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Abstract
A diet rich in cruciferous vegetables such as cauliflower, broccoli, and cabbage
has long been considered healthy, and various epidemiological studies suggest
that the consumption of cruciferous vegetables contributes to a
cancer-protecting diet. While these vegetables contain a vast array of
phytochemicals, the mechanism by which these vegetables counteract cancer
is still largely unresolved. Numerous   studies have implicatedin situ
indole-3-carbinol, a breakdown product of the glucosinolate
indole-3-ylmethylglucosinolate, as one of the phytochemicals with anti-cancer
properties. Indole-3-carbinol influences a range of cellular processes, but the
mechanisms by which it acts on cancer cells are slowly being revealed. Recent
studies on the role of indole-3-carbinol in Arabidopsis opens the door for
cross-kingdom comparisons that can help in understanding the roles of this
important phytohormone in both plant biology and combatting cancer.
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Introduction
A diet rich in cruciferous vegetables such as cauliflower,  
broccoli, and cabbage has long been considered healthy. Even 
in ancient times, extracts from these vegetables were thought to 
have medicinal and curative properties, and both Pythagoras and  
Hippocrates understood the medicinal properties of mustard 
extracts1. In the 20th century, epidemiological studies pointing to 
the protective properties of cruciferous vegetables in a cancer-
protecting diet started to accumulate2. A meta-analysis of studies 
carried out over 18 years in Europe revealed an inverse associa-
tion between weekly consumption of cruciferous vegetables and 
several common cancers, including colorectal, breast, kidney, 
and upper digestive tract cancers3. While these vegetables contain  
a vast array of phytochemicals4, the mechanism by which these  
vegetables counteract cancer is still largely unresolved.

The anticarcinogenic properties associated with crucifers are  
primarily attributed to the presence of glucosinolates, a family of 
secondary metabolites that are synthesized uniquely in this plant 
family and play a dominant role in plant defenses against insects5. 
Glucosinolates are derived from glucose and amino acids and 
contain various modifications to their side chain. The exact glu-
cosinolate profile varies among crucifer species, and more than 
140 glucosinolates have been characterized, including approxi-
mately 40 in Arabidopsis6,7. Herbivory or other tissue damage 
initiates the hydrolysis of glucosinolates by an endogenous plant  
β-thioglucosidase termed “myrosinase”. Glucosinolates and  
myrosinase are stored in separate plant compartments and meet 
only following cell rupture. This separation is likely an adapta-
tion to allow the targeted production of glucosinolate breakdown 
products, which are toxic to not only herbivores and pathogens  
but also the plants themselves. Further catalysis and spontane-
ous degradation results in the formation of nitriles, epithionitriles,  
oxazolidine-2-thiones, thiocyanates, and isothiocyanates8,9. These 

glucosinolate breakdown products cause the characteristic sharp 
taste of cruciferous vegetables and typically have a deterrent  
effect on generalist herbivores10–12.

Breakdown of indole-3-ylmethylglucosinolate (I3M-GS), one of 
the most widely distributed glucosinolates, leads to the forma-
tion of indole-3-acetonitrile (I3N) and indole-3-carbinol (I3C)  
(Figure 1)13. I3C, in turn, can react with itself and a variety of other 
plant metabolites to form conjugates, some of which are shown 
in Figure 1. Most of these I3C conjugates have as-yet-unknown  
functions in plant metabolism, though, interestingly, another 
function of glucosinolate breakdown products may be to signal  
further plant defense responses14. Therefore, it is possible that  
I3M-GS breakdown also triggers other downstream responses in 
Arabidopsis and other crucifers.

From a dietary perspective, cooking vegetables affects their  
profile of glucosinolate breakdown15. Boiling leads to inactivation 
of the myrosinase enzyme but can also lead to a non-enzymatic 
breakdown of I3M-GS to I3C and I3N16. In addition, human gut 
microbes can lead to glucosinolate breakdown17.

Indole-3-carbinol and cancer
The glucosinolate breakdown products, rather than intact  
glucosinolates, primarily contribute to the anticarcinogenic 
effects of eating cabbage, broccoli, and related vegetables11,12,18.  
I3C has long been studied regarding potential roles in cancer  
management19,20, and many studies showed that I3C suppresses the  
proliferation of various cancer cell lines, including breast, colon, 
prostate, and endometrial cancer cells (reviewed in 19,21). One 
example of its anti-proliferative properties comes from a study 
conducted on non-tumorigenic and tumorigenic breast epithelial 
cells (MCF10A and MCF10CA1a, respectively), which showed 
that I3C induced apoptosis in the breast cancer cells but not in 

Figure 1. Myrosinase-catalyzed breakdown of indol-3-ylmethylglucosinolate (I3M-GS). Myrosinase-catalyzed breakdown of I3M-GS 
leads to the formation of unstable intermediates and then to indole-3-acetonitrile (I3N) and indole-3-carbionol (I3C). I3C reacts with itself and 
other plant metabolites to form a number of conjugates, some of which are shown.
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the non-tumorigenic breast epithelial cells22. I3C and one of its  
reaction products, diindolylmethane (DIM), were implicated in 
the induction of phase 1 detoxification enzymes, which can result 
in the breakdown of other dietary carcinogens. Both in situ and  
in vivo studies point to a role for I3C as a chemoprotective agent in 
breast and prostate cancer23.

The exact mechanisms by which I3C influences human cells 
are unclear, though direct interaction with a variety of signaling  
pathways has been proposed. The treatment of various cancer cells 
with I3C induces G1 cell cycle arrest24–30. Other studies pointed 
to a connection between treatment of I3C and stimulation of  
apoptosis in several tumor cells25,31–34. I3C also induced autophagy 
in different cell lines. For example, the treatment of human colon 
cancer HT-29 cells with I3C and genistin induced autophagy and 
suppressed the cells’ viability35. The treatment of human breast  
cancer cell lines with a cyclic tetrameric derivative of I3C resulted 
in upregulation of key signaling molecules involved in endo-
plasmic reticulum stress response and autophagy36. I3C also has  
the potential to modulate the metabolism of estrogen, and, through 
this, it may lower the risk of hormone-dependent cancers37–39.  
In addition, I3C inhibited tumor invasion and metastasis40–44 
and modulated the activity of several transcription factors and  
various protein kinases21. Interestingly, I3C may also be involved 
in the inhibition of amyloid fibril formation45. I3C was proposed 
to act as an angiogenesis agent, as it was shown to inhibit the  
development of new blood vessels46. A number of studies have 
shown that I3C treatment leads to various changes in gene 
expression, including changes in key microRNAs (reviewed  
in 47). The complex mixture of indole metabolites found in cru-
ciferous vegetables likely has synergistic anticarcinogenic effects  
that are not seen in experiments with individual compounds32.

In vivo studies showed that I3C inhibits the development of  
different cancers in several animals when given before or in 
parallel to a carcinogen. However, when I3C was given to the  
animals after the carcinogen, I3C promoted carcinogenesis48. 
This concern regarding the long-term effects of I3C treatment on  
cancer risk in humans resulted in some caution in the use of I3C  
as a dietary supplement in cancer management protocols49,50.

Mammalian cellular processes attributed to I3C action are 
as diverse as the different phenotypes presented by the many  
cancers studied. Indeed, focusing on the effects of I3C on one 
type of cancer (e.g. breast cancer) may present pleiotropic effects 
for I3C on multiple molecular targets (reviewed in 51) that may 
be distinct from those presented in another cancer type. While 
not often considered, to get a different perspective on the action 
of I3C in cells in general, it may be instructive to learn from  
the activity of I3C in plants.

Indole-3-carbinol and plants
The model plant Arabidopsis thaliana provides an excellent  
system for elucidating the molecular mechanisms involved in I3C 
action, as 1) it produces I3C endogenously following herbivory,  
2) small amounts of I3C are produced constitutively in the roots, 
hinting at an endogenous role in maintaining homeostasis, and  
3) its short life cycle and small stature coupled with advanced 

available genetic and genomic resources make Arabidopsis an  
excellent model system not only for plant biology but also for 
eukaryotic research in general52.

While the role of I3C in deterring herbivores is well studied53,  
as is the biochemical pathway leading to the production of I3C13, 
the secondary responses in plants induced by I3C are only now  
starting to be revealed. Our recent studies highlight that I3C is 
not only a defensive chemical targeting herbivores but also a  
signaling molecule modulating different cellular and developmen-
tal pathways.

Using Arabidopsis as a model system, we showed that exogenously 
applied I3C rapidly and reversibly inhibited root elongation in a 
dose-dependent manner54. This inhibition was accompanied by 
three I3C-induced responses that are relevant for our understanding 
of I3C activity in inhibiting cancer.

First, the application of I3C led to a cessation of cell division 
in the root meristem (Figure 2A). While normally a number of  
CycB1-expressing cells are visible in the root meristem, follow-
ing I3C treatment, no CycB1-containing cells were detected, indi-
cating a cessation of cell division. This conclusion is supported  
by transcript-profiling results showing the downregulation of cell  
cycle genes six hours following exposure to I3C55.

Fluorescence-activated cell sorting (FACS) analysis on nuclei  
isolated from root tips further indicates a stoppage of the cell 
cycle. As seen in Figure 2B, three distinct populations of nuclei 
are detected in untreated roots, corresponding to 2n, 4n, and 8n  
nuclei. However, following treatment with I3C, there is a progres-
sive loss of the 4n and 8n populations, with a concurrent increase  
in cells with increased side-scatter (population B).

Second, the application of I3C led to a loss of auxin (indole-3-
acetic acid [IAA]) activity in the root meristem54. Auxin is the 
most central plant hormone, controlling nearly all aspects of 
plant growth and development56. I3C affects plant growth and  
development by directly modulating auxin signaling. I3C 
antagonized a number of auxin-induced growth phenotypes,  
including inhibition of root elongation, formation of root 
hairs, and secondary root branching. I3C directly interferes 
with the auxin-dependent binding of the auxin-receptor Trans-
port Inhibitor Response (TIR1) to two of its substrates54. The 
TIR1 auxin receptor is an F-box-containing subunit of the 
SCF (Skp, Cullin, F-box) E3 ubiquitin ligase complex. Auxin 
binding to the SCFTIR1/AFB promotes the degradation of auxin/ 
indole-3-acetic acid (Aux/IAA) transcriptional repressors and 
through this regulates the transcription of the auxin-induced  
genes57. I3C inhibits the auxin-dependent dimerization of  
the receptor with its substrates by competing with auxin for  
the same binding site in TIR1.

The third I3C-induced response relevant for our understanding 
of I3C activity in inhibiting cancer is autophagy. Exposure of  
Arabidopsis roots to I3C leads to the induction of autophagy58.  
This autophagy is not general, aimed at bulk degradation of  
general cytoplasmic content for recycling, such as that occuring  
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under starvation conditions, but rather specific. Specific autophagy 
targets damaged proteins and other cellular components for  
degradation59 and is seen in the co-localization of the GFP-
AtATG8A and mCherry-AtNBR1 marker proteins in autophago-
somes following I3C treatment. The I3C-induced autophagy  
targets the TIR1 auxin receptor, thus connecting I3C-dependent  
inhibition of auxin signaling55 and the I3C induction of 
autophagy58.

These two I3C-dependent processes were detected in roots not 
only after direct exposure to exogenously applied I3C but also 
following the treatment of leaves with I3C. Most importantly,  
leaf-wounding also induced autophagy and inhibited the auxin 
response in the root, and this effect of wounding was lost in 
glucosinolate-defective mutants. This indicates that an I3C-
dependent signal is transported from leaves to the root meristem 
where auxin signaling is inhibited and autophagy is induced.  
Thus, I3C is not only a defensive metabolite that repels insects 
but also involved in long-distance communication regulating  
growth and development in plants.

Indole-3-carbinol, autophagy, and protein turnover
The connection between I3C and autophagy is quite interesting,  
as this connection was also found in several human cancer  
cells, as described earlier35,36. The process of autophagy involves 
the degradation of unnecessary or dysfunctional cellular  
components through the actions of lysosomes (in mammals) or 
vacuoles (in plants). This process is evolutionarily conserved  
among eukaryotes, and its mechanism is well elucidated60,61. In 
the context of cancer, autophagy can be viewed as a “double- 
edged sword”. The activation of autophagy may function as a  
tumor suppressor (by degrading the defective organelles and 
cellular component) or can be exploited by the cancer cells to  
generate nutrients and energy during periods of starvation62.

Although I3C-induced autophagy was detected in both plants and 
animals, the direct signaling mechanism has yet to be elucidated. 
However, this might hint at a shared signaling mechanism for 
both plants and humans. Thus, not only is it instructive for cancer  
biologists to learn from the activity of I3C in plants but also plant 
biologists have much to gain from a closer understanding of the 
mechanistic studies of cancer biologists.

To date, only a few I3C-binding proteins have been identified.  
In human cells, the enzyme elastase, which mediates the con-
version of cyclin E from a higher- to a lower-molecular-weight 
form associated with cancer cell proliferation, was the first  
identified specific target protein for I3C63. I3C treatments also 
inhibited elastase-dependent cleavage of an additional substrate,  
membrane-associated CD40, a member of the tumor necrosis 
factor (TNF) receptor superfamily64. Thus, the I3C–elastase 
nexus may aid in the development of targeted therapies of human 
breast cancers where high elastase levels are correlated with  
poor prognosis.

The only I3C-binding protein identified in plants to date is the 
TIR1 F-box protein. While auxin is a plant-specific hormone, 
SCF complexes also exist in mammals and play important roles 
in many mammalian functions65. TIR1 is related to the human  
protein SKP266, so conceivably I3C could regulate protein  
turnover in mammals as well. This conjecture is supported by 
studies which showed that I3C targets and inhibits a different 
E3 ubiquitin ligase, NEDD4-1 (Neural precursor cell Expressed 
Developmentally Down regulated gene 4-1) in human melanoma  
cells67,68. Thus, an I3C-bound, inhibited NEDD4 would need to 
be cleared from the cell, and conceivably this could occur via 
specific autophagy, just as I3C-bound, inhibited TIR1 is targeted 
in plant roots for clearing by specific autophagy. As NEDD4 is  
frequently overexpressed in different types of human cancers69, 

Figure 2. Indole-3-carbionol (I3C) affects cell cycle and nuclear complexity in the Arabidopsis root meristem. A. Confocal imaging 
reveals a lack of Cyclin B–GFP-expressing cells following I3C treatment. Seedlings expressing Cyclin B–GFP were grown on Murashige and 
Skoog (MS) medium for 4 days, treated with MS (left panel) or 500 μm I3C (right panel) for 6 hours, and imaged using confocal microscopy. 
Cell walls were stained using propidium iodide. B. Fluorescence-activated cell sorting (FACS) analysis reveals changes in nuclear complexity 
following I3C treatment. Nuclei were isolated from Arabidopsis roots treated with MS or MS plus I3C for the marked times between 0 and 
15 hours and analyzed by FACS for DNA content (FL2-A = propidium iodide fluorescence) and nuclear complexity (SCC-H = light side 
scatter). The green, purple, and blue boxes represent the populations differing according to nuclear content, 2n, 4n, and the endoreplication 
population (8n), respectively. The red boxes represent two populations of nuclei (“A” and “B”) that differ according to side scatter.
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I3C could be a potential therapeutic agent inhibiting the activity  
of the over-accumulated E3 ligase.

While plants do not develop metastatic cancer as mammals do, 
plants can develop tumors. Plants and animals share numerous  
pathways and signaling cascades70, and approximately 70% of 
the genes implicated in cancer have homologs in the Arabidopsis  
thaliana genome, similar to the percentages of human cancer genes 
in other established systems such as Drosophila melanogaster, 
Caenorhabditis elegans, and Saccharomyces cerevisiae52. Fur-
thermore, while plants and animals obviously have independent 
hormonal regulatory mechanisms, some similarity and cross 
reactivity exists between the kingdoms. Plants produce phyto-
estrogens and other steroid hormones, which also affect human 
hormone signaling, as well as a number of putative steroid 

hormone-binding proteins71–75. Thus, the study of I3C in plants 
can have direct implications for further understanding the role of  
I3C and perhaps controlling cancer in humans.
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