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Background: The larval stages of Echinococcus granulosus sensu lato (E. granulosus

s.l) infection can alter B cell function and affect host anti-infective immunity, but

the underlying mechanism remains unclear. The newly emerging immunometabolism

highlights that several metabolites are key factors in determining the fate of immune

cells, which provides a new insight for exploring how larval E. granulosus s.l. infection

remodels B cell function. This study investigated the metabolomic profiles of B cells in

mice infected with E. granulosus s.l. protoscoleces (PSC).

Results: Total CD19+ B cells, purified from the spleen of infected mice, showed

significantly increased production of IL-6, TNF-α, and IL-10 after exposure to LPS

in vitro. Moreover, the mRNA expression of metabolism related enzymes in B cells

was remarkably disordered post infection. In addition, differential metabolites were

identified in B cells after infection. There were 340 differential metabolites (83 upregulated

and 257 downregulated metabolites) identified in the positive ion model, and 216

differential metabolites (97 upregulated and 119 downregulated metabolites) identified

in the negative ion mode. Among these, 64 differential metabolites were annotated and

involved in 68 metabolic pathways, including thyroid hormone synthesis, the metabolic

processes of glutathione, fructose, mannose, and glycerophospholipid. Furthermore,

several differential metabolites such as glutathione, taurine, and inosine were validated

to regulate the cytokine production in LPS stimulated B cells.

Conclusion: Infection with the larval E. granulosus s.l. causes metabolic reprogramming

in the intrinsic B cells of mice, which provides the first evidence for understanding the

role and mechanism of B cells in parasite anti-infective immunity from the viewpoint

of immunometabolism.
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INTRODUCTION

Cystic echinococcosis (CE) is a zoonosis caused by the larval
stages of Echinococcus granulosus sensu lato (E. granulosus
s.l.) and is one of the neglected tropical diseases recognized
by the World Health Organization (1, 2). The larvae of E.
granulosus s.l. is the most harmful to the human body, which
usually leads to a pathology through the compression of the
host organ and severe complications carrying the risks of
anaphylactic shock. Moreover, the protoscoleces (PSCs) released
from spontaneous or trauma-induced cyst rupture can grow
to a new cyst in vivo, result in a serious secondary CE. The
parasite is distributed worldwide (3) and causes heavy economic
losses globally (4). Notably, E. granulosus s.l. can infect hosts
and go unnoticed for several decades, as it has evolved immune
subversive strategies to resist host anti-infective immunity.
Therefore, understanding the molecular mechanism of these
strategies is beneficial for identifying the host-parasite interplay
and developing novel immunologic intervention strategies for
preventing and controlling CE.

Evidence shows that the immune response to the larval E.
granulosus s.l. infection involves a variety of immune cells,
forming a complex immune regulatory network (5, 6). Parasitic
factors such as excretory secretion products can affect the
activation of antigen-presenting cells such as dendritic cells
and macrophages, induce Th2 dominated immune response,
and inhibit Th1 and Th17 immune responses, thereby lowering
the host anti-infection immunity (7, 8). Furthermore, larval
E. granulosus s.l. infection can induce the accumulation of
regulatory T cells (Tregs), regulatory B cells (Bregs), andmyeloid-
derived suppressor cells, building an anti-inflammatory host
environment in mice (9–11). In addition, there is evidence of
inflammatory and granulomatous reactions against E. granulosus
sensu stricto metacestodes in naturally infected hosts, such
as cattle and sheep, which are related to the non-fertility of
CE cysts (12, 13). Taken together, these immune responses
contribute to the long-term survival of the parasite and induce
immunopathology in the host.

B cells are capable of producing antibodies and are involved
in autoimmunity, cancer, and infections as regulatory cells
(14). In recent years, B cells have also been shown to play a
vital role in parasitic infections and immunity. It was reported
that B cells producing IL-10 are essential for inhibiting type
I hypersensitivity in BALB/c mice infected with Leishmania
major (15). Moreover, this subgroup was also reported to
accumulate in the sera of patients with Schistosoma mansoni and
Echinococcus multilocularis infections (16, 17). In addition, our
previous studies showed that larval E. granulosus s.l. infection
and its excretory-secretory products (ESPs) can stimulate IL-
10 production in splenic B cells via TLR-2 signaling (18, 19).
However, the underlying molecular mechanisms remain unclear.

Immunometabolism, the interplay between immunological
and metabolic processes, has gained interest as an emerging field
of investigation in recent years (17). Metabolic reprogramming
has been demonstrated to be a key prerequisite for determining
the differentiation and effects of immune cells (20–23), which
provides a novel insight into the immunoregulatory mechanism

of B cells in the context of parasitic infections. Recently, there
has been evidence that changes in metabolic composition directly
contribute to altered B cell function (24). Glucose, palmitic acid,
amino acid homocysteine, and short chain fatty acids have all
been shown to directly impact B cell fate and function (25–
28). It has also been reported that B cells undergo metabolic
reprogramming, mainly relying on aerobic glycolysis and glucose
transporter-dependent metabolic pathways to support antibody
production (29). Surprisingly, cholesterol metabolism drives IL-
10 production in Bregs through the provision of geranylgeranyl
pyrophosphate (30). In summary, these findings have broadened
our understanding of how metabolic events determine B cell
function. However, it is still unknown if parasitic infection
triggers metabolic reprogramming to determine the host anti-
infectious immunity in B cells.

This study investigated the metabolomic profiles of splenic B
cells in a secondary CE mouse model. The results showed that
parasitic infection remodels B cell function, along with dramatic
intrinsicmetabolic reprogramming. Overall, our findings provide
the first evidence for understanding the role and mechanism of B
cells against secondary CE infections in mice.

MATERIALS AND METHODS

Mice, Parasites, Infection
C57BL/6J female mice (aged 6–8 weeks) were obtained from
the Shanghai Laboratory Animal Center (Shanghai, China) and
bred in the Experimental Animal Center of Xuzhou Medical
University. The mice were randomly divided into two groups
with fifteen mice in each group (n = 15): E. granulosus s.l group
(model group, M) and control group (control check, CK). The
PSCs of E. granulosus s.l. (EgPSCs) were obtained by puncturing
the fertile sheep hydatid cysts under aseptic conditions according
to the protocols detailed in Carmena et al. (31, 32), and
the method for the establishment of PSC infected mice was
mentioned in our previous studies (11). At the end of the
experiment, 30 mice were euthanized by intraperitoneal injection
of 0.2ml 4% sodium pentobarbital anesthesia solution. All animal
procedures were approved by the Laboratory Animal Welfare
and Ethics Committee of Xuzhou Medical University, China.

B Cell Isolation
CD19+B cells from the spleens of control or infected mice
were sorted negatively using a mouse CD19+ B cell isolation
kit (Miltenyi, Bergisch Gladbach, Germany); the cell purity
identified by flow cytometry was routinely >90%. The isolated
B cells were further used for in vitro cultivation and
metabolomic analyses.

Quantitative Real-Time PCR
Total RNA was extracted from CD19+B cells using the TRIzol
reagent, and cDNA was synthesized from the RNA using the
PrimeScriptTM RT Master Mix. Quantitative PCR analyses were
performed in a LightCycler R© 480II detection system (Roche
Applied Science, Penzberg, Germany) under the following
thermal cycling conditions: one cycle of 5min denaturation at
95◦C, followed by 30 s at 95◦C, 30 s at 60◦C, and 30 s at 72◦C
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for 45 cycles using the primers listed in Supplementary Table 1.
The mRNA levels of specific genes were normalized to β-actin
mRNA levels.

In vitro Cultivation of B Cells
Purified B cells from the spleens of control and infected mice
were cultured in 24-well plates (2 × 106 cells/well) in the
presence or absence of LPS (10µg/ml). Blank medium without
fetal bovine serum served as the vehicle control. After 24 h of
culture, the supernatants were collected for cytokine analysis.
Alternatively, several metabolites such as glutathione (8mM,
Bidepharm, China), taurine (2.5mM, Bidepharm, China), and
inosine (5mM, Bidepharm, China) were added into the sorted
B cells for 2 h followed by 24 h stimulation with LPS (10µg/ml).
Then the cytokine levels in the supernatants were determined.

Cytokine Analysis
The levels of TNF-α, IL-6, and IL-10 in the culture supernatants
were detected using mouse IL-6, TNF-α, and IL-10 ELISA Ready-
SET-Go! Kit (eBioscience, USA), according to the manufacturer’s
recommendations. Cytokine concentrations were calculated
using the standard curves.

Metabolite Extraction and LC-MS/MS
Analysis
Approximately 5 × 106 splenic B cells were sorted for each
sample. Each group contained six samples from six individual
controls or infected mice. LC-MS/MS analysis was performed
by Guangzhou Gene Denovo Co. (Guangzhou, China). After the
addition of 1,000 µl of extract solvent (acetonitrile-methanol-
water, 2:2:1, containing internal standard), the samples were
vortexed for 30 s, homogenized at 45Hz for 4min, and sonicated
for 5min in an ice-water bath. The homogenization and
sonication were repeated three times, followed by incubation
at −20◦C for 1 h and centrifugation at 12,000 rpm and 4◦C
for 15min. The resulting supernatants were transferred to LC-
MS vials and stored at −80◦C until UHPLC-QE orbitrap/MS
analysis. The quality control (QC) sample was prepared by
mixing an equal aliquot of the supernatant from all samples.

LC-MS/MS analyses were performed using a UHPLC system
(1290, Agilent Technologies) with a UPLC HSS T3 column
(2.1 × 100mm, 1.8µm) coupled to Q Exactive (Orbitrap MS,
Thermo). The mobile phase A was 0.1% formic acid in water
for positive, 5 mmol/L ammonium acetate in water for negative,
while mobile phase B was acetonitrile. The elution gradient
was set as follows: 0min, 1% B; 1min, 1% B; 8min, 99% B;
10min, 99% B; 10.1min, 1% B; 12min, 1% B. The flow rate
was 0.5 ml/min. The injection volume was 2 µl. The QE mass
spectrometer was used for its ability to acquire MS/MS spectra
on an information-dependent basis (IDA) during an LC/MS
experiment. In this mode, the acquisition software (Xcalibur
4.0.27, Thermo) continuously evaluates the full scan survey MS
data as it collects and triggers the acquisition of MS/MS spectra
depending on preselected criteria. The ESI source conditions
were set as follows: sheath gas flow rate, 45 Arb; Aux gas flow
rate, 15 Arb; capillary temperature, 320◦C; full ms resolution
70,000; MS/MS resolution 17,500; collision energy, 20/40/60 eV

in the NCE model; spray voltage, 3.8 kV (positive) or −3.1
kV (negative).

Data Reprocessing and Annotation
MS raw data files were converted to the mzML format using
ProteoWizard and processed by R package XCMS (version 3.2),
including retention time (RT) alignment, peak detection, and
peak matching. The data were then filtered by the following
criterion: the number of samples containing a metabolite were
<50% of all sample numbers in a group (QC were also taken
as a group). Afterwards, normalization to an internal standard
(33) for each sample was performed. The missing values were
then replaced by half of the minimum value found in the
dataset by default (34). The preprocessing results generated
a data matrix that consisted of the RT, mass-to-charge ratio
(m/z) values, and peak intensity. OSI-SMMS (version 1.0, Dalian
Chem Data Solution Information Technology Co. Ltd.) was used
for peak annotation after data processing using an in-house
MS/MS database.

Multivariate Statistical Analysis
Principal component analysis (PCA), partial least squares
discrimination analysis (PLS-DA), and orthogonal partial least
squares discriminant analysis (OPLS-DA) were performed after
data preprocessing. Principal component analysis was applied to
all samples, and PLS-DA and OPLS-DA were applied to control
groups using R package models (http://www.r-project.org/).

Differential Metabolites Analysis
Fold change (FC) and T-test of the data were used to detect and
identify differential metabolites between the control and infected
groups (35), and univariate analysis was used to determine the
changes in metabolites between the two groups, so as to screen
out the significant differences in metabolites. Those with a P-
value of < 0.05, and |FC| ≥1.5, were considered differential
metabolites between the two groups.

Kyoto Encyclopedia of Genes and
Genomes Pathway Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) is the
major public pathway-related database that includes not only
genes but also metabolites (36). Metabolites were mapped to
KEGGmetabolic pathways for pathway and enrichment analyses.
Pathway enrichment analysis identified significantly enriched
metabolic pathways or signal transduction pathways in the
differential metabolites compared to the whole background.
The calculated P-value was subjected to FDR correction,
with FDR ≤0.05, as a threshold. Pathways meeting this
condition were defined as significantly enriched pathways in the
differential metabolites.

Statistical Analysis
Data were analyzed using GraphPad Prism software 8.0 and are
presented as mean ± standard error of the mean. Statistical
significance was determined using the unpaired two-tailed
Student’s t-test for a single variable and one-way analysis of
variance (ANOVA) followed by the post hoc Tukey test for

Frontiers in Veterinary Science | www.frontiersin.org 3 September 2021 | Volume 8 | Article 718743

http://www.r-project.org/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Guo et al. Metabolomics of Eg-Infected Splenic B Cells

multiple comparisons. Values with p < 0.05 were considered
statistically significant.

RESULTS

Changes to the Cytokine Profiles in Splenic
B Cells Post EgPSC Infection
B cells are one of the contributors to anti-host immunity (14).
Our previous studies have shown that EgPSC infection or its
derived ESPs can elevate IL-10 production in splenic B cells and
increase the percentage of Bregs in vivo and in vitro, respectively
(11, 18). However, the mechanism by which the parasite affects
B cell function remains unclear. To further explore the effects of
secondary CE infection on B cell function, splenic CD19+B cells
were sorted from control and infected mice and cultured with
a vehicle or LPS (10µg/ml) for 24 h. LPS, a TLR ligand known
as a murine B cell activator, was used as a positive indicator
that promotes pathogen invasion and induces an inflammatory
response in B cells. Afterwards, the cytokine levels in the culture
supernatants were measured. As shown in Figure 1, there were
almost no detectable cytokines in the supernatants of vehicle
control or infected splenic B cells. However, in the presence
of LPS, infected B cells produced significantly higher levels of
IL-6, TNF-α, and IL-10 than those in control B cells (all P <

0.001). The tendency of cytokine production was in line with
the results observed in parasite-infected peritoneal B cells (37).
Collectively, these results indicate that EgPSC infection activates
B cells.

mRNA Expression of Metabolism Related
Enzymes in the Splenic B Cells Post
EgPSC Infection
B cell activation is orchestrated by a complex network of
intracellular signaling pathways and transcription factors. To
meet the energetic and biosynthetic demands of protein synthesis
and cell division, signal transduction pathways reshape the
metabolic profile of activated B cells (24). To characterize the
metabolic events in B cell differentiation induced by EgPSC
infection, this study further detected the mRNA expression
of genes that encode the rate-limiting enzymes in bioenergy
pathways. In comparison to control B cells, the infected B
cells exhibited higher mRNA expression of the genes (glucose
transporter 4, GLUT4; pyruvate kinase, PK) associated with
glycolysis (both P < 0.01, Figure 2A). Moreover, the mRNA
expression of citrate synthase (CS) and succinate dehydrogenase
subunit A (SDHA), two key enzymes in the tricarboxylic
acid cycle (TCA), was found to be distinctly higher post
infection (both P < 0.001, Figure 2B). Nevertheless, the
mRNA expression of glucose-6-phosphatase (G6PC) associated
with gluconeogenesis was significantly downregulated following
infection (P < 0.05, Figure 2C).

In contrast, the mRNA expression of fatty acid oxidation
(FAO)-related genes (cytochrome P450 proteins 4A10,
CYP4A10; medium-chain acyl-CoA dehydrogenase, MCAD)
in infected B cells was significantly upregulated (both P <

0.001, Figure 2D). However, the expression of FAO-associated

genes PPAR-α (peroxisome proliferator-activated receptor
alpha) and CPT-1α (carnitine palmitoyl transferase 1α) was
downregulated (P < 0.05, Figure 2D), which may be attributed
to the downregulation of peroxisome proliferator-activated
receptor-γ coactivator 1α (PGC-1α) (38). In addition, the
expression of fatty acid synthase (FAS) in lipogenesis was
downregulated, while the lipogenic gene acetyl coenzyme A
carboxylase 1 (ACC1), had no obvious alteration after infection
(P < 0.05, Figure 2E). These results suggest that EgPSC infection
may induce a complex glucolipid metabolic reprogramming
network in splenic B cells.

Identification of Differential Metabolites in
the Splenic B Cells in Mice Post EgPSC
Infection
Emerging evidence suggests that shifts in available fuel sources
and intracellular metabolite concentrations profoundly affect
cell fate decisions (39). This study further characterized
the differential metabolites in the splenic B cells of mice
post-infection using LC-MS/MS analysis. For a preliminary
visualization of differences between samples from the infected
and control groups, PCA analysis was carried out using an
unsupervised dimensionality reduction method. Partial least
squares discrimination analysis is a supervised dimensionality
reduction method in which class memberships are coded in
matrix form into Y to better distinguish the metabolomic profile
of the two group B cells by screening variables correlated to class
memberships. The point dispersion trend of positive and negative
ions in the two B cell subgroups was obvious (Figures 3A,B),
indicating that there were differences in metabolites, and that the
established model was stable and reliable.

To obtain these altered metabolites, the control and infected
B cells were selected for OPLS-DA. There was obvious spatial
separation between the two groups (Figures 3C,D). To further
prove the reliability of the model, the permutation order of
classification variable Y was randomly changed by a permutation
test, which established a value 200 times that of the OPLS-DA
model. The two rightmost points (x = 1.0) are R2 and Q2 of the
original model, and all the points on the left are R2′ andQ2′ of the
model after Y replacement. If all the R2′ and Q2′ are smaller than
the original R2 and Q2 (Figures 3E,F), then the model is stable
and reliable without overfitting.

Fold change and T-test as univariate statistical analysis were
combined to screen for significantly different metabolites
between the comparison groups. Those with a P-value
of <0.05, and |FC| ≥1.5, were considered differential
metabolites. The results showed that in positive ion mode,
a total of 340 differential metabolites were chosen (83
upregulated and 257 downregulated metabolites), while
216 differential metabolites were selected in negative ion
mode (97 upregulated and 119 downregulated metabolites)
(Figure 4). These differential metabolites may provide
new clues for understanding the role of intracellular
metabolites in the complex regulation of B cell differentiation
and function.
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FIGURE 1 | Changes to cytokine in the splenic B cells post EgPSC infection. The CD19+B cells were isolated from the spleens of control or EgPSC infected mice and

cultured with vehicle or LPS (10µg/ml) for 24 h. The cytokine level in the culture supernatants was detected by ELISA. (A) IL-6, (B) TNF-α, and (C) IL-10. Values are

mean ± standard error of means. n = 4 mice per group. CK, control check group; M, model group. (Student’s t-test: ***P < 0.001).

FIGURE 2 | Expression profiling of genes encode the enzymes in metabolic pathways in the splenic B cells post EgPSC infection. B cells were obtained from the

spleens of control or EgPSC infected mice, and the mRNA expression of the genes encode the enzymes in metabolic pathways was characterized by RT-PCR. (A)

GLUT4 and PK, (B) CS and SDHA, (C) G6PC and PGC-1α, (D) CYP4A10, MCAD, CPT-1α, and PPARα, and (E) FAS and ACC1. Values are mean ± standard error of

means. n = 4-5 mice per group. CK, control check group; M, model group; GLUT4, glucose transporter 4; PK, pyruvate kinase; CS, citrate synthase; SDHA,

succinate dehydrogenase complex subunit A; G6PC, glucose-6-phosphatase; MCAD, medium-chain acyl-CoA dehydrogenase; CYP4A10, cytochrome P450

proteins 4; CPT-1α, carnitine palmitoyl transferase 1a; PPARα, peroxisome proliferator–activated receptor α; PGC-1α, peroxisome proliferator–activated receptor-γ

coactivator1α; FAS, fatty acid synthase; ACC1, acetyl coenzyme A carboxylase 1 (Student’s t-test: *P < 0.05, **P < 0.01, ***P < 0.001).

KEGG Pathway Analysis of Differential
Metabolites of the Splenic B Cells Post
EgPSC Infection
To further assess the significantly different metabolites associated
with B cell differentiation and function and confirm that the
detected metabolites represent the preservation of a wide

range of biochemical processes, their pathways and molecular
interactions were then predicted by KEGG pathway enrichment
analysis. After filtering the metabolites with unknown pathways,
64 significantly different metabolites (Figure 5) were screened
for further analyses and their associated details were shown
in Supplementary Table 2 These differential metabolites were
involved in 68 metabolic pathways. Compared with control
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FIGURE 3 | Multivariate statistical analysis in positive and negative ion mode. (A) PLS-DA score charts in positive ion mode. (B) PLS-DA score charts in negative

mode. (C) OPLS-DA score charts in positive ion mode. (D) OPLS-DA score charts in negative ion mode. (E) OPLS-DA model validation charts in positive ion mode.

(F) OPLS-DA model validation charts in negative ion mode. n = 5–6 mice per group. CK, control check; M, model group [All R2
′
and Q2

′
points from left to right were

lower than rightmost two points (x = 1.0) (R2 and Q2 of the original model)]; this indicated that the model was robust and reliable without overfitting.

FIGURE 4 | Number of differential metabolites identified in the splenic B cells

post EgPSC infection. Those metabolites with a P-value of T-test < 0.05 and

|FC| ≥ 1.5 were considered differential metabolites between control and model

groups. n = 5–6 mice per group. CK, control check; M, model group.

cells, the major metabolic pathways differed in thyroid hormone
synthesis, glutathione metabolism, fructose, and mannose
metabolism, glycerophospholipid metabolism, bile secretion,
purine metabolism, cysteine and methionine metabolism, and
biotin metabolism (Figure 6). It is reported that glutathione
is essential for maintaining T cell inflammatory responses

(40). Moreover, bile acid metabolites (distinct derivatives
of lithocholic acid) have been demonstrated to direct Th17
and Treg cell differentiation (41). Therefore, these identified
differential metabolites may be the key to controlling B
cell differentiation and function through reprogramming
metabolic flux.

Functional Validation of Differential
Metabolites on Splenic B Cells Immune
Responses
Previous studies have showed that glutathione, taurine,
and inosine have anti-inflammatory effect in macrophages
(42–45), suggesting that these metabolites have potential
immunomodulatory functions. However, their effects on B cell
immune responses are still unclear. We found a significant
lower of the quantitative value of glutathione, taurine, and
inosine in the splenic B cells from the infected mice (all P
< 0.05, Figure 7A). To validate the function of differential
metabolites identified, three commercially available substitutes
of glutathione, taurine, and inosine were, respectively, added into
the sorted normal total splenic B cells for 2 h followed by 24 h
stimulation with LPS, and the cytokine levels in the supernatants
were determined using ELISA. Supplementation of glutathione
reduced IL-6, TNF-α, and IL-10 production in LPS stimulated B
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FIGURE 5 | Heat-map of differential metabolites identified between model and control group by KEGG pathways. n = 5–6 mice per group. Rows: differential

metabolites; columns: samples. The color of each small square represents the level of metabolite expression. Red: highest; green: lowest; black; mean.

cells (P < 0.01, Figure 7B). Interestingly, a significant increase
of IL-10 production was observed in glutathione treated B cells
(P < 0.01, Figure 7B). The IL-6 and IL-10 production, but not
TNF-α, in LPS stimulated B cells was significantly decreased after
exposure to Taurine (P < 0.05, Figure 7C). Inosine treatment
decreased the levels of TNF-α and IL-10, but not IL-6 in LPS
stimulated B cells (P < 0.01, Figure 7D). These results suggest
that these metabolites can remodel the immune profile of B cells.

DISCUSSION

This study showed that the PSCs of E. granulosus s.l.
infection remodels the function of splenic B cells in mice.
This is characterized by the increased production of both
pro-inflammatory and anti-inflammatory cytokines along with
the altered expression of the genes encoding the enzymes

in metabolic pathways. Moreover, 64 differential metabolites
were identified in B cells post-infection and were involved
in 68 metabolic pathways. In addition, several differential
metabolites were shown to have anti-inflammatory function
in LPS stimulated B cells. These results suggest that parasitic
infection induces metabolic reprogramming in B cells. To the
best of our knowledge, this study is the first to investigate
metabolic reprogramming in B cells in mice infected with the
larval E. granulosus s.l., which may provide an immunometabolic
perspective for understanding the key events that trigger B cell
differentiation in the context of parasitic infection.

The larval E. granulosus s.l. has evolved sophisticated
strategies to escape host immune responses, mainly by
manipulating and directing this immune response toward
anergy or tolerance (1). Our previous studies have shown that the
induction of Bregs with the phenotype of CD19+CD1dhiCD5+

post parasite infection contributes to immune evasion
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FIGURE 6 | KEGG analysis of the differential metabolites with the top 20 enrichment scores.

(11, 18). In the present study, we further showed that
both the production of pro-inflammatory cytokines (TNF-
α and IL-6) and anti-inflammatory cytokine (IL-10) were
significantly elevated in the splenic B cells of infected mice
after exposure to LPS. It is observed that the B cells producing
cytokines are undetectable both in infected and control mice
(Figure 1). Thus, activation of B cells by LPS can not only
help highlight the level changes of these cytokines, but also
reflect the capability of host response against another pathogen
infection and second infection of the parasite itself. Our
results confirmed that larval E. granulosus s.l. infection can
alter the function of B cells. Notably, the level of IL-10 in
infected B cells was significantly higher than that in TNF-
α and IL-6. In addition, it is well-known that IL-10 has a
strong capability to suppress immune responses (46). Our
findings indicate that B cell-derived IL-10 may contribute
to maintaining a compromised immune status in the host,
thereby allowing the slowing growth of the parasites or their
second infection.

In view of the emerging immunometabolism perspective, the
function of immune cells is governed by metabolic pathways
(19), which are specifically regulated by rate-limiting enzymes.
For example, arginase was recently shown to promote the

immune evasion of E. granulosus in mice by inhibiting the
expression of the T cell receptor CD3ζ chain (47). Our recent
studies showed that the reprogramming of glucose and lipid
metabolism has been linked to liver fibrosis in mice infected
with S. japonicum (48, 49). To investigate the underlying
mechanism of altered B cell function, we characterized the
primary expression profiles of several key enzymes involved
in the bioenergy pathways in bulk B cells post larval E.
granulosus s.l. infection. This study showed that the mRNA
levels of enzymes associated with the glycolysis and TCA
pathways were significantly upregulated after infection, while
the expression of lipogenic genes was obviously downregulated.
However, there were some differences with regard to the enzyme
expression of genes involved in FAO. MCAD catalyzes crucial
steps in mitochondrial FAO, and CYP4A10 is a cytochrome
P450 fatty acid hydroxylase that catalyzes the ω-hydroxylation
of medium-and long-chain fatty acids and prostaglandins.
They were both significantly upregulated, indicating that FAO
is activated in B cells post-infection. However, other FAO-
associated genes, PPAR-α and CPT-1α, were downregulated.
PPAR-α and PGC-1α can elevate the expression of CPT-1α in
hepatocytes (38), which may be one of the reasons for this
decrease. These results suggest that metabolic reprogramming
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FIGURE 7 | Functional validation of differential metabolites on immune responses of splenic B cells. Glutathione (8mM), taurine (2.5mM) and inosine (5mM) were

respectively added into the sorted B cells for 2 h followed by 24 h stimulation with LPS (10µg/ml), and the cytokine levels in the supernatants were determined using

ELISA. (A) The quantitative value of glutathione, taurine, and inosine determined by LC/LC-MS; (B) IL-6, TNF-α, and IL-10 stimulated by glutathione; (C) IL-6, TNF-α,

and IL-10 stimulated by taurine; (D) IL-6, TNF-α, and IL-10 stimulated by inosine. Values are mean ± standard error of means. CK, control check; M, model group

(One-way ANOVA: *P < 0.05, **P < 0.01, ***P < 0.001).

occurs in B cells. In macrophages, glycolysis and FAO
have been demonstrated to determine the polarization of
M1 and M2, respectively (50). The present study therefore
speculated that such metabolic remodeling may be closely linked
with alteration of B cell function after larval E. granulosus
s.l. infection.

Metabolites are the most direct substances that regulate
the immune response. To date, several metabolites (such
as glucose, palmitic acid, amino acid homocysteine, and
short chain fatty acids) have been demonstrated to play
a crucial role in reprogramming B cell function (25–28).
However, the profile of differential metabolites that may
be associated with B cell function in E. granulosus s.l.
infected mice has not been reported. This study mapped
64 enriched KEGG pathways, including thyroid hormone
synthesis, the metabolism of glutathione, fructose, mannose,
glycerophospholipid, purine, cysteine, methionine, and bile
secretion. These results provide several clues for the further
screening of the specific metabolite(s) that determine(s) B cell
functional differentiation.

Firstly, three metabolites identified in this study can program
B cell immune function in vitro. It has been reported that
glutathione can contribute to the control of intracellular
Mycobacterium tuberculosis infection by reducing the levels
of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1) (43).
In line with this, the present study observed that glutathione
supplementation inhibits the TNF-α and IL-6 in B cells.
Moreover, we also validated the anti-inflammatory effect of
inosine and taurine. Inosine has been reported to inhibit the
production of the proinflammatory cytokines TNF-α, IL-1, IL-
12, macrophage-inflammatory protein-1a and IFN-γ in immune

stimulated macrophages (42), while taurine can inhibit the
secretion of pro-inflammatory cytokines including IL-6, TNF-
α, and IL-8 (44, 45). Thus, the decreased levels of the three
metabolites in the splenic B cells post larval E. granulosus
s.l. may in turn enhance the production of IL-6, TNF-α,
and IL-10.

Secondly, we found several metabolites with the potential to
regulate the B cell immune function. Cholesterol metabolism has
been shown to participate in restricting inflammatory responses
(51–53). The inhibition of HMG-CoA reductase, a key enzyme
in the early step of the cholesterol metabolic pathway, has
been reported to impair the ability of B cells to produce IL-
10, both at the mRNA and protein levels (30). Cholesterol
metabolism in regulating IL-10 production independent of
phenotype that is shared across B cell populations, rather
than an effect on specific populations (30). Moreover, there is
evidence that δ-tocotrienols can lower serum total and LDL
cholesterol levels by inhibiting HMG-CoA reductase activity
(54). In this study, the production of δ-tocotrienols was
decreased in splenic B cells following larval E. granulosus s.l.
infection. Thus, δ-tocotrienols may be another key metabolite
that induces B cell functional differentiation. Besides, the 7a-
Hydroxycholesterol level in B cells was also decreased post
infection. Accumulating evidence suggests that this metabolite
participates in the inflammatory response through various
pathways. It has been reported that in atherosclerosis, 7a-
Hydroxycholesterol can elicit TLR6-mediated expression of IL-
23 by monocytic cells via PI3K/Akt and MAPKs pathways (55),
leading to inflammation via the upregulation of CCL2 andMMP-
9 in macrophages (56). It also causes the enhanced transcript
levels of IL-8 and the secretion of its corresponding gene
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product by monocytes/macrophages (57), thereby promoting
the progression of atherosclerosis. In addition, a decreased
level of trimethylamine N-oxide (TMAO) was observed after
larval E. granulosus s.l. infection, and this metabolite was
previously reported to promote inflammatory responses (58, 59).
Lastly, there is evidence that autocrine stimulation of IL-10 is
critical for the enrichment of IL-10-producing CD40hiCD5+

Bregs in vitro and in vivo (60), which may indicate that
the elevated IL-10 production in larval E. granulosus s.l.
infection may in turn enhance IL-10 secretion by B cells,
thereby helping the immune evasion. However, the exact
role and mechanism of these identified metabolites requires
further investigation.

In fact, this study aimed to investigate the key metabolites
that can guide Bregs differentiation post larval E. granulosus
s.l. infection. However, due to the low number of Bregs in the
spleen, we could not collect enough Bregs for metabolomics
analysis. Therefore, bulk B cells were investigated in this study.
However, as mentioned above, we identified several candidate
metabolites for future studies on Bregs differentiation to gain
insight into immunometabolism. Furthermore, what we have to
point is that the mice model used in the study is established
by abdominal infection of the PSCs, which is widely used in
other groups and our previous studies (11, 18, 61). Notably, this
animal model can mimic secondary CE. However, this model
also has some limitations, because it cannot completely reflect
the immune profiles of larval E. granulosus s.l. in sheep and
cattle naturally infected by ingesting the eggs of the parasite
(12, 13).

CONCLUSION

This study showed functional alternation along with
dramatic metabolic reprogramming of splenic B cells
in a secondary CE mouse model. Moreover, differential
metabolites were identified using metabolomic analysis.
These findings provide a novel insight for clarifying the
underlying mechanism of B cell functional differentiation
and host anti-infective immunity induced by infection with
the parasite.
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