. 2009; Junttila and de Sauvage
2013; Meacham and Morrison 2013). Genomic characterization of primary and recurrent/
metastatic tumors from the same patient has further demonstrated spatial and temporal
intrapatient tumor heterogeneity (ITH) (Bedard et al. 2013). Recent studies have evaluated
ITH and clonal evolution through next-generation sequencing (NGS) methods, demonstrat-
ing the critical role of these processes in recurrence and development of therapeutic resis-
tance in urothelial carcinoma, renal cell carcinoma, and acute myeloid leukemia (Ding
et al. 2012; Gerlinger et al. 2012, 2014; Faltas et al. 2016). Studies like these, however,
are limited in cholangiocarcinoma.

To date, the genomic landscape of cholangiocarcinoma has been largely characterized
through tumor biopsies and surgical specimens and, therefore,may not accurately reflect the
complex and heterogeneous nature of metastatic and drug-resistant disease (Zou et al.
2014; Ruzzenente et al. 2016; Farshidfar et al. 2017; Jusakul et al. 2017). Recently, Goyal
et al. (2017) evaluated three patients with FGFR-fusion-positive cholangiocarcinoma who
received the FGFR inhibitor BGJ398. Targeted gene panel sequencing using the commer-
cial Guardant360 assay revealed an FGFR2 V564F gatekeeper mutation in plasma circulating
tumor DNA (ctDNA) of all three patients and several additional FGFR2 mutations in two
of the patients. One patient consented to rapid research autopsy, and this enabled the
procurement of multiple metastatic tumors for genomic profiling with the FoundationOne
assay (315-gene panel) to study acquired drug resistance to the drug BGJ398. This study
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successfully demonstrated the role of acquired mutations in resistance to BGJ398. It also
demonstrated heterogeneity at time of autopsy, because eight of 12 tumor samples
assessed lacked a secondary mutation in FGFR2. However, there are more than 10 FGFR
inhibitors in active drug development in clinical trials, and mechanisms of resistance for
each of these drugs remain a significant gap in knowledge. Prior research on acquired resis-
tance mutations in KIT, ABL1, and ALK oncogenes with their respective kinase inhibitors
demonstrates that cross-resistance and sensitivity for secondary mutations varies widely,
and therefore understanding resistance profiles for other FGFR inhibitors will be essential.
Further, evaluating additional patients receiving other FGFR inhibitors with an expanded
scope of whole exome (more than 20,000 genes) will be critical to characterizing clonal
heterogeneity and evolution with FGFR inhibitors.

In the current work, we present a patient with metastatic cholangiocarcinoma harboring a
novel FGFR2–CLIP1 gene fusion who demonstrated a partial response followed by disease
progression while on treatment with the FGFR-selective kinase inhibitor, INCB054828.
Through rapid research autopsy of this patient and whole-exome sequencing (WES) of his
metastatic cancer, we identified four unique tumor subclones and elucidated their evolution
from the normal ancestral cell. Furthermore, we identified a posttreatment secondary kinase
mutation in FGFR2 present in a single metastatic tumor sample and characterized its impact
on sensitivity to a variety of FGFR inhibitors in vitro. The results of our in vitro drug sensitivity
studies suggest that this mutation conferred resistance to INCB054828 in this patient and
thus may have potential as a clinically useful biomarker of resistance. Importantly, character-
izing tumor heterogeneity and the ability to detect clonal evolution in patients will facilitate
approaches to prevent or overcome treatment resistance and disease recurrence.

RESULTS

Clinical Course
A 59-yr-old male presented clinically with abdominal pain and fullness in the fall of 2015.
Abdominal CT and MRI scans revealed two small but suspicious-appearing lesions in the liv-
er. He underwent biopsy of one liver lesion, and pathology demonstrated poorly dif-
ferentiated adenocarcinoma with focal neuroendocrine differentiation (CK7+, CDX2+,
synaptophysin/chromogranin+, CK20−, TTF1−, napsin−) consistent with pancreatic or biliary
origin. A PET-CT scan showed localized cancer in the right hepatic lobe, and the patient sub-
sequently underwent surgical resection with clear margins and no lymph node involvement.
Surgical pathology confirmed intrahepatic cholangiocarcinoma, which was staged as T2aN0.
The patient received no adjuvant therapy postsurgery. Five months later, in April 2016, sur-
veillanceMRI showed the emergence of new hepatic tumors, prompting palliative treatment
with gemcitabine and cisplatin (Gem/Cis). Gemcitabine (1000 mg/m2) and cisplatin (25/m2)
were given on day 1 and day 8 of a 21-d cycle. In June 2016, after two cycles of chemother-
apy, CT scans revealed numerous hypodense lesions consistent with worsening of hepatic
metastatic disease, and Gem/Cis was stopped. At this time, the patient underwent a repeat
tumor biopsy and RNA profiling of his cancer using an NGS assay, OSU-SpARKFuse (Reeser
et al. 2017), which revealed a novel gene fusion involving FGFR2 (exons 1–16) and CLIP1
(exons 19–24) (Fig. 1A; Table 1). The presence of the fusion was confirmed by reverse tran-
scription PCR and Sanger sequencingwith primers designed to flank the breakpoint (Fig. 1C;
Supplemental Fig. S1A). CLIP1 is a CAP-Gly domain-containing linker protein 1 that has
been shown to regulate the microtubule cytoskeleton. Based on the presence of this novel
FGFR2–CLIP1 fusion in his cancer, at the beginning of October, the patient enrolled in a
Phase I/II clinical trial (NCT02393248) evaluating the safety and tolerability of an oral pan-
FGFR inhibitor, INCB054828. He received 13.5 mg once daily for days 1–14 per 21-d cycle.
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Figure 1. Clinical description of a cholangiocarcinoma patient harboring an FGFR2–CLIP1 fusion. (A) A pa-
tient with metastatic cholangiocarcinoma underwent a liver biopsy and sequencing revealed an FGFR2–
CLIP1 gene fusion. He received gemcitabine/cisplatin but after two cycles of therapy had disease progression.
He was enrolled on INCB54828 and had a profound radiographic response. After 5.5 mo on therapy, he de-
veloped progression and passed away shortly thereafter from his disease. A repeat tumor biopsy at the time of
progression did not reveal any secondary mutations. (B) Table summarizing two target lesions (posterior he-
patic dome lesion and left hepatic lobe lesion) that were tracked throughout the treatment course and had
a 34.8% and 46.5% reduction from baseline after cycles 3 and 6, respectively. (C ) Schematic of the FGFR2–
CLIP1 fusion involving exons 1–16 of FGFR2 and exons 19–24 of CLIP1. Chromatogram traces from Sanger
sequencing of the tumor biopsy confirmed the presence of the fusion. Red dashed line indicates breakpoint
within the sequence.
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Disease assessment after cycles 3 (November) and 6 (January) showed robust partial re-
sponse by RECIST criteria, consistent with this novel FGFR2 fusion being a driver of his met-
astatic cancer (Fig. 1A). As part of the study, two target lesions (posterior hepatic dome lesion
and left hepatic lobe lesion) were tracked throughout the treatment course and had a 34.8%
and 46.5% reduction from baseline after cycles 3 and 6, respectively (Fig. 1B). Prior to start-
ing cycle 8, he was admitted to the hospital with significant weight loss and elevated liver
function tests (LFTs), suggesting disease progression. After a total of 5 mo (7 cycles) on
INCB054828, CT scans showed a 41.3% increase in size of the two target lesions confirming
progressive disease (Fig. 1A,B). At this time, he underwent a repeat postprogression tumor
biopsy that confirmed the continued presence of the FGFR2–CLIP1 fusion (Fig. 1A). One
month after receiving the last dose of INCB045828, second-line chemotherapy (FOLFOX)
was initiated. He received a single dose of oxaliplatin (190 mg) and fluorouracil (3975 mg).
However, he passed away 11 d after receiving this single dose of FOLFOX as a result of liver
failure. Prior to passing, he consented to our body donation study for patients with advanced
cancer.

Research Autopsy Reveals Clonal Heterogeneity in Cholangiocarcinoma
Upon death of this patient, a research autopsy was performed 8 hours postmortem. Gross
examination revealed metastatic tumors involving the liver, omentum, and abdominal and
retroperitoneal lymph nodes. Twenty-four liver tumor samples and five separate lymph
nodes were procured at the time of autopsy. Although we attempted to sample distinct
liver tumors, the patient’s liver was predominately cancerous with limited grossly normal liver
tissue present (Supplemental Fig. S1B). Samples used for subsequent analysis had at least
40% tumor content as determined by a board-certified pathologist (Fig. 2A,B). In total, a
normal blood control and 11 tumor samples (one pretreatment tumor biopsy, one postprog-
ression tumor biopsy, and nine autopsy tumor samples) were chosen for further analysis
(Fig. 2B). Sanger sequencing confirmed that the FGFR2–CLIP1 fusion was present in each
tumor sample (data not shown). DNA from these tumors were subjected to WES, yielding
231× average target coverage (Fig. 2B) and revealed a total of 979 somatic variants across
all tumors (292 unique somatic variants) (Samorodnitsky et al. 2015a). Two hundred and for-
ty-two of these mutations were unique to the postprogression and autopsy samples

Table 1. Variant table

Gene Chromosome
HGVS DNA
reference

HGVS
protein

reference Variant type

Predicted effect
(substitution,
deletion, etc.)

dbSNP/dbVar
ID

Geno-
type

(hetero-
zygous/
homo-
zygous) ClinVar ID

FGFR2
and
CLIP1

RNA
Chr 10:123243211
and
Chr 12:122773087
DNA
Chr 10:123241591
and
Chr 12:122782142

N/A N/A Chromosomal
rearrange-
ment

Likely pathogenic N/A N/A N/A

FGFR2 Chr 10:123258036 NM_000141.4,
c.1645A>C

N549H Single-
nucleotide
variant

Likely pathogenic rs1057519045 N/A SUB5631497
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(Supplemental File S6). The tumor mutational burden (TMB) of samples ranged from 1.3 mu-
tations/Mb in the pretreatment biopsy to 2.9 mutations/Mb in liver sample #1 (Fig. 2B), con-
sistent with previous studies indicating low TMB in cholangiocarcinoma (Nakamura et al.
2015; Chalmers et al. 2017). All tumor samples were determined to be microsatellite stable
(MSS) through analysis of 2539 loci by MANTIS (Kautto et al. 2017). Mutational signatures 16
and 19 were common across tumor samples. Signature 16 has been found in liver cancer and

A

B

Figure 2. Tumor samples procured at research autopsy. (A) Hematoxylin and eosin (H&E) stains of represen-
tative slides taken from each tumor sample demonstrating abundantmalignant cells. (B) Summary of estimated
tumor content and WES metrics within each sample. (SNV) Single-nucleotide variant, (TMB) tumor mutational
burden.
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signature 19 has been found in pilocytic astrocytoma, however, their etiologies are unknown
(Forbes et al. 2017).

The somatic single-nucleotide variants (SNVs) called in each tumor sample were subse-
quently used to build a phylogenetic tree of tumor samples via the neighbor-joining (NJ)
method (Fig. 3A; Saitou and Nei 1987). As expected, the pretreatment sample branched
most closely to the normal cells; the two samples are separated by a relatively short genetic
distance of 33.2 indicating a high degree of genetic similarity. The postprogression sample

B

A

C

Figure 3. Analysis of tumor heterogeneity. (A) Neighbor-joining tree over sets of somatic SNVs in each of 11
tumor samples, with normal defined as the empty set. (B,C) Subclonal inference from Canopy. Colors in B cor-
respond to subclones inC. Letters identify branches of the tree. (B) Phylogenetic tree assessment with Canopy
revealed four major clonal populations of cells. Each subclone is characterized by a group of mutations. MYC
gain was truncal to all subclones. Clone 1 (pink) contained a unique FGFR2 N549H point mutation. Vertical
distance corresponds to increased number of somatic mutations (SNVs and indels). (C ) Prevalence of four tu-
mor subclones within tumor samples.
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had the next closest genetic similarity to the normal, with a genetic distance of 37.6. The liver
#1 sample was the most genetically unique tumor sample with a genetic distance of 100.1
from the normal. Liver samples #2, #3, and #4 were clustered with the aorta/esophagus
lymph node and left kidney lymph node.

We next utilized Canopy (Jiang et al. 2016) to computationally identify and characterize
tumor subclones using both synonymous and nonsynonymous somatic SNVs, CNVs, and
indels (Fig. 3B). This analysis revealed four tumor subclones across the 11 samples, with
each subclone characterized by a unique group of genomic alterations (Fig. 3B;
Supplemental Fig. S2; Supplemental Files S5, S7, S8). A four-clone model was selected
because models with additional subclones yielded only marginal increases in BIC
(Supplemental Fig. S2). Clones 2 (teal) and 3 (purple) were shared among all samples
(Fig. 3C). Clone 4 (cyan) was seen in all except one autopsy sample (liver #1) and was
not present in the pretreatment or posttreatment samples (Fig. 3C). Eighty-nine percent of
the tumor cells in the pretreatment sample were estimated to be from clone 2 versus
∼40%–60% of the other samples (Fig. 3C). Clone 1 (pink) was primarily found in liver #1
(20%) and at low frequency in the posttreatment sample (7%) (Fig. 3C). This is consistent
with the NJ tree, as the relatively large number of mutations unique to clone 1 accounts
for the distance of liver #1 and the postprogression samples from all other samples.

Of the 292 distinct mutations (SNVs and indels) identified among these samples, only
seven were truncal (i.e., common to all four subclones). Most notable among the truncal
events (branch a) was a 21.9-Mb gain in Chromosome 8q (Chr 8: 124448804–146364022),
containing MYC among other genes. Although Canopy did not identify nontruncal muta-
tions shared by clones 3 and 4, post-hoc assignment was permitted to assign mutations to
a hypothetical unique common ancestor. No such mutations were assigned, suggesting
that clones 3 and 4 diverged relatively early in the tumor’s evolution. Of clinical interest,
WES revealed an FGFR2 kinase domain mutation, FGFR2N549H in a single liver tumor, liver
#1 (Fig. 3A). The FGFR2 N549H mutation occurs in the kinase hinge and has been shown to
disengage the molecular breaker resulting in ligand-independent constitutive activation of
the FGFR2 kinase (Chen et al. 2007). The FGFR2 N549H mutation was assigned uniquely
to clone 1, which was the most genetically distinct subclone compared to the patient’s
normal blood DNA (Fig. 3B). Although clone 1 was predicted to be present at low frequency
in the postprogression sample, FGFR2N549H was not detected in this sample. ddPCR of all
samples confirmed that the FGFR2 N549H mutation was unique to liver #1 (Supplemental
Table S1). Of the 111 mutations unique to clone 1, this mutation was estimated to be the
63rd to occur. This led us to hypothesize that the N549H FGFR2 kinase domain mutation
may have been partially responsible for driving resistance to INCB054828 in this patient,
occurring along an existing clonal lineage. Driver mutation prediction with CHASM
(Carter et al. 2009) predicted only FGFR2 N549H to be a statistically likely driver (defined
as FDR-corrected P≤0.05) (Supplemental File S9).

In Vitro Characterization of Acquired Mutations in the FGFR2–CLIP1 Fusion
and Resistance to the FGFR Inhibitor INCB054828
To confirm our clinical findings that the FGFR2–CLIP1 fusion is exquisitely sensitive to
INCB054828 and explore the hypothesis that the FGFR2N549Hmutation confers resistance
to INCB054828, we generated NIH3T3 cells that express either a control (Empty) vector,
FGFR2–CLIP1 fusion (FC), or FGFR2–CLIP1 fusion with the N549H secondary mutation
(N549H) and confirmed expression by RT-PCR (Fig. 4A) and Sanger sequencing (data not
shown). Western blot analyses of FGFR2–CLIP1 fusion expression cells demonstrated
increases in PI3K/AKT, MAPK/MEK, and FGFR2 signaling pathways with or without
N549H (Fig. 4B).
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To evaluate the in vitro sensitivity of cells with the FGFR2–CLIP1 fusion and cells with the
FGFR2–CLIP1 N549H to the FGFR inhibitor INCB054828, we treated NIH3T3 Empty,
FGFR2–CLIP1, and FGFR2–CLIP1 N549H cells with increasing doses of INCB054828 or
vehicle control (DMSO) ranging from 1.0 nM to 5000 nM and assessed cell viability after
72 h. Treatment of NIH3T3 FGFR2–CLIP1 (FC) cells with INCB054828 demonstrated sub-
stantial and reproducible inhibition of cell viability with an IC50 value of 10.16 nM (Fig.

CA

B

D

Figure 4. The FGFR2–CLIP1 is sensitive to FGFR inhibitors, whereas the N549H kinase domain mutation con-
fers resistance. (A) RT-PCR confirmed the presence of the FGFR-CLIP1 fusion in the NIH3T3 FGFR2–CLIP1 (FC)
cells and NIH3T3 FGFR2–CLIP1 N549H (N549H) cells. The fusion was not detected in the control vector
(Empty) transduced cells. (B) Total cell lysates from NIH3T3 Empty, FC, and N549H cells were prepared and
subjected to western blot analysis with antibodies against pAKT, AKT, pMEK, MEK, pMAPK, MAPK,
pFGFR, FGFR, pPLCy, PLC, pFRS2, FRS2, pPI3K, PI3K, and β-actin. (C ) IC50 curves of NIH3T3 Empty, FC,
and N549H cells treated with FGFR inhibitors. Data from four replicate experiments are shown. Inhibitors in-
clude INCB054828, AZD4547, BGJ398 and JNJ42756493, ponatinib, and dovitinib. (D) IC50 values are report-
ed for each inhibitor from the curves seen in C.
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4C,D). Consistent with our hypothesis, the FGFR2–CLIP1N549H (N549H) cells were resistant
to INCB054828 with an IC50 value of 1527.57 nM (Fig. 4C,D). Empty vector control cells
(Empty) were not sensitive to INCB054828, which is expected as these cells do not express
endogenous FGF ligands or FGF receptors (Fig. 4C). Thus, these data help explain this pa-
tient’s clinical course with his initial FGFR2–CLIP1 fusion expressing tumor responding to
INCB054828 followed by acquisition of resistance via the N549H mutation.

We subsequently extended these in vitro studies to include additional FGFR inhibitors
that are currently being evaluated clinically in patients with metastatic cancer and have
shown early responses in patients with FGFR-mutant cancers. AZD4547, BGJ398, and
JNJ-42756493 are selective FGFR inhibitors, whereas ponatinib and dovitinib are nonspecif-
ic tyrosine kinase inhibitors that target BCR-ABL, VEGFR, PDGFR, SRC, RET, KIT, and FLT1 in
addition to FGFR. Our results demonstrated that FGFR2–CLIP1 cells were sensitive to
AZD4547, BGJ398, JNJ-42756493, and ponatinib with IC50 values of 148.59 nM, 108.39
nM, 23.28 nM, and 166.34 nM, respectively (Fig. 4C,D). The FGFR2–CLIP1 N549H cells
were less sensitive to BGJ398, AZD4547, and JNJ-42756493, as demonstrated by higher
IC50 values than the fusion alone (Fig. 4C,D). Interestingly, FGFR2–CLIP1 N549H cells dem-
onstrated a similar sensitivity to ponatinib as cells with the fusion alone (Fig. 4C,D). Dovitinib
was largely ineffective against FGFR2–CLIP1 without or with the secondary mutation
(Fig. 4C,D). Empty vector control cells (Empty) were not sensitive to AZD-4547, BGJ398,
or JNJ-42756493 (Fig. 4C,D). However, at the highest dose (5 µM) of ponatinib and doviti-
nib, the control cells (Empty) demonstrated decreased cell viability, which was not surprising
as ponatinib and dovitinib are nonspecific inhibitors of FGFR (Fig. 4C,D). Taken together,
these data demonstrate that the FGFR2–CLIP1 fusion confers sensitivity to some, but not
all, FGFR inhibitors. The FGFR2 N549H secondary mutation confers resistance to most
FGFR inhibitors, but ponatinib could be used to overcome this acquired drug resistance.

DISCUSSION

Tumor heterogeneity has been shown to have a critical role in response to therapy, develop-
ment of resistance, and clinical outcome in patients with cancer (Rottenberg et al. 2012; Choi
et al. 2017; Joung et al. 2017). Rapid research autopsy has emerged as a powerful strategy to
study tumor heterogeneity, as it enables essentially unlimited sampling of all sites of meta-
static disease throughout the body that would otherwise not be feasible through surgical
resections or tumor biopsies (Krook et al. 2019). A number of recent studies have utilized rap-
id research autopsy to characterize tumor heterogeneity, clonal evolution, and mechanisms
of acquired therapeutic resistance in breast, urothelial, pancreatic, and colorectal cancer. For
instance, Saito et al. utilized research autopsy in breast cancer to assess trastuzumab resis-
tance in primary versus metastatic sites (Saito et al. 2015). Faltas et al. (2016) performed
rapid autopsy of two patients to construct phylogenetic trees of urothelial carcinoma.
Here, we present our findings from rapid research autopsy of a patient with metastatic
cholangiocarcinoma. This is the first study to evaluate clonal heterogeneity based on exome
sequencing in cholangiocarcinoma, as well as the first description of acquired resistance to
INCB54828, an oral FGFR inhibitor.

Most previous and current autopsy studies utilize methods such as clonal ordering (Merlo
et al. 2006) and NJ (Saitou and Nei 1987) to identify and quantify relationships between
different tumor regions and/or sites of metastatic cancer. In this study, we utilized the NJ
method to generate a tumor-centric tree to assess similarities and differences among the
pretreatment biopsy, postprogression biopsy, and nine unique tumors collected at the
time of autopsy. The NJ analysis showed that the liver #1 sample with its unique FGFR2
N549H point mutation is an outlier versus the other liver samples from autopsy. NJ and

Characterization of cholangiocarcinoma heterogeneity

C O L D S P R I N G H A R B O R

Molecular Case Studies

Krook et al. 2019 Cold Spring Harb Mol Case Stud 5: a004002 10 of 21



related phylogenetic methods are powerful tools to assess high-level relatedness among tu-
mors and identify exceptional tumors; however, they cannot capture the clonal heterogene-
ity present within discrete tumor masses or cross-seeding between sites.

Analysis of clonal evolution continues to develop as technical and computational chal-
lenges and the limited availability of large-scale autopsy data are overcome. In addition to
NJ, we performed subclonal inference using Canopy (Jiang et al. 2016), which revealed
four genetically distinct tumor subclones. Of these subclones, three were dominant across
all 11 samples, with each subclone characterized by a specific set of mutations (Fig. 2B,C).
The FGFR2N549Hmutation in clone 1was unique to a single liver sample despite our in vitro
data confirming its role as a resistancemutation. This pattern of site-unique FGFR2 resistance
mutations was previously observed by Goyal et al. (2017) in which only four of 12 distinct
metastatic autopsy samples were found to have acquired secondary mutations in FGFR2
serving to bypass the FGFR inhibitor effect. Each of these samples harbored unique FGFR
mutations (K641R and N549H) with only one sample having two FGFR mutations (E565A
and K641R). Meanwhile, the remaining eight sites were wild type (wt) for FGFR2. The obser-
vations seen by Goyal et al. along with our work presented here suggest that multiple inde-
pendent drug resistance mechanisms, including FGFR-independent mechanisms, are likely
contributing to tumor progression. Interestingly, in our model, clone 4 was specific to tumor
samples collected at the time of autopsy, suggesting that either the biopsies missed a pop-
ulation of cells or that this subclone developed after the posttreatment biopsy. FOLFOX was
administered after the collection of the posttreatment biopsy, but as this patient only re-
ceived one dose of FOLFOX before passing away soon afterward, we do not believe that
this single dose substantially affected the heterogeneity present at the time of autopsy.
These findings provide evidence for the presumed notion that tumor biopsies do not accu-
rately reflect the full complexity and heterogeneous nature of the disease. Clones 2–4 were
seen in all autopsy samples at similar proportions. As the liver tumors were largely confluent
at the time of autopsy (Supplemental Fig. S1B), multiple samples may have come from the
same tumor. Another possibility is metastatic cross-seeding, as was observed by Savas et al.
(2016) using their tool superFREQ (Flensburg et al. 2018) for subclonal analysis of four met-
astatic breast cancer cases, and by Brady et al. (2019) in pediatric osteosarcoma. Co-metas-
tasis of multiple subclonal populations can also explain this distribution, as has been
demonstrated to occur in breast ductal carcinoma (Casasent et al. 2018). Clone 2 was sub-
stantially reduced in the posttreatment and autopsy samples versus the pretreatment biopsy.
One potential explanation is that clone 2wasmore sensitive to INCB054828 than clones 1, 3,
and 4. In clone 1, the decreased sensitivity is likely due to the FGFR2N549H point mutation,
evolving from a common lineage as clone 2. Although resistance mechanisms for clones 3
and 4 could not be determined through WES, and driver prediction did not indicate any
other likely driver mutations, we hypothesize that there can be multiple independent drug
resistance adaptations within a single patient. Previous studies have demonstrated that in
addition to secondary kinase domain mutations, activation in the Akt, MAPK, and PTEN
pathways can mediate resistance to FGFR inhibition (Datta et al. 2017; Goyal et al. 2017;
Malchers et al. 2017). Although there was no evidence for PTEN mutations in this patient,
transcriptome sequencing would be needed to assess the activation of other pathways.
Studies are ongoing in our laboratory to identify FGFR-independent mechanisms of resis-
tance and to define their contributions clinically, including RNA sequencing.

WES of this patient and derivation of a phylogenetic tree suggests that ancestral geno-
types can persist throughout the disease course, despite the evolution of highly derived sub-
clones. We note that only four SNVs, three indels, and one copy-number gain were detected
in the trunk of this patient’s phylogenetic tree (branch a), indicating that development of
FGFR2-fusion-positive cholangiocarcinoma may only require a small number of other initiat-
ing events (Fig. 3B). For instance, clone 4 was only detected in autopsy samples, yet evolved
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from a distant ancestor to clones 1, 2, and 3. Clone 1 did not directly evolve from clone 2, but
rather it shares a common ancestor with clone 2, which must have been extant before treat-
ment (for clone 2 to be found in the pretreatment sample). Such persistent ancestral cells
may serve as an “uncommitted” tumor reserve capable of developing new adaptations
throughout the disease course. Subclonal analysis, such as in this study, permits the charac-
terization of cancer as a dynamic process of multiple evolving and diverging cellular popu-
lations rather than a singular entity in a patient. This view of cancer permits somatic variants, a
staple of cancer genomics, to be viewed in a new context. However, phylogeny inference
from short-read bulk sequencing has several inherent limitations, most notably that phyloge-
netic solutions consistent with variant fractions and CNVs are frequently nonunique (Pradhan
and El-Kebir 2018). Emerging long-read and single-cell sequencing technologies will permit
more certain and accurate modeling of phylogeny by directly assessing the phasing of sub-
clonal mutations.

Lessons learned from studying molecular mechanisms of resistance to ABL, EGFR, ALK,
KIT, and RAF inhibitors in human cancers have highlighted the need for next-generation ki-
nase inhibitors that are effective against acquired secondary resistance mutations (Demetri
2011; Roychowdhury and Talpaz 2011; Gainor and Shaw 2013; Lito et al. 2013; Van Allen
et al. 2014; Hrustanovic et al. 2015). For example, Friboulet et al. demonstrated that crizoti-
nib-induced resistance mutations in ALK-fusion-positive non-small-cell lung cancer (NSCLC)
can be overcome by treatment with ceritinib (Friboulet et al. 2014). Furthermore, mutant-
selective allosteric inhibitors have shown promise in overcoming the secondary EGFR resis-
tance mutation T790M in NSCLC following EGFR-directed therapy (Jia et al. 2016). Thus,
these studies may inform strategies to overcome secondary resistance mutations to FGFR-
targeted therapies as several preclinical studies have demonstrated the emergence of a
mutation at the gatekeeper residue or other residues within the ATP-binding pocket as
well as other mutations in FGFR1–3 (Chell et al. 2013). Unfortunately, several potent and
selective ATP-competitive small molecule FGFR inhibitors currently in clinical trials, includ-
ing INCB054828, BGJ398, AZD4547, and LY2874455, share structural similarities and
are ineffective in overcoming the gatekeepermutations (Chae et al. 2017). Although not con-
sidered a gatekeepermutation, the FGFR2N549Hmutation is in the vicinity of the ATP bind-
ing pocket. Notably, our in vitro findings provide further support for the cross-resistance of
multiple FGFR inhibitors, as cells harboring the secondary FGFR mutation N549H were
resistant to INCB054828, AZD4547, BGJ398, JNJ-42756493, and dovitinib. Because of
this, there has been interest in the use of structure-based drug design to develop a class
of next-generation inhibitors that would overcome resistance mutations located in the
FGFR2 ATP-binding pocket (Tan et al. 2014). Interestingly, we demonstrated that FGFR2
N549H retained sensitivity to ponatinib. The clinical use of ponatinib in this context is sup-
ported by pharmacokinetic data in patients demonstrating a steady state ponatinib plasma
concentration of 145 nM attained 4–8 h after receiving the maximum approved dose of 45
mg (Cortes et al. 2012). Unfortunately, there are serious adverse cardiovascular events asso-
ciated with ponatinib, which are often dose-limiting (Gagnieu et al. 2013). Thus, the devel-
opment of next-generation FGFR inhibitors has the potential to dramatically impact the
clinical care of patients receiving FGFR-targeted therapies.

In summary, this work suggests that clonal heterogeneity contributes to acquired clinical
resistance to the novel FGFR inhibitor, INCB054828, in cholangiocarcinoma. Although lim-
ited to a single patient, this is the first study, to our knowledge, to define a mechanism of
acquired resistance to INCB054282 through a secondary mutation to the FGFR inhibitor,
INCB054828. Through rapid research autopsy and WES, we determine the presence of
four tumor subclones and elucidate their evolution inmetastatic tissues over time in a patient
with FGFR2-fusion-positive cholangiocarcinoma. Furthermore, we identified a posttreat-
ment secondary kinase mutation in FGFR2, present in a single metastatic tumor sample
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demonstrating the significance of intertumor heterogeneity within the same patient. We
characterized the impact of the N549H mutation on sensitivity to different FGFR inhibitors
in vitro. The results of our in vitro drug sensitivity studies suggest that this mutation conferred
resistance to INCB054828 in this patient and thus may have potential as a clinically useful
biomarker of resistance. Overall, our findings suggest that secondary FGFR mutations are
drivers of acquired clinical resistance. Understanding these mechanisms of resistance along
with FGFR kinase domain-independent mechanisms of resistance will facilitate approaches
to prevent or overcome treatment resistance and disease recurrence and guide clinical strat-
egies for these patients.

METHODS

Research Autopsy and Patient Samples
The patient consented to an IRB-approved study for high-throughput sequencing of tumor
and normal specimens (OSU-13053, NCT02090530) at the James Cancer Hospital and The
Ohio State University. OSU-SpARKFuse, a targeted RNA-based NGS assay to detect gene
fusions, and a targeted DNA sequencing assay to detect single-nucleotide variations were
performed on tumor biopsy specimens as previously described (Reeser et al. 2017). The pa-
tient also consented to a body donation study. Upon death of this patient, next of kin in-
formed the research team, who arranged for transportation to the OSU Regional Autopsy
Center, and the autopsy was performed 8-h postmortem. Guided by radiographic scans,
all visible malignant as well as adjacent normal tissues were collected and frozen in optimal
cutting temperature (OCT) compound. Following the autopsy, the patient was returned to
the funeral home.

Whole-Exome Sequencing
Genomic DNAwas extracted from frozen tumor biopsy samples and tumors collected during
autopsy using the QIAamp DNA Mini Kit. The QIAamp DNA Mini Blood Kit was used to ex-
tract genomic DNA from blood. WES was performed as described below. Briefly, the KAPA
Hyper Prep Kit (Roche) was used for library preparation, and libraries were enriched using the
xGEN Exome Research Panel v1.0 from Integrated DNA Technologies. 2 × 150-bp paired-
end sequencing was performed on an Illumina HiSeq4000 at The Genomics Services
Laboratory at Nationwide Children’s Hospital (Columbus, Ohio).

Histology
Freshly collected tumor biopsy and autopsy samples were immediately embedded and fro-
zen in OCT compound (Fisher). Frozen sections were cut from tumor biopsy and autopsy
samples at 5 µm on a Leica Cryostat CM1950 for H&E staining. A board-certified pathologist
reviewed representative slides for each tumor block for estimated tumor content.

Bioinformatics Analysis
All bioinformatics analyses were performed using the Oakley supercomputer at the Ohio
Supercomputer Center (“Oakley supercomputer” 2012). Alignment of WES data to the hu-
man genome version hg19 was performed with Burrows–Wheeler Aligner (bwa) (Li and
Durbin 2009) version 0.7.14. Duplicate reads were removed using Picard (“Picard Tools -
By Broad Institute”) version 2.3.0. Picard and GATK (McKenna et al. 2010) version 3.5
were used to perform quality recalibration and local realignment around indels. SNV and
indel calling were performed with VarScan2 (Koboldt et al. 2012) version 2.3.9 and
bam-readcount (Larson and Abbott 2016) as previously described (Chen et al. 2019;
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Supplemental File S1). SNVs and indels were annotated using ANNOVAR (Wang et al. 2010)
(revision #11f4bb, 2016-02-01). Putative driver mutation analysis was performed with
CRAVAT (Douville et al. 2013) version 5.2.4, using the CHASM (Carter et al. 2009), algorithm
version 3.1. TMB was computed as the sum of all called somatic SNVs and indels within the
capture region in each sample, divided by the size of the capture region (∼38.9 Mb).
Microsatellite instability (MSI) testing was performed with MANTIS (Kautto et al. 2017) using
the recommended threshold of 0.4 to call MSI and a set of 2539 whole-exome microsatellite
loci (Bonneville et al. 2017). Mutational signatures were called with deconstructSigs
(Rosenthal et al. 2016) version 1.8.0 using the COSMIC Mutational Signatures set (Forbes
et al. 2017), exome2genome trinucleotide frequency correction, and otherwise default set-
tings (Supplemental File S2).

CNV calling was performed using FALCON (Chen et al. 2015) version 0.2, utilizing germ-
line tumor and normal variants (Supplemental File S3). The QC procedure provided with
Canopy (Jiang et al. 2016) was used to reduce false-positive segmentations, with default
length and ΔCN settings. For each sample, rdep (read depth ratio) was the ratio of aligned
reads in tumor versus normal. FALCON was initially run with threshold 0.3. Resulting CNVs
were manually curated to identify genomic regions with major copy number >2 or minor
copy number <0.5 in at least one sample. For each curated region, a common pair of break-
points was estimated across all tumors, and FALCON was rerun with threshold 0.2 and t̂chr
set to the nearest SNPs to each breakpoint in the chromosome (Supplemental File S4).
Matrices WM, Wm, εM, and εm (used for Canopy input) were obtained from FALCON output,
and matrix Y was determined by calculating the overlap of mutations used for tree building
with curated CNV regions.

To generate a sample-based phylogenetic tree, a distance matrix was first computed as
follows:

dij = |Si D Sj|,

where D [ Z N+1( )× N+1( ) is the distance matrix, N is the number of samples, Si is the set of
somatic SNVs called in sample i∈1,…,N, and Δ is the set symmetric difference. The set of
somatic SNVs in normal, corresponding to i=N+1, is the empty set (by definition); there-
fore, the distance between normal and any tumor collapses to the number of SNVs in that
tumor. The tree was generated over D via NJ (Saitou and Nei 1987) with RapidNJ
(Simonsen et al. 2008) version 2.3.2 and visualized using Interactive Tree of Life (iTOL)
(Letunic and Bork 2016) version 4.2.3. Normal is regarded as the root of the tree.
Subclonal-based phylogenetic analysis with Canopy and maximum likelihood-based post-
hoc assignment of somatic SNVs and indels to the resulting treewas performed as previously
described (Chen et al. 2019). Canopy computes a Bayesian information criterion (BIC;
Schwarz 1978) score for each potential number of subclones, which was used to determine
the number of subclones that best represents the data. Note that Canopy estimates its nor-
mal cell fractions based on variant fractions and CNV data, and reported purities can differ
from pathologist estimates, likely because different sections of the tumor blocks were
sequenced than were reviewed by the pathologist (Supplemental File S5).

Mutations within each branch of the tree were temporally ordered using a Bradley–Terry
model (Bradley and Terry 1952). For any tree edge z∈ Z, we have a set of mutations Vz.
For convenience, define VAFi(v) as the VAF of mutation v in sample i∈ 1,…,N. Given variants
v1, v2∈Vz, we compute the score of v1 versus v2 in i as follows:

wi(v1, v2) =
1, VAFi(v1) . VAFi(v2),
0, VAFi(v1) , VAFi(v2),
0.5, VAFi(v1) = VAFi(v2).

⎧
⎨

⎩
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We now define W [ R Vz ×| |Vz| |, the wins matrix, over all samples:

Wjk =
∑N

i=1

wi(vj, vk), j = k,

0, j = k,

⎧
⎪⎪⎨

⎪⎪⎩
j, k [ 1, . . . ,|Vz |.

We utilized the R package BradleyTerryScalable (Kaye and Firth 2017) version 0.1.0
with a=1.1, which implements the maximum a priori estimate of Caron and Doucet (Caron
and Doucet 2012). Results are returned as abilities, such that

P(v1 occurred before v2) = p1

p1 + p2
,

where π1 and π2 are the abilities of mutations v1 and v2. Note that ability scores denote con-
fidence in ordering, not the time intervals between acquisition of mutations. This analysis
was performed independently for each edge of the clonal phylogeny tree, utilizing both
mutations supplied to Canopy and those retroactively assigned to the tree.

Droplet Digital PCR and Analysis
Isolated genomic DNAwas amplified using a custom-designed probe for the FGFR2N549H
point mutation (PrimePCR ddPCR Mutation Assay, Bio-Rad) and the ddPCR Supermix for
Probes (Bio-Rad). The reaction mixture consisted of 250 ng of DNA template (8 µL), 10 µL
of ddPCR Supermix for Probes (Bio-Rad), and 2 µL of the primer/probe mixture. Droplets
were generated using the QX200 Droplet Generator (Bio-Rad) and then transferred to
a 96-well plate (Eppendorf) for PCR amplification with the following conditions: 5 min at
95°C, 40 cycles of 94°C for 30 sec, 55°C for 1 min, followed by 98°C for 10 min (ramp rate
2°C/sec). Droplets were analyzed with the QX200 Droplet Reader (Bio-Rad) for fluorescent
measurement of FAM and HEX probes. Gating was performed based on positive and neg-
ative controls, and mutant populations were identified. All reactions were run in duplicate.
The ddPCR data were analyzed with QuantaSoft analysis software (Bio-Rad) to obtain
fractional abundance of the mutant DNA alleles in the wt/normal background.

cDNA Plasmid Generation, Lentivirus Production, and Transduction
The FGFR2–CLIP1 fusion was produced and cloned into the pLVX-IRES-Puro vector
(Clontech) by GenScript (Supplemental Fig. S1). Using site-directed mutagenesis, the
FGFR2N549Hmutation was introduced into the fusion by GenScript. NIH3T3 cells were sta-
bly transduced with either empty, FGFR2–CLIP1 or FGFR2–CLIP1 N549H lentiviral vectors.
Cells were selected in puromycin (1 µg/ml; Sigma) for 72 h prior to their use in downstream
experiments.

RNA Isolation, RT-PCR, and Sanger Sequencing
RNA was isolated from cell lines, and cDNA was synthesized using the Quick-RNA MiniPrep
Kit (Zymo) and the iScript cDNA Synthesis Kit (Bio-Rad), respectively. cDNA was subse-
quently PCR amplified with FGFR2–CLIP1 and FGFR2 N549H fusion specific primers (IDT).
Primer sequences are listed in Table 2. The PureLink Quick PCR Purification Kit
(Invitrogen) was used to purify amplified PCR product and samples were then Sanger se-
quenced (The Ohio State University Comprehensive Cancer Center Genomics Shared
Resource, Columbus, OH).

Cell Culture
NIH3T3 and HEK293T cell lines were purchased from American Type Culture Collection
(ATCC) and cultured in a humidified incubator at 37°C and 5% CO2. Cells were cultured
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according to the ATCC-recommended protocols. All cell lines were routinely subjected
to short tandem repeat profiling to confirm identities and mycoplasma testing using the
e-Myco plus Mycoplasma PCR Detection Kit (Bulldog Bio).

Western Blotting
Western blot assays were carried out using established protocols and probedwith the follow-
ing antibodies: phospho-Akt (Ser473) 1:1000 (Cell Signaling 9271), Total Akt 1:1000 (Cell
Signaling 9272), phospho-MEK1/2 1:5000 (Cell Signaling 9154), Total MEK1/2 1:5000
(Cell Signaling 9122), p44/42 MAPK (Erk1/2) 1:5000 (Cell Signaling 9101), Total MAPK
1:5000 (Cell Signaling 9102), phospho-FGF Receptor (Tyr653/654) 1:500 (Cell Signaling
3471), FGF Receptor 2 (D4L2V) 1:500 (Cell Signaling 23328), phospho-PLCγ1 (Tyr783)
1:1000 (Cell Signaling 14008), PLCγ1 (D9H10) 1:1000 (Cell Signaling 5690), phospho-
FRS2-α (Tyr196) 1:1000 (Cell Signaling 3864), FRS2 1:1000 (abcam 10425), phospho-PI3
Kinase p85 (Tyr458)/p55 (Tyr199) 1:1000 (Cell Signaling 4228), PI3 Kinase p85 (19H8)
1:000 (Cell Signaling 4257), β-actin 1:10000 (Cell Signaling 4967).

Drug Sensitivity Assays
NIH3T3 Empty, FGFR2–CLIP1, FGFR2–CLIP1N549H cells were plated at a density of 10,000
cells per well in 96-well plates. Cells were treated for 72 h with either INCB054828 (Incyte),
BGJ398 (Cayman Chemical), JNJ-42756493 (Cayman Chemical), AZD-4547 (Cayman
Chemical), ponatinib (Cayman Chemical), or dovitinib (Cayman Chemical) ranging from
0.01 to 5000 nM. Quantification of viable cells was assessed using an MTS/PMS colorimetric
assay. IC50 values were calculated in Prism (GraphPad) using a four-parameter dose–
response model.

ADDITIONAL INFORMATION

Data Deposition and Access
Data used for the analyses presented in the manuscript have been submitted to dbGaP
(https://ncbi.nlm.nih.gov/gap) under the project accession number phs001830.v1.p1. The
FGFR2-CLIP1 fusion gene variant and the secondary FGFR2 mutation identified in the pa-
tient have also been deposited to ClinVar (https://ncbi.nlm.nih.gov/clinvar/) under the acces-
sion numbers SCV000927106 and SCV000914229.1.

Ethics Statement
The patient consented to an IRB-approved study for high-throughput sequencing of tumor
and normal specimens (OSU-13053, NCT02090530) at the James Cancer Hospital and The
Ohio State University. OSU-SpARKFuse, a targeted RNA-based next-generation sequencing
assay to detect gene fusions, and a targeted DNA sequencing assay to detect single-nucle-
otide variations were performed on tumor biopsy specimens as previously described

Table 2. Primer sequences

Target Forward Reverse Product size (bp)

FGFR2–CLIP1 5′-CAGAGACCAACGTTCAAGCA-3′ 5′-CGGCATCCTTTTCTGTGAGT-3′ 214

N549H 5′-GTGGCCGTGAAGATGTTGAA-3′ 5′-AGGTATTCTCGGAGGTTGCC-3′ 188

Primer sequences used for PCR and Sanger sequencing to confirm the presence of either the fusion or the mutation.
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(Samorodnitsky et al. 2015b; Reeser et al. 2017). The patient also consented to a body don-
ation study.
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