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Regulation of ubiquitination is associated with multiple processes of

tumorigenesis and development, including regulation of the tumor immune

microenvironment. Deubiquitinating enzymes (DUBs) can remove ubiquitin

chains from substrates, thereby stabilizing target proteins and altering and

remodeling biological processes. During tumorigenesis, deubiquitination-

altered biological processes are closely related to tumor metabolism,

stemness, and the immune microenvironment. Recently, tumor

microenvironment (TME) modulation strategies have attracted considerable

attention in cancer immunotherapy. Targeting immunosuppressive

mechanisms in the TME has revolutionized cancer therapy. Prostate cancer

(PC) is one of the most common cancers and the second most common cause

of cancer-related death in men worldwide. While immune checkpoint

inhibition has produced meaningful therapeutic effects in many cancer types,

clinical trials of anti-CTLA4 or anti-PD1 have not shown a clear advantage in PC

patients. TME affects PC progression and also enables tumor cell immune

evasion by activating the PD-1/PD-L1 axis. Over the past few decades, an

increasing number of studies have demonstrated that deubiquitination in PC

immunemicroenvironment maymodulate the host immune system’s response

to the tumor. As the largest and most diverse group of DUBs, ubiquitin-specific

proteases (USPs) play an important role in regulating T cell development and

function. According to current studies, USPs exhibit a high expression signature

in PC and may promote tumorigenesis. Elevated expression of USPs often

indicates poor tumor prognosis, suggesting that USPs are expected to develop

as the markers of tumor prognosis and even potential drug targets for anti-

tumor therapy. Herein, we first summarized recent advances of USPs in PC and

focused on the relationship between USPs and immunity. Additionally, we

clarified the resistance mechanisms of USPs to targeted drugs in PC. Finally, we

reviewed the major achievement of targeting USPs in cancers.
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Introduction

Prostate cancer (PC) is one of the leading causes of

morbidity and mortality in men worldwide (1). Radical

surgical resection combined with androgen deprivation

therapy (ADT) can be selected for the treatment of localized

disease (2). Even though local treatment reduces mortality in PC

patients, 20-40% of men experience recurrence (3). Although the

initial effect of ADT is significant, this subset of patients will

eventually progress to castration-resistant PC (CRPC) (4). Once

PC spreads, the survival rate drops significantly to around 30%

(5). Despite the success of ADT, chemotherapeutics, and

radiopharmaceuticals in PC, none of these therapies cures

advanced PC (6–8). As a novel treatment, immunotherapy has

achieved remarkable success in solid tumors, such as melanoma,

but has shown limited therapeutic benefits in PC. The

insensitivity of PC to immunotherapy (such as checkpoint

inhibitors) may reflect the immunosuppressive nature of the

tumor microenvironment (TME) in PC. Cells within the TME

express and secrete molecules, including programmed death-

ligand 1 (PD-L1), transforming growth factor-beta (TGF-b), and
vascular endothelial growth factor (VEGF) to mediate

immunosuppression. Additionally, immune tolerance plays a

key role in the occurrence and development of prostate tumors

(9, 10).

Ubiquitination is involved in nearly all cellular processes,

including protein activation/inactivation, DNA repair, gene

regulation, and signal transduction (11, 12). In addition to

these broad roles, ubiquitination was closely associated with

the regulation of immune responses, as well as immune

tolerance (13). Ubiquitination regulates T cell development,
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activation, and differentiation, thereby maintaining adaptive

immune responses and immune tolerance to self-tissues (13).

Many proteins in the T cell receptor (TCR) signaling pathway

are regulated by the ubiquitin-proteasome system (UPS), which

is critical for T-cell activation (14).

In the UPS, the substrate proteins are covalently attached to

ubiquitin via isopeptide bonds catalyzed by an E1-E2-E3 ligase

cascade, followed by proteasomal degradation (Figure 1) (15). It

should be noted that not all ubiquitination modifications lead to

protein degradation. Some ubiquitination do not degrade

proteins, but alters protein activity, thereby mediating

biological effects, such as gene regulation and DNA damage

repair (12). Ubiquitin molecules are linked to target proteins as

mono- or poly-ubiquitin. Generally, polyubiquitination marks

signals for protein degradation by cellular proteasomes, while

monoubiquitination marks can act as non-degradative

modifications. Ubiquitins are mainly connected by lysine (K6,

K11, K27, K29, K33, K48, and K63) and methionine (M1)

residues. The K48 and K63 chains are the most studied

ubiquitin chain linkages that guide the expression of substrate

proteins. The K48 ubiquitin chain has been shown to play an

important role in ATP-dependent proteasomal degradation

(16), while the K63 ubiquitin chain is mainly involved in the

modification of protein location and function (17).

Deubiquitinases (DUBs) regulate a variety of cellular

functions by removing ubiquitin chains from substrates.

Currently, more than 100 DUBs have been found in humans,

and are divided into seven different families according to their

structure and function (18): ubiquitin-specific proteases (USPs),

ovarian tumor proteases(OTUs), ubiquitin C-terminal

hydrolases (UCHs), Jab1/Mov34/MPN+ proteases (JAMMs),
FIGURE 1

Ubiquitination and Deubiquitination The substrate proteins are covalently attached to ubiquitin via isopeptide bonds catalyzed by an E1-E2-
E3ligase cascade, followed by proteasomal degradation.
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Machado-Joseph disease protein proteases (MJDs), the motif

interacting with ubiquitins(MIUs)-containing novel DUB family

members (MINDYs), and Zinc Finger ubiquitin-specific

proteases (ZUP/ZUFSPs). USPs is the largest and most diverse

group of DUBs, accounting for about 60%, ranging between 50-

300 kDa in size (19). To date, finding effective ways to enhance

tumor immunotherapy in PC has been a great challenge.

Turning “cold” tumors into “hot” tumors by modulating USPs

to influence the immune response of the TME could effectively

improve the efficacy of checkpoint inhibitors. Combining small-

molecule inhibitors of USPs with checkpoint inhibitors in PC

will be a promising therapeutic strategy.
USPs and PC

Introduction of USPs

USPs belong to the family of cysteine proteases whose

enzymatic activity is located in the thiol group of the central

cysteine (20). The catalytic sites all contain a cysteine residue

with nearby histidine and asparagine/aspartate residues that

facilitate nucleophilic attack by the cysteine (21). USPs

promote the occurrence and development of PC by

participating in multiple signaling pathways, such as androgen

receptor (AR) accumulation, TGF-b pathway, and p53 pathway

(22). Additionally, deubiquitination of USP can also regulate the

AKT phosphorylation and fatty acid synthase pathways in PC

(22, 23).

AR is the most common cause of signaling pathways in PC

and may contribute to the emergence of CRPC (24). Activation

of AR inhibits proteasomal degradation of MYC, leading to PC

cell invasion (25). In primary PC, MYC is commonly amplified

and overexpressed in 37% of metastatic focus (26, 27). MYC was

regarded as the key driver of CRPC pathogenesis, and its

amplification usually indicated poor outcomes (28). Stability of

MYC is precisely regulated by UPS, which further regulates the

growth of PC cells. Multiple USPs (USP2a, USP16, and USP22)

are known to regulate MYC stability (29–31). USP22 is a

functional mediator necessary for MYC to exert oncogenicity,

thereby increasing the stability and tumorigenic activity of MYC

in PC cells (31).

Damage to DNA triggers corresponding cellular responses,

ranging from arresting the cell cycle to activating specific DNA

repair mechanisms that vary, depending on the type of damage

(32). Unrepaired DNA damage disrupts genome integrity and

contributes to the pathogenesis of a range of human diseases,

including cancer and premature aging (33). Additionally, DNA

damage-induced senescence is associated with a pro-

inflammatory secretory phenotype that remodels the tumor

immune microenvironment (34). This study found that some

USP families are also involved in the DNA damage repair

pathway. Both USP26 and USP37 participate in homologous
Frontiers in Oncology 03
recombination by regulating rap80, and then repair DNA

double-strand break (DSB) (35). Additionally, USP14 regulates

DNA damage repair by targeting RNF168-dependent

ubiquitination (36). During nucleotide excision repair, the

nucleotide excision repair protein represented by XPC could

repair the damaged DNA by ubiquitination binding (37). The

USP22 could significantly protect XPC from deubiquitination;

thus, promoting the survival of damaged DNA (38).

Additionally, USP7 and USP11 can also regulate nucleotide

excision repair through deubiquitinating XPC (39, 40).
USPs maintain AR stability

AR, a steroid receptor transcription factor for testosterone

and dihydrotestosterone, is a central driver of PC development.

Androgens act as ligands that bind to AR, and the activated AR

binds to the DNA sequences of downstream genes, which

initiates the expression of a series of genes that promote PC

progression. Prostate-specific antigen is the most well-

characterized AR target for monitoring PC development. Due

to the central role of AR signaling in PC progression, ADT

therapy has been the mainstay of treatment for patients with

locally advanced PC. Reactivation of AR signaling can still be

detected in CRPC cells despite multiple therapeutic options for

inhibiting AR signaling (41). Amplification and mutation of the

AR gene are also associated with the progression of CRPC,

ultimately rendering it incurable.

Most of the previous studies have focused on the regulation

of AR synthesis in PC, while the regulation of AR post-

translational modification and degradation is easily

overlooked. Several USPs (USP7, USP10, USP12, USP14,

USP22, and USP26) have been reported to regulate AR

signaling pathways, thereby affecting AR stability in the

prostate. USPs (USP7, USP12, USP14, and USP22) can

directly deubiquitinate AR and promote AR transcription (31,

42–44). USPs (USP12, USP14, and USP26) can also protect AR

through reduced ubiquitination and degradation by indirectly

reducing mouse double minute 2 (MDM2, a negative regulator

of the tumor suppressor p53) protein levels (44–46).

Furthermore, USP7 and USP10 can indirectly stabilize AR

through histone H2A deubiquitination (42, 47).
Resistance of enzalutamide

Enzalutamide is a next-generation AR pathway inhibitor

that binds to the ligand-binding domain of AR and disrupts the

interaction between AR and androgen. Enzalutamide was

initially effective in men with hormone-sensitive PC, but in

most cases, resistance to the therapy tends to develop over time.

Overexpression of some USPs in PC inhibits the enzalutamide

effect and confers resistance to ADT therapy. Overexpression of
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USP22 enhanced AR protein accumulation, which in turn

activated downstream target genes regulated by AR and MYC.

Such USP22-mediated activation can bypass androgens or AR

antagonists (enzalutamide) to induce castration resistance in PC

(48). Androgen receptor splice variant 7 (AR-V7), a ligand-

independent activating variant of AR, is thought to be an inducer

of CRPC. Targeted AR therapy is limited in CRPC due to lack of

the ligand-binding domain of AR-V7. Among the AR-Vs, AR-

V7 is the most abundant variant that has the highest detection

frequency in PC. It should be noted that AR-V7 is the only

endogenous variant detected at the protein level and can show

functional activity in the absence of androgens. Protein analysis

showed that USP22 depletion significantly reduced the half-life

of AR-V7. Conversely, overexpression of USP22 slowed down

AR-V7 degradation to some extent, partially restoring the

viability of CRPC cells (48).

The kinesin family member 15 (KIF15) promotes

enzalutamide resistance by enhancing AR signaling in PC

cells. The KIF15 directly binds to the N-terminus of AR/AR-

V7 and prevents AR/AR-V7 protein degradation by increasing

USP14 binding to AR/AR-V7 (49). KDM4A demethylates the

promoters or enhancers of certain AR target genes and acts as an

AR co-activator. USP1 deubiquitinates and stabilizes KDM4A,

thereby promoting the binding of AR to the c-MYC gene

enhancer. Furthermore, inhibition of USP1 reduced PC

proliferation and promoted resistance to enzalutamide in a

KDM4A-dependent manner (50).
TME and USPs

Background of TME

The TME consists of tumor cells, immune cells, fibroblasts,

endothelial and inflammatory cells, lymphocytes, and

extracellular matrix (ECM) (51). Infiltration of immune cells

(CD4+ and CD8+ T cells, dendritic cells, and natural killer cells)

into tumors is associated with improved prognosis in cancer

patients. Impaired cellular immunity and immunosuppressive

TMEmay lead to PC becoming a “cold” tumor (52). In advanced

PC, the function of natural killer and T cells is impaired in the

TME, and myeloid suppressor cells and regulatory T cells

(Tregs) are increased.

Cancer-associated fibroblasts (CAFs), a heterogeneous

population of mesenchymal cells, are major players in the

tumor immunosuppressive system. VEGF is a key factor

secreted by CAFs to stimulate new blood vessel formation. By

targeting the VEGF/VEGF receptor signaling pathway, the

proliferation of tumor endothelial cells (TECs) can be

inhibited, thereby controlling neovascularization in the TME.

The CAFs can also build microenvironmental structures by

synthesizing large amounts of ECM in the TME with

important implications for maintaining stemness, regulating
Frontiers in Oncology 04
tumor metabolism, and therapeutic resistance. More and more

researchers are paying attention to the immunosuppressive

effects of CAFs through their interactions with components of

the immune TME, especially immune cells (53, 54). In PC, M2

macrophages stimulate CAFs development by triggering

neovascularization, both of which synergize with tumor

development (55). The upregulated USP24 in M2 tumor-

associated macrophages (TAMs) could promote the malignant

development of cancer by increasing IL-6 expression (56).

Additionally, USP22 has an important function in repairing

DSBs that occur during B cell development (57).
Myeloid-derived suppressor cells

MDSCs are a heterogeneous population of immature myeloid

cells that suppress T and NK cellular activity, and they can also

confer resistance of tumor cells to immunotherapy. Clinical trials

have found a correlation between MDSCs abundance and poor

response to checkpoint inhibitor intervention (58). The

recruitment of immune cells involved C-X-C motif chemokine

ligand 5 (CXCR2), which promotes angiogenesis and tumor

growth (59). CXCR2 plays a role in tumor progression by

promoting the migration of MDSCs into the TME (60). MDSCs

are enriched in prostate tumors in a CXCR2-dependent manner

after surgical castration. Mast cells are innate immune cells and

the number of infiltrating human prostate cancer correlates with

prognosis (61). Mast cells can interact with MDSCs via CD40,

further enhancing immunosuppression and directly impairing

CD8+ T cell function (62). The extent of T-cell infiltration in

prostate tumors is inversely related to the frequency of MDSCs,

showing a strong synergistic response when MDSC-targeted

therapy is combined with checkpoint inhibitors (63). Tyrosine

kinase inhibitors can enhance the effect of immune checkpoint

inhibitors by downregulating various cytokines that promote

immunosuppression in MDSCs. The MDSCs may be a useful

therapeutic target in the immune microenvironment of PC.

Studies have found that USP22 deletion may lead to a

significant reduction of MDSCs in the TME and promote the

infiltration of T cells and NK cells while the expression of USP22

confers tumor resistance to immunotherapy (64).
Tregs and PD1/PDL1

Tregs are a unique class of immunosuppressive CD4+ T cells

that primarily suppress the immune system by expressing the

master transcription factor forkhead box protein 3 (FOXP3).

Tregs penetrate the TME and suppress antitumor immune

responses, and the ratio of Tregs to T cells reveals the effect of

immunotherapy (65, 66). Tregs can inhibit antigen-presenting

cells (APCs), thereby producing immunosuppressive factors,

leading to the development of immunosuppressive TME.
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FOXP3 is a hallmark transcription factor that determines

and maintains the functional program of Tregs (67). It inhibits

interleukin-2 (IL-2) transcription and induces CD25 expression

(68). CD25 is a high-affinity receptor for IL-2, IL-2 is an essential

cytokine for the survival of Tregs and effector T cells, thus, CD25

expression in Tregs can compete for more IL-2 binding in the

TME than effector T cells. Therefore, Tregs accumulate more in

the TME than effector T cells (Figure 2) (69). FOXP3 protein

expression can be regulated by polyubiquitination-mediated

proteasomal degradation. Expression of USP7 is up-regulated

and active in Tregs cells, associated with FOXP3 in the nucleus.

E c t o p i c e x p r e s s i o n o f USP7 d e c r e a s e d FOXP3

polyubiquitination and increased FOXP3 expression. USP7

knockdown treatment reduced the expression of endogenous

FOXP3 protein, and decreased Tregs cell-mediated inhibition in

vitro (70).

PD-1 limits immune responses primarily by inhibiting

intracellular signaling in effector T cells. Compared to CTLA4,

the PD-1/PD-L1 (the ligand of PD-1) axis is more critical for the

continued activation and proliferation of differentiated effector

cells. The binding of PD-1 to PD-L1 can mediate T cell apoptosis

or induce T cell dysfunction, commonly referred to as T cell

exhaustion. Additionally, PD-L1 plays an important role in

regulating immune responses (71). The PD-L1 is normally

expressed on APCs and can control Tregs differentiation and

inhibit their activity. Tumor cells and other TME components,

such as infiltrating myeloid and dendritic cells often utilize

upregulated PD-1 ligands to induce T cell exhaustion, thereby

promoting tumor immune escape. Depletion of USP22
Frontiers in Oncology 05
promotes T cell-mediated cell killing. Moreover, USP22 could

regulate PD-L1 levels through two pathways (72). On the one

hand, USP22 can directly regulate PD-L1 degradation through

deubiquitination. On the other hand, USP22 regulates the

expression of PD-L1 through the USP22-CSN5-PD-L1 axis.
Cancer stem cells and TME

CSCs are a subpopulation of undifferentiated cancer cells

within a tumor with the ability to self-renew and differentiate

into multilineages. The expression of several stem cell surface

markers (CD44, CD133, OCT4, SOX2, and NANOG) has been

associated with the promotion of treatment resistance and cancer

progression. The TME is characterized by chronic inflammation

that activates andmodulates CSCs by stimulating cell proliferation

(73). Recent studies have revealed a close connection between

immune cells in CSCs and TME (74). TAMs provide key signals to

promote CSCs survival, self-renewal, maintenance, and migration

capabilities, and the CSCs provide tumor-promoting signals to

TAMs in turn, further enhancing tumorigenesis. The CSCs make

dendritic cells tolerant and impede the aggregation of dendritic

cells in the TME. CSCs may also overcome immune surveillance

by inhibiting T cell proliferation and effector function (75, 76).

CSCs induce Tregs infiltration through STAT3 signaling in the

TME, while Tregs regulate CSCs proliferation and expansion

through IL-17 and PGE2 (77). In conclusion, CSC-targeted

immunotherapy has the potential to become a new type of

immunotherapy for cancer.
FIGURE 2

Immune cells in TME Tumor cells often utilize upregulated PD-1 ligands to induce T cell exhaustion, thereby promoting tumor immune escape.
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To maintain CSC pluripotency, post-translational

modifications (such as ubiquitination) are tightly regulated.

USP22 is increased during progression from early-stage PC to

CRPC, and it has a strong prognostic value in PC (78). In multiple

tumors, USP22 has been described as a CSC marker that promotes

CSC formation and stemness maintenance (79). USP22 affects the

self-renewal of CSCs in cancer by regulating BMI1 protein

expression (80). Additionally, USP22 promotes CSC maintenance

through the Wnt/b-catenin pathway (81). Apart from USP22,

USP44 has been shown to be upregulated in CSCs of breast

cancer and promote tumor angiogenesis. In PC, knockdown of

USP44 suppressed CSC properties and reduced the tumorigenicity

of the PC. The expression of some pluripotent stem cell markers

(OCT4, NANOG, and CD133) was reduced in USP44 knockdown

cells. Specifically, USP44 promotes PC stemness by

deubiquitinating EZH2 (a histone-modifying enzyme). The

introduction of the ectopic EZH2 rescues the suppression of

tumor activity after the USP44 knockout (Figure 3) (82).
Hypoxic microenvironment

The characteristics of vascular tortuosity and rapid tumor cell

growth in TME usually induce hypoxia and recruit

immunosuppressive cells, including macrophages, Tregs, and

MDSCs. These immunosuppressive cells contribute to

immunosuppression in the TME by secreting immunosuppressive

factors, such as VEGF and TGF-b. Additionally, such a hypoxic

microenvironment may lead to a polarization state transition of

microphages from M1 to M2 based on their plastic properties.
Frontiers in Oncology 06
Hypoxia is difficult to avoid in the process of prostate treatment.

ADT therapy induces a hypoxic microenvironment in PC and

triggers autocrine TGF-b signaling and differentiation of CAFs into

myofibroblasts (83). Unfortunately, in a hypoxic environment,

tumors can resist T cell infiltration even in the context of

checkpoint inhibitors (CTLA-4 and PD-1 blocking). Studies in

mouse tumor models of PC show that hypoxic regions of tumors

represent centers of immunotherapy resistance, promoting the

transformation of immature myeloid cells into highly suppressive

myeloid-derived suppressor cells (84). Hypoxia can alter

vasculature in the TME through direct (Hypoxia-inducible factor

1a-mediated upregulation of VEGF) and indirect effects

(accumulation of cells leading to abnormal angiogenesis). The

resulting vasculature expresses too few adhesion molecules

necessary to support T cell extravasation, which can actively

induce T cell apoptosis through the involvement of the Fas

receptor. Those T cells capable of entering hypoxic tumors face a

metabolically, highly inhibited immune environment (dense

expression of PD-L and high concentrations of TGF-b).
Additionally, the MDSCs are concentrated in the hypoxic regions

of these tumors and they form an effective barrier to tumor

immunity. Hypoxia itself inhibits T effector cell differentiation

and interferon-g production (85).

A heterodimeric transcription factor, Hypoxia-inducible factor

1(HIF-1), consist of an a subunit expressed in an oxygen-

dependent manner and a constitutively expressed b subunit.

Under normal toxic conditions, HIF-1a is degraded via the UPS.

USP22 enhances the stability and transcriptional activity of HIF-1a
under hypoxia through deubiquitination, and it induces

upregulation of HIF-1a downstream genes (Figure 3) (86).
FIGURE 3

USPs-mediated tumor stemness and hypoxic microenvironment Under normoxic conditions, HIF-1a is degraded via the ubiquitin-proteasome
pathway. USP22 enhances the stability and transcriptional activity of HIF-1a under hypoxia through deubiquitination and induces upregulation of
HIF-1a downstream genes. USP22 maintains cancer stemness by regulating BMI1 and b-catenin pathways. Furthermore, USP44 promotes
prostate cancer stemness by deubiquitinating EZH2.
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Important signaling pathways in
PC TME

P53

P53 (also known as TP53) is a tumor suppressor, and P53

degradation or gene mutation is tightly involved in cancer

formation (87). P53 is a major regulatory transcription factor

capable of regulating a variety of biological processes, such as cell

cycle arrest, apoptosis, senescence, and repair of DNA damage

(88). In addition to the known oncogenic role of P53, P53 plays

an important role in immune responses and inflammation. P53

affects immunity and inflammation by regulating Toll-like

receptors (TLRs) (89). TLRs are an important class of protein

molecules involved in nonspecific immunity and are also a

bridge between nonspecific and specific immunities. Changes

in TLRs expression are associated with autoimmune diseases.

There is also an important link between P53 and immune

checkpoints. Cancer cells suppress immune responses and

evade immune surveillance by upregulating PD-1 and its

ligand PD-L1 in a P53-dependent manner. Another immune

checkpoint regulator, DD1a, is also a direct transcriptional

target of P53 (90). Many P53-regulated microRNAs (miRNAs)

are also implicated in immunity. For example, miR34 binds

directly to the 3′ untranslated region of the gene encoding PD-

L1, suggesting that P53 may regulate tumor immune responses

through miR-34 regulation of PD-L1 expression (91).

Mutant P53 (MTP53) protein is a tumor-specific neoantigen

that is immunogenic and can mediate the immune escape of cancer

cells. MTP53 makes tumors immunologically “cold” by inhibiting

the STING-TBK1-IRF3 pathway, thereby allowing cancer cells

expressing the “MTP53” antigen to evade immune detection (92).

Importantly, disruption of the MTP53/TBK1 complex can switch

the TME from “cold” to “hot” and allow the immune system to

limit tumor growth. Other (TBK1-independent) mutant P53

activity may also contribute to the TME regulation. P53 also

regulates the polarization of CD4+ T cells by enhancing the

transcription of Foxp3, the master regulator of Tregs, and it is

therefore predicted that loss of this role of p53 might enhance

antitumor immunity. Targeting the P53-MDM2 interaction

enhances MDM2 in T cells, thereby stabilizing STAT5 and

enhancing T-cell-mediated antitumor immunity (93).

Some USPs can modulate p53 through deubiquitination or

indirectly affect p53 through other signaling pathways. USP10

can interact with G3BP2 to block P53 signaling, leading to a poor

prognosis in PC (94). USP12 and USP2a directly deubiquitinate

and stabilize MDM2, thereby controlling the level of P53 gene in

PC (45, 95). Downregulation of USP7 can increase the level of

P53 via promoting MDM2 degradation (96). Caspase 8, a

member of the cysteine protease family, is a key driver of

apoptotic cell death. In cells with caspase 8 depletion, USP28

stabilizes p53 by deubiquitination to induce apoptosis of PC
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cells. However, in the presence of nuclear caspase 8, USP28 is

cleaved and inactivated, resulting in the loss of p53 protein (97).

Therefore, the dependence of caspase 8 should be considered,

while developing drugs against USP28 inhibitors in the future.
TGF-b

TGF-b is a pleiotropic cytokine with a complex role in

cancer progression (98). In the TME, cancer cells can exploit

the pleiotropy of TGF-b signaling and its downstream mediators

to create an immunosuppressive environment to evade

antitumor immunity . TGF-b mediates endothel ia l-

mesenchymal transition through SNAIL/Slug expression in

TECs to support neovascularization and accumulation of

myofibroblasts and CAFs in the TME (99). Moreover, TGF-b
can drive immune dysfunction in the TME by inducing

regulatory T cells and suppressing CD8+ and TH1 cells (100).

TGF-b inhibits interferon-g expression, restricts TH1 cell

differentiation, attenuates CD8+ activation and effector T cell

killing, and inhibits central memory T cell development. TGF-b
induces the differentiation of CD4+ T cells in the TME into

Tregs and has a major impact on the prognosis of patients with

this functional tumor.

Studies have shown that USPs (USP2a, USP4, USP9X,

USP15, and USP26) are involved in the regulation of TGF-b
signaling pathways in various cancers (17). For example, USP9X

can control the monoubiquitination of SMAD4 to regulate TGF-

b-mediated cancer metastasis (101).
Small molecule inhibitors of USPs

Based on the accumulated evidence that indicated the

potential of USP to promote cancer, targeting USP therapy

strategy has attracted extensive attention. In the past few years,

great breakthroughs have been made in the screening and

development of small-molecule USPs inhibitors. USP14 is the

most studied member of the USPs family. Herein, we use USP14

as a representative to describe small molecule inhibitors. USP14

contains a total of 494 amino acids with a UBL domain at its N-

terminus and a catalytic USP domain at its C-terminus (102).

The UBL domain is an important regulator of proteasome

activity, while the C-terminal USP domain is responsible for

its deubiquitinase activity (103). Structural studies show that two

surface loops BL1 and BL2 on free USP14 prevent active site

binding to the C-terminus of ubiquitin. The binding of USP14 to

the 26S proteasome in an autoinhibited state activates its

deubiquitination function.

In 2010, Finley et al. was the first to report a highly selective

inhibitor of proteasome-bound USP14 named IU1 (104). As a

specific inhibitor of USP14, IU1 has been used in cell-based
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studies. Because DUBs are highly conserved, previous work has

mainly focused on covalent inhibitors, which are compounds

that form covalent bonds with active site cysteines. However,

these compounds generally have poor selectivity for the DUBs

family and cannot be used clinically (105). The IU1 prevents the

C-terminus of ubiquitin from binding to USP14 by binding to

the thumb-palm cleft region of the catalytic domain of USP14

(106). The results of this work suggest that allosteric modulation

via steric retardation may be a viable approach for the discovery

of USP inhibitors. The IU2 series is another class of USP14

inhibitors belonging to the tricyclic thiophene derivatives. The

inhibitory effect of IU2 may block the entry of ubiquitinated

substrates by blocking the ubiquitin-binding pocket.

However, the low inhibitory efficiency of IU1 hinders the

development of drugs targeting USP14. Additionally, no selective

inhibitor against phosphorylated USP14 has been found to date.

The USP14 not only affects tumor progression but also plays a key

role in immune and inflammatory responses. Inhibition of USP14

activity blocks IL-1b release and caspase-1 activation, showing its

therapeutic potential in autoinflammatory diseases (107).

Inhibition of USP14 may have broad biological effects leading to

unpredictable toxicity. For example, loss of USP14 alters synaptic

activity, leading to neuronal dysfunction (108). Therefore, it is

important to develop a specific inhibitor that only targets the

interaction of USP14 with some of its substrates.

USP22 exerts tumor-promoting effects in multiple tumor

types and suppresses anti-tumor immunity by stabilizing PD-L1

in tumors (64). Increasing evidence showed that prescribing

USP22 inhibitors is desirable. The USP22 has been studied in

cancer for more than 15 years, but inhibitors of USP22 have not

been reported until recent studies. Morgan et al. screened these

cyclic peptides in a high-throughput manner based on RaPID, a

combinatorial library system containing 1012 structurally

unique cyclic peptides, and finally assessed their ability to

inhibit DUB activity in vitro based on binding affinity, to

develop effective and highly specific DUB inhibitor (109). The

identification of ubiquitin variants targeting specific USPs by

Sidhu laboratory provides new directions for designing small

molecule inhibitors of USP22. Tang et al. designed a new library

of combinatorial ubiquitin variants (UbVs) with high affinity

and specificity for their cognate target domains found in

ubiquitin specific protease (DUSPs). UbV probes can serve as

potential targets for inhibition of USPs. This suppression

mechanism can be extended to other USPs containing

DUSPs (110).
Conclusion and future perspectives

Sipuleucel-T, an autologous cellular immunotherapy made

from APCs, is the first FDA approved cancer vaccine for the

treatment of metastatic CRPC (mCRPC), proving the prospect

of immunotherapy in PC. Low tumor T-cell infiltration is one of
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the reasons for the poor efficacy of immune checkpoint

inhibitors in PC. Additionally, Tregs and myeloid suppressor

cells drive immunosuppression in the TME of PC. Considering

the unsatisfactory results of immunotherapy in the treatment of

castration-resistant PC, immunotherapy strategies for PC are

beginning to turn to combination regimens to enhance

antitumor immune responses.

USPs are considered important immune regulators and are

involved in different aspects of immune function, from innate

immunity and inflammation to activation and differentiation of

immune cells. USP4 depletion impairs the suppressive function

of Treg cells and upregulates gene expression levels of

inflammatory cytokines, such as IL-4, 5, and 13 (111). The

addition of USP inhibitors to the combination therapy regimen

may help to break through the current immune dilemma of PC.

Multiple USPs promote PC development through different

cancer-related signaling pathways. Similar to the development

of inhibitors for other targets, the specificity of small molecule

inhibitors remains a great challenge. The developed small-

molecule inhibitors that can be used in the clinic should

ensure high specificity and do no harm normal cells.

Ideally, inhibitors of USPs should act on the deubiquitination

of specific substrates without altering the overall protein levels.

To develop ideal inhibitors of USPs, the next step should be a

more comprehensive assessment of the cellular effects of USP

inhibition. Taking USP14 as an example, substrates other than

desired targets of USP14 can be identified by proteomics, which is

very important to improve the selectivity of the USP14 inhibitors.

At present, the specific relationship between USPs and the TME

in PC is still not clear enough, and there is still a long way to go

before the small molecule inhibitors of USPs are successfully

applied in the clinic.
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