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Abstract

The synovial fluid motion in an artificial hip joint is important in understanding the

thermo-fluids effects that can affect the reliability of the joint, although it is difficult

to be studied theoretically, as the modelling involves the viscous fluid interacting

with a moving surface. A new analytical solution has been derived for the

maximum induced fluid motion within a spherical gap with an oscillating lower

surface and a stationary upper surface, assuming one-dimensional incompressible

laminar Newtonian flow with constant properties, and using the Navier-Stokes

equation. The resulting time-dependent motion is analysed in terms of two

dimensionless parameters R and b, which are functions of geometry, fluid

properties and the oscillation rate. The model is then applied to the conditions of

the synovial fluid enclosed in the artificial hip joint and it is found that the

motion may be described by a simpler velocity variation, whereby laying the

foundation to thermal studies in the joint.
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1. Introduction
In the extension of the classic viscous Newtonian Couette flow in fluid mechanics,

the analytical solution for the case of an oscillating plate is often mentioned. How-

ever, they are usually referring to the case of a single plate oscillating upon an infinite

initially stationary mass of viscous fluid, the so-called Stokes’ second problem [1, 2,

3]. For instance, the Stokes’ second problem was solved using Laplace transform

method [4]. Later on, the same problem was extended to include the slip condition

at the oscillating wall using Laplace transform method [5]. An arbitrary oscillatory

Couette flow problem was solved for rarefied gas in infinite medium [6].

The case of an oscillation plate on a finite channel gap with a stationary parallel plate

has been solved using the complex velocity field [7, 8, 9]. Studies have also beenmade

in the so-called large-amplitude oscillatory shear flow, for Newtonian and non-

Newtonian flows [10, 11]. Recently, viscous dissipation effect was studied numeri-

cally for Newtonian fluid induced by an oscillation plate using the basic conservation

equations [12]. For molecular flow studies, an oscillating shear-driven flow with slip

flowmodellingwas analysed [13]. The earlier rarefied gasflow in infinitemediumwas

extended into channel flow, using an analytical-numerical approach [14].

For non-parallel channel flow, a study on flow in microtubes was done experimen-

tally and numerically using the cylindrical coordinate system [15]. However, the

case of viscous flow in a spherical gap solved in the spherical coordinate system

is seldom encountered. Hence, the motivation is to investigate this particular case,

the effect of an oscillating lower spherical surface upon a stationary concentric upper

spherical surface, and this is covered in Sections 2 and 3.

The second motivation is related to the study of the artificial hip joint. The advance-

ment in hip prosthesis implant has provided a key remedy to the aging population

affected by chronic hip pain, and to victims’ disability due to serious accidents.

The most common forms of chronic hip pain include osteoarthritis, rheumatoid

arthritis, post-traumatic arthritis, avascular necrosis and childhood hip disease. Ac-

cording to the National Joint Registry, there were 796,636 total hip replacements ac-

tivities performed in the United Kingdom, within the period April 2003 to December

2015 [16]. Recent data from American Academy of Orthopaedic Surgeons has

shown that more than 300,000 total hip replacements are performed each year in

the United States alone [17], and the trend is expected to increase approximately

up to 170 % by 2030 [18]. Currently, total hip replacements have an approximate

15 years of service life, hence is not satisfactory for active patients under 60 years

old. In fact, 44 % of current active patients would require 20e25 years of life expec-

tancy for their total hip replacements [19, 20]. Hence, each and every part of the arti-

ficial hip joint should be enhanced to prolong the service life.
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In the artificial hip joint, the synovial fluid is enclosed between the moving femoral

head and the stationary acetabular cup. As the gap is small and the motion of the

femoral head is somewhat oscillatory, the concentric spherical surfaces may be

applicable as a first model to derive an analytical solution to describe the flow char-

acteristics in the fluid. Hence the general solution so obtained in the first part will be

applied to the conditions of fluid motion within the joint. A brief review on the hip

prosthesis and conditions for appropriate application will be presented in Section 4.
2. Theory

2.1. Problem statement

The physical model considered is the pair of concentric spherical surfaces distanced

W apart, defined as W ¼ r2 � r1. The gap contains a fluid initially at rest, and fluid

motion is induced in the fluid by the sinusoidal oscillation of the lower surface, while

the upper surface is fixed. It is assumed that the magnitude of oscillation is small

compared to the whole spherical surface, so that the induced motion is confined

to part of the gap. Furthermore, analysis is performed on a cross-section passing

through the origin of the spheres, with the induced fluid velocity in q-direction being

a function of the radius only. This implies we are analysing the maximum induced

flow in the gap.

As shown in Fig. 1, the r�q spherical coordinate system is taken with the origin at

the centre of rotation of the lower surface, radii r1 and r2 refer to the lower and upper

surface, respectively. Thus the motion of the lower plate can be specified as vq ¼
V sin ut, where vq is the velocity component in the q-direction, u is the angular fre-

quency, t is the time and V is the magnitude of the velocity.

The general equation of motion for Newtonian fluids, the Navier-Strokes equation

with typical symbols, for incompressible, laminar, constant property, is applicable

[21]:

r

�
v v!
vt

þ v!,V v!
�
¼ �Vpþ mV2 v!þ rF

!
: ð1Þ

For the case of no pressure gradient and body force, with one dimensional flowvq,

the velocity components along the r and 4 directions are neglected, and Eq. (1) re-

duces to

vvq
vt

¼ n

�
1
r2

v

vr

�
r2
vvq
vr

��
; ð2Þ

where n is the kinematic viscosity. The general solution to Eq. (2) will yield vqðr;tÞ,
subjected to three conditions, assuming non-slip conditions at the surfaces.
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Fig. 1. Physical model.
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Boundary condition 1 ðBC1Þ : At r ¼ r1; vq ¼ V sin ðutÞ: ð3Þ

Boundary condition 2 ðBC2Þ : At r ¼ r2; vq ¼ 0: ð4Þ

Initial condition ðICÞ : At t ¼ 0; vq ¼ 0: ð5Þ

2.2. The solution

First, for convenience and generality, the set of Eqs. (2), (3), (4), and (5) is re-cast

into dimensionless form by defining the following 5 parameters in Eq. (6).

vq
* ¼ vq

V
; r* ¼ r� r1

r2 � r1
; R ¼ r1

r2
; t* ¼ nt

W2
and b ¼ uW2

n
: ð6Þ

Then the dimensionless set to be solved is

vvq
*

vt*
¼ 1

½r*ðR�1 � 1Þ þ 1�2
v

vr*

��
r*
�
R�1 � 1

	þ 1

2vvq*

vr*

�
; ð7Þ
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Boundary condition 1 ðBC1Þ : At r* ¼ 0; vq* ¼ sin
�
bt*

	
; ð8Þ

Boundary condition 2ðBC2Þ : At r* ¼ 1; vq* ¼ 0; and ð9Þ

Initial condition ðICÞ : At t* ¼ 0; vq* ¼ 0: ð10Þ

One method to obtain a solution of the set Eqs. (7), (8), (9), and (10), involving the

time-dependent BC1, is to apply the Duhamel’s theorem [22, 23] to the solution of

the same problem statement, but replacing BC1 with a time independent condition:

at r* ¼ 0; the dimensionless velocity is unity. Duhamel’s principle provides a solu-

tion to a linear, inhomogeneous partial differential equation [24]. This principle

required a step input and then superposing with Duhamel’s integral. The simpler

time dependent problem has the solution

vq1*
�
r*; t*

	¼
"
1þ 1

R
�
1
r* � 1

	
#�1

�
XN
n¼1

2R sinðnpr*Þ
np½r*ð1�RÞ þR� exp

�� ðnpÞ2t*
; ð11Þ

where vq1
*ðr*; t*Þ in Eq. (11) denotes this specific solution as a step input (see

AppendixA).

Then, according to Duhamel’s theorem, the solution to the original problem (Eqs.

(7), (8), (9), and (10)) is

vq*
�
r*; t*

	¼ Zt*
t*

vq*
�
r*; t* � t*

	df ðt*Þ
dt*

dt*; ð12Þ

where t* is the running time variable, and fðt*Þ ¼ sinðbt*Þ .

Inserting fðt*Þ into Eq. (12), we have

vq*
�
r*; t*

	¼ Zt*
t*¼0

("
1þ 1

R
�
1
r* � 1

	
#�1

�
XN
n¼1

2R sinðnpr*Þ
np½r*ð1�RÞ þR� exp

�� ðnpÞ2

�
t* � t*

	
 )
b cos

�
bt*

	
dt*;

ð13Þ

where the integration involving the exponential term in Eq. (13) is shown in Eq.

(14).
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Zt*
0

exp
�� ðnpÞ2�t* � t*

	

cos

�
bt*

	
dt* ¼

ðnpÞ2 cos bt* þ b sin bt* � ðnpÞ2 exp�� ðnpÞ2t*

ðnpÞ4 þ b2

:

ð14Þ

Hence, it can be shown that solution to the set Eqs. (7), (8), (9), and (10) is

vq*
�
r*; t*

	¼
"
1þ 1

R
�
1
r* � 1

	
#�1

sin
�
bt*

	

�
XN
n¼1

2Rb sinðnpr*Þ
np

�ðnpÞ4 þ b2
½r*ð1�RÞ þR�
�ðnpÞ2 cos�bt*	

þ b sin
�
bt*

	� ðnpÞ2 exp�� ðnpÞ2t*
 : ð15Þ

Eq. (15) will be examined by way of graphical plotting in the next section.
3. Results & discussion

From Eq. (15), it is clear that the unsteady solution depends on the two dimension-

less parameters, R and b, which contain information on geometry, fluid properties

and the oscillation rate. It is then of interest to understand how the velocity profiles

vary with R and b. Since r1; r2;u; W and n are always positive, R and b must al-

ways be positive. b increases when u or W increases and when n decreases; the

converse is also true. Hence in applying the results to a given problem, the relative

values of R; u; W and n will be relevant. However, without referring to specific

values of R; u; W and n, we first discuss the solution with respect to the two single

variables, R and b.
3.1. Velocity profiles with varying b

Figs. 2, 3, 4, 5, and 6 show six different velocity profiles for fluid flow with b ¼ 1; 3;

7; 10; 50 and 100 in six different radius ratio R ¼ 0:99; 0:90; 0:50; 0:10 and 0.01.

Since the dimensionless velocity vq* is oscillating sinusoidallywith time and the refer-

ence origin is stationary, the range for vq* is clearly within -1 to 1. Seven whole

numbers of dimensionless time are selected as to illustrate the change in velocity pro-

files over periods of time t* ¼ 1; 2; 3; 4; 5; 6 and 20. At the top surface, the fluid

velocity is always zero for all b and t*, satisfying the no-slip boundary condition.

Meanwhile, at the bottom surface, thefluid velocity follows the surface. Also, thefluid

velocity vq* is always zero at time t* zero reflecting the assumed initial condition.

It is within the plates that the velocity profile depends on the values of R and b. The

fluid motion is moving nearly with a linear velocity profile close to the bottom mov-

ing surface when b equal to 1 and R near to value of 1 as shown in Figs. 2(a) and 3(a).
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Fig. 2. Fluid velocity profile at varying dimensionless parameter b when R ¼ 0.99, for (a) b ¼ 1 (b) b ¼
3 (c) b ¼ 7 (d) b ¼ 10 (e) b ¼ 50 (f) b ¼ 100.

7 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe01085
This is because the values of the terms under the summation sign in Eq. (15) are

small enough not to influence the fluid velocity profile at all time. Also, the fluid ve-

locities at different locations are varying due to the effect of the fluid inertia that in-

fluences the acceleration of the fluids and give rise to a velocity phase lag as time

moves on. This effect is buried inside the general solution. For example, in

Fig. 2(c), the fluid near to the bottom surface is having vq
* ¼ � 0:4, while at r* ¼

0:2, the vq*z0.
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Fig. 3. Fluid velocity profile at varying dimensionless parameter b when R ¼ 0.90, for (a) b ¼ 1 (b) b ¼
3 (c) b ¼ 7 (d) b ¼ 10 (e) b ¼ 50 (f) b ¼ 100.
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The thickness of the stagnant layer from the top surface increases at two conditions,

either the value of R is small or b is large. As observed from Figs. 2, 3, 4, 5, and 6,

for b ¼ 100, more than half of the fluid from the top surface remain stagnant for all

R conditions and it is getting larger when R is going to a smaller value. Another obser-

vation from Figs. 2, 3, 4, 5, and 6 is that forR� 0:10 and b� 10, the fluid still have a

significant motionwithin the spherical gap. At the extreme case whereR� 0:01, most

of the fluid remains stagnant for all b conditions. Specifically, the motion only varies

between 0 � r* � 0:2.
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Fig. 4. Fluid velocity profile at varying dimensionless parameter b when R ¼ 0.50, for (a) b ¼ 1 (b) b ¼
3 (c) b ¼ 7 (d) b ¼ 10 (e) b ¼ 50 (f) b ¼ 100.
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3.2. Effects of the terms under the summation sign

From the general solutions, Eq. (15), it is seen that the fluid velocity compromises a

sine term minus all the terms under the summation sign. The latter is named here as

Dvq
*, as in Eq. (16). Then we have
on.2018.e01085
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Fig. 5. Fluid velocity profile at varying dimensionless parameter b when R ¼ 0.10, for (a) b ¼ 1 (b) b ¼
3 (c) b ¼ 7 (d) b ¼ 10 (e) b ¼ 50 (f) b ¼ 100.
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Dvq* ¼
XN
n¼1

2Rb sinðnpr*Þ
np

�ðnpÞ4 þ b2
½r*ð1�RÞ þR�
�ðnpÞ2 cos�bt*	þ b sin

�
bt*

	
� ðnpÞ2 exp�� ðnpÞ2t*
: ð16Þ

Figs. 7, 8, 9, 10, and 11 show the effects of the terms under the summation sign

for dimensionless parameters of b ¼ 1; 3; 7; 10; 50 and 100 while

R ¼ 0:99; 0:90; 0:50; 0:10 and 0.01, with selected varies of t* ¼ 1; 2; 5; 10 and
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Fig. 6. Fluid velocity profile at varying dimensionless parameter b when R ¼ 0.01, for (a) b ¼ 1 (b) b ¼
3 (c) b ¼ 7 (d) b ¼ 10 (e) b ¼ 50 (f) b ¼ 100.
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20. The first figures, labelled as (a) in Figs. 7, 8, 9, 10, and 11, show the variation of

Dvq
* with directional sign, while the rest of the figures show only the magnitude,��Dvq*��.

To gauge the effect of R on Dvq
*, at constant b, it is seen that the peak of

��Dvq*�� re-
duces significantly with the R value, at all dimensionless time conditions. For

example, in Figs. 7(f) and 11(f), at b ¼ 100, the peak of
��Dvq*��z0:7 at R ¼ 0:99

and
��Dvq*��z0:04 at R ¼ 0:01. And when b is changing at constant R, the peak
on.2018.e01085
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of the
��Dvq*�� changes with both the b value and t*. Although the peaks for any partic-

ular value of b seem to vary with t*, however the maximum peak does seem to

depend on the value of b. For example, the maximum peak found for b ¼ 100,

is always higher than the maximum peak for b� 50, and the maximum peak for b ¼
50 is always higher than the maximum peak for b � 10, etc. Another observation is

that at b� 3, the variation of the peak of
��Dvq*�� can be considered to have negligible

effect to the terms under the summation sign for all time.
Fig. 7. The behaviour of Dvq*at selected b at t* ¼ 1 and
��Dvq*�� with selected t* at R¼ 0.99, for (a) Dvq*;

t* ¼ 1 (b)
��Dvq*��; t* ¼ 1 (c)

��Dvq*��; t* ¼ 2 (d)
��Dvq*��; t* ¼ 5 (e)

��Dvq*��; t* ¼ 10 (f)
��Dvq*��; t* ¼ 20.
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Fig. 8. The behaviour of Dvq*at selected b at t* ¼ 1 and
��Dvq*�� with selected t* at R¼ 0.90, for (a) Dvq*;

t* ¼ 1 (b)
��Dvq*��; t* ¼ 1 (c)

��Dvq*��; t* ¼ 2 (d)
��Dvq*��; t* ¼ 5 (e)

��Dvq*��; t* ¼ 10 (f)
��Dvq*��; t* ¼ 20.
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There is only one peak of
��Dvq*�� for all the selected t* at varying R and b < 50.

However, there are two peaks occurring for some particular time at b ¼ 50 and

100, which is because there are actually two turnings for the fluid motion for

b ¼ 50 at t* ¼ 1, as shown in Figs. 2(e) and 7(a). Moreover, the peak location of
��D

vq
*
�� is varying within the spherical gap with time.
on.2018.e01085
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Fig. 9. The behaviour of Dvq*at selected b at t* ¼ 1 and
��Dvq*�� with selected t* at R ¼ 0.50, for (a)

Dvq
*; t* ¼ 1 (b)

��Dvq*��; t* ¼ 1 (c)
��Dvq*��; t* ¼ 2 (d)

��Dvq*��; t* ¼ 5 (e)
��Dvq*��; t* ¼ 10 (f)

��Dvq*��;
t* ¼ 20.
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It can be concluded that the effect of
��Dvq*��would not vary much when the b� 3. On

the other hand, when either R or b increases, the fluctuations of the
��Dvq*�� become

significant with time. Among the selected R and b, the magnitude of
��Dvq*�� shows

the largest difference when b ¼ 50 and 100.
on.2018.e01085
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Fig. 10. The behaviour of Dvq*at selected b at t* ¼ 1 and
��Dvq*�� with selected t* at R ¼ 0.10, for (a)

Dvq
*; t* ¼ 1 (b)

��Dvq*��; t* ¼ 1 (c)
��Dvq*��; t* ¼ 2 (d)

��Dvq*��; t* ¼ 5 (e)
��Dvq*��; t* ¼ 10 (f)

��Dvq*��;
t* ¼ 20.
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4. Example

4.1. Physical characteristics of an artificial hip joint

The main components of an artificial hip joint include an acetabular component and

the head of femur as shown in Fig. 12. There are several different combinations of

materials for the components, including metal, plastic and ceramic materials [19]. In
on.2018.e01085
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Fig. 11. The behaviour of Dvq*at selected b at t* ¼ 1 and
��Dvq*�� with selected t* at R ¼ 0.01, for (a)

Dvq
*; t* ¼ 1 (b)

��Dvq*��; t* ¼ 1 (c)
��Dvq*��; t* ¼ 2 (d)

��Dvq*��; t* ¼ 5 (e)
��Dvq*��; t* ¼ 10 (f)

��Dvq*��;
t* ¼ 20.
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the 1960s, metal-on-plastic (MOP), also known as soft on hard couple is the most

common. Later, it was replaced by hard on hard materials, called the metal-on-

metal (MOM) combination introduced around 1997 for their lower wear rate

[25, 26].

The synovial fluid acts as a biological lubricant or as a shock absorber by filling the

gap between the acetabular cup and the femur head [27]. This gap usually ranges
on.2018.e01085

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).
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Fig. 12. Main components in the structure of an artificial hip joint [29].
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from 30� 150 mm, particularly in MOM combination [28]. Although synovial fluid

generally reduces the wear rate, they would at times contribute to the wear rate too.

This section relates the derived maximum induced velocity profile applied to syno-

vial fluids within the gap of an artificial hip joint.
4.2. Modelling the synovial fluid and the artificial hip joint
motion

The synovial fluid in the artificial hip joint shows non-Newtonian behaviours at very

low and high shear rate, described as rheopectic and shear-thinning effects, respec-

tively [30, 31]. However, most of the synovial fluid cases can be treated as a simple

incompressible fluid, Newtonian and isoviscous fluid model [32, 33], and hence the

justification of applying the model as presented in Section 2.1.

The actual shape for artificial hip joint is hemi-spherical as shown in Fig. 12 and the

parts of joint can be modelled in spherical geometry. Thus, in Fig. 1, the upper
on.2018.e01085
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surface represents the acetabular cup and the lower surface refers to the head of fe-

mur, with the gap distance W.

There are some typical parameters that will be used to evaluate the fluid motion in

the artificial hip joint as summarised in Table 1.
4.3. Effects of the terms under the summation sign for artificial
hip joint motion

As pointed out in Section 3, for the joint application, appropriate realistic values

need to be considered, and inserted into Eqs. (15) and (16).

Fig. 13 shows the variation of
��Dvq*�� at the assigned values according to the hip joint

geometry and synovial fluid properties. The value selected for r1is 14 mm, based on

the average radius for the head of femur [28]. In Fig. 13(a) and (b) are shown the gap

with W ¼ 150 mm and W ¼ 30 mm respectively. The angular frequency u ¼
1 rad=s, which represents the average motion for the walking condition for an arti-

ficial hip joint. Hence, the value of R and b varies accordingly.

Both the graphs in Fig. 13 show the occurrence of largest magnitude for synovial

fluid motion located between r* ¼ 0:3 to 0.5 and it is consistent throughout the

selected t*. Thus, next section will reveal this range of r* for a longer period of

time for both defined conditions where R ¼ 0:9894; b ¼ 0:00371 and R ¼
0:9979; b ¼ 0:0001485.

The largest differences for Fig. 13(a) and (b) occurr at r*w0:4, and in term of magni-

tude are 3:31� 10�5 and 5:04� 10�8, respectively. The collected data shows that

the largest differences in the terms under the summation sign is insignificant and

the contribution of these terms in Eq. (16) has negligible effect.

Fig. 14 illustrates the peak values of
��Dvq*�� at three selected r*. The selected three r*

values are 0.3, 0.4 and 0.5. An average value of
��Dvq*�� for the three selected r* is

plotted as well for both conditions where R ¼ 0:9894; b ¼ 0:00371 and R ¼
0:9979; b ¼ 0:0001485, respectively.
Table 1. Typical parameters used in deriving the velocity [34, 35].

Parameter Value

Dynamic viscosity of synovial fluid, m 10 mPa,s

Gap of the joint, W 30e150 mm

Angular frequency of bottom moving
surface, u

1 rad=s

Density of synovial fluid, r 1650 kg=m3
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Fig. 13. The variation of
��Dvq*�� with respect to r* and t* at different assigned values to R and b. (a) R ¼

0:9894; b ¼ 0:00371 (b) R ¼ 0:9979; b ¼ 0:0001485.

Fig. 14. The peak values of
��Dvq*�� for three selected and an average of r* at different assigned values to

R and b. (a) R ¼ 0:9894; b ¼ 0:00371 (b) R ¼ 0:9979; b ¼ 0:0001485.
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Recall that in Eq. (16), the Dvq
* consists of three types of time dependant terms,

those that have the cosine term, followed by the sine term and lastly the exponential

term. The exponential time dependant term vanishes as time increases. As observed

from Fig. 14(a) and (b), the first peak cycle is lower compared to the later cycles.

From the second cycle, the peaks of the
��Dvq*�� remain the same with time, because

the effect of the exponential term causes the first peak to be lower and the effect van-

ishes from the second cycle onwards, leaving only the effects of the cosine and sine

terms in Dvq
*.

From Figs. 13 and 14, the approximate peaks of
��Dvq*�� for R ¼ 0.9894 and 0.9979

have magnitudes 0.00025 and 0.000010, respectively, over the range of fluid veloc-

ity vq
*, from 0 to 1. Thus, in terms of percentage of the maximum

��Dvq*�� effect for
both the minimum and maximum gap, are 0.001 and 0.025 %, respectively. It can be
on.2018.e01085
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concluded that, for the maximum gap of artificial hip joint, the
��Dvq*��term, as given

in Eq. (16), can be neglected when determining the velocity of the synovial fluid.

This is because the maximum effect of
��Dvq*�� to the overall vq* is insignificant.
4.4. The velocity profile in the synovial fluid

Since the effect of terms under the summation sign is negligible, the circumstance

reduces Eq. (15) to the simple Eq. (17),

vq*
�
r*; t*

	¼
"
1þ 1

R
�
1
r* � 1

	
#�1

sin
�
bt*

	
: ð17Þ

Fig. 15 reflects the velocity profile for synovial fluid at different times. As observed

from Fig. 15, the fluid velocity profile behaves proportionally with different gradi-

ents towards the position of the moving surface. The line gradient changes with

time and the range of velocity varies to-and-fro between -1 to 1, reflecting the sta-

tionary cup and the sinusoidally movement of the femur head. Another observation

from Fig. 15 is that, there are no significant differences in terms of fluid motion be-

tween the range of the different gap distance at the artificial hip joint.

The fluid motion for the range of gaps for an artificial hip joint have insignificant

difference with the unsteady variation of fluid velocity being the same. Fig. 16 shows

the time variation of fluid velocity in 0.2 steps, from r* ¼ 0 to 1.0. The approximate

maximum magnitudes for fluids velocity at r* ¼ 0, 0.2, 0.4, 0.6, and 1.0 are vq* ¼
1.0, 0.8, 0.6, 0.4, 0.2 and 0, respectively. The maximum magnitude of the fluid ve-

locity is decreasing as the position increasing and the fluid velocity varies sinusoi-

dally henceforth.
Fig. 15. The change in velocity profile with respect to r* for six different times at different assigned

values to R and b. (a) R ¼ 0:9894; b ¼ 0:00371 (b) R ¼ 0:9979; b ¼ 0:0001485.
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5. Conclusion

This study reports a derived analytical expression for the maximum induced velocity

in a spherical gap with the lower surface oscillating sinusoidally and upper surface

remaining stationary. The behaviour of fluid motion is first analysed with respect to

dimensionless property parametersR; b; at dimensionless time t* and dimensionless

location r*. Results show that the fluid motion is dominated by a sinusoidal term,

plus terms under the summation sign that have both sinusoidal and exponential

decay characteristics. Single or double velocity peaks may occur in the channel

and there can be a lag with respect to the activity moving surface.

When applied to realistic properties of the synovial fluid in a hip joint, it has been

shown that the terms under the summation sign can be negligible. This is when b

� 3 or R � 0.01. It is of importance to further study into the thermal effect of

the motion of synovial fluids in artificial hip joints.
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