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Positive Caricature Transcriptomic 
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We re-examined the correlation between Broad Genomic Aberrations (BGAs) and transcriptomic profiles 
in Colorectal Cancer (CRC). Two types of BGAs have been examined: Broad Copy-Number Abnormal 
regions (BCNAs), distinguished in gain- and loss-type, and Copy-Neutral Loss of Heterozygosities 
(CNLOHs). Transcripts are classified as “OverT” or “UnderT” if overexpressed or underexpressed 
comparing CRCs bearing a specific BGA to CRCs not bearing it and as “UpT” or “DownT” if upregulated 
or downregulated in cancer compared to normal tissue. BGA-associated effects were evaluated by 
changes in the “Chromosomal Distribution Index” (CDI) of different transcript classes. Data show 
that UpT are more sensitive than DownT to BCNA-associated gene dosage effects. “Over-UpT” genes 
are upregulated in cancer and further overexpressed by gene dosage, defining the so called “positive 
caricature transcriptomic effect”. When Over-UpT genes are ranked according to overexpression, top 
positions are occupied by genes implicated at the functional and therapeutic level in CRC. We show that 
cancer-upregulated transcripts are sensitive markers of BCNA-induced effects and suggest that analysis 
of positive caricature transcriptomic effects can provide clues toward the identification of BCNA-
associated cancer driver genes.

The transformation of a normal cell into a cancer cell can be described as a pathological evolutionary process 
based on the generation and selection of cellular phenotypic changes providing growth advantages to clonal 
cell populations1,2. Such growth-advantageous and selectable changes are produced by driver mutations that can 
be classified, according to the type of DNA modifications, in single nucleotide substitutions, small indels, gene 
fusions, copy number abnormalities and epigenetic modifications. However, the same process can randomly 
generate passenger mutations, that are simply co-selected with driver mutations. In terms of a cancer evolutionary 
process the driver mutations can contribute to positive selection, while the passenger ones can be considered 
neutral. One of the key point in molecular oncology research is to distinguish between driver and passenger 
mutations and to define their contribution to the cancer phenotype or vulnerability3.

The actual knowledge on DNA-encoded biological information provides the conceptual framework neces-
sary to evaluate the functional impact of single-gene mutations, such as point mutations, small indels and gene 
fusions. Gain- or loss-of-function mutations in single genes can be connected to the generation of selectable 
features leading to the cancer phenotype and these concepts have been condensed in the definition of oncogenes 
(OGs) and tumor suppressor genes (TSGs). The pathogenetic role of some types of large structural chromo-
somal aberrations, such as translocations, in cancer is well-established and is mainly due to the formation of gene 
fusions at the breakpoints4. On the other hand, the distinction between driver and passenger mutations and the 
connection of driver mutations to selectable functional properties is much more difficult in the case of Broad 
Genomic Aberrations (BGAs) that produce a gene copy number change, a common type of mutational event in 
cancer that involves of a large number of adjacent genes in a single step5. The subgroup of BGAs, that are charac-
terized by losses or gains of large chromosomal DNA segments or whole chromosomes (aneuploidy) in cancer 
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cells, are also known as somatic Broad Copy Number Abnormalities (BCNAs). Indeed, the majority of BCNAs are 
represented by whole-chromosome or chromosomal arm gains or losses i.e. monosomy, trisomy, or tetrasomy of 
whole chromosomes or chromosomal arms6–9.

A large fraction of common solid tumors, such as colorectal cancer, are characterized by chromosomal insta-
bility defined by an increased rate of BGAs acquisition, including many BCNAs. A first challenge is to distinguish 
between driver and passenger BCNAs: the high recurrence rate and functional and clinical data suggest that some 
BCNAs can be considered as driver mutational events9. A second challenge is to understand which gene or genes 
contained in the BCNA chromosomal region are responsible for the driver properties of the mutational event.

A common interpretation of the selectability of BCNAs (driver properties) is still based on a single-gene point 
of view. For instance, in the context of the classical two-hit mechanism for inactivation of TSG, providing that 
the first allele has been inactivated by a single-gene mutational events (inactivating point mutation or small focal 
deletion), the remaining functioning allele can be removed by a broad genomic loss (for instance a chromosome 
monosomy). Indeed, the probability that a second hit is represented by a broad genomic loss is very high in 
comparison to the probability of a second focal event hitting the corresponding locus in the homologous chro-
mosome. Moreover, a single mutational event, such as a broad loss, can represent the second hit for more mutated 
TSGs, thus producing the simultaneous biallelic inactivation of multiple TSGs (multi-gene second hit). Along 
this line of reasoning, the accompanying hemizygous losses of several genes contained in the same genomic 
segment can be considered as passenger mutations, i.e. neutral for the evolution towards a cancer phenotype. In 
contrast with this simple view, it is conceivable that the simultaneous loss or gain of several genes contained in 
broad deleted or amplified chromosomal regions can also exert positive (driver) or negative (deleterious) effects 
for cancer phenotype selection5,10.

For a better understanding of the cancer driver effects of BCNAs, it is relevant the distinction between two 
types of TSGs based on the property of haploinsufficiency11. The term haploinsufficiency indicates that the mon-
oallelic inactivation of a gene is able to generate selectable phenotypic modifications. TSGs that do not show 
haploinsufficiency (haplosufficient or recessive TSGs) need a classical second hit (biallelic inactivation) in order 
to produce cancer driver effects. On the contrary haploinsufficient TSGs could exert driver effects independently 
by a second hit. It has been suggested that a large majority of TSGs involved in sporadic cancer are haploinsuf-
ficient11. However, single-gene haploinsufficiency is likely to be a low-potency effect and the synergistic haplo-
insufficiency of multiple genes (cumulative or multi-gene haploinsufficiency) might be necessary to generate a 
relevant driver effects11. Similar reasoning can be applied to the so called “triplosensitivity”, indicating the ability 
of an additional copy of a gene to contribute to the cancer phenotype. In the latter case the increased copy num-
ber of multiple OGs, or other form of cancer promoting genes, can play synergistic driver effects (cumulative or 
multi-gene triplosensitivity)11, independently by the presence of activating single-gene mutations.

A combination of the above mentioned mechanisms (single- or multi-gene second-hit, multi-gene haploin-
sufficiency and triplosensitivity) can represent the basis for a general theory explaining the non-random chromo-
somal distribution of recurrent BCNAs in cancer. However, the relative contributions of the different mechanisms 
and several quantitative aspects of this general theory need to be clarified and proved. Moreover, it is not clear 
to what extent the same mechanisms apply to a different type of BGA, called copy-neutral loss of heterozygosity 
(CNLOH), that is frequent in cancer but does not imply any change in gene copy number12–23. An important 
functional property of CNLOH is the ability to convert monoallelic into biallelic mutations of TSGs during can-
cer progression13,18,19,24. Therefore, the single- or multi-gene two-hit mechanism may contribute to the selection 
of CNLOHs during cancer evolution. Another possible mechanism is the duplication of activating oncogenic 
mutations25. However, our knowledge on putative cancer driver effects of CNLOH is still limited and more details 
are needed.

The easiest molecular mechanism that links cumulative haploinsufficiency or triplosensitivity to the cancer 
phenotype is the change of transcript level correlated to gene dosage (gene dosage transcription effect). With 
this in mind we decided to re-examine some aspects of the correlation between copy number changes in large 
chromosomal segments (BCNAs) and transcriptomic changes in colorectal cancer (CRC). Indeed, it has been 
repeatedly shown that transcript levels of a significant proportion of genes are correlated to gene copy number in 
cancer genomes5,6,26–35. Moreover, since it has been reported that a subgroup of genes in CNLOH region change 
their expression by gene dosage independent mechanisms17, we also examined the association between whole 
chromosome or arm-level CNLOH and transcriptome changes.

Since early application of dedicated statistical analysis to SNP array data it was clear that significant aberra-
tions in cancer genome fall into two types: focal and broad (whole chromosome or arm-level aberrations)6–9. 
These studies have shown that somatic CNA frequencies across different cancers are inversely proportional to 
CNA lengths, with the exception of CNAs near the size of a chromosome arm or whole chromosome (called 
BCNAs in the present work), which are very frequent6–9. Beroukhim et al.6 have already suggested that focal and 
broad CNAs can have very different consequences for tumor biology. However, most of the following research 
has been focused on focal CNAs because of the difficulties to identify driver genes in broader regions7,8,33,36,37. In 
the present work we concentrate our attention on broad regions of chromosomal aberration, using a procedure 
that allows the identification of BCNAs even in the presence of superimposed focal events or artifacts due to 
cancer heterogeneity38. The main hypothesis behind the choice to analyze BCNAs is that the mechanisms provid-
ing cancer growth advantage are, at least in part, different between focal and broad chromosomal aberrations5. 
As extensively described it is possible that recurrent BCNAs are acting through the mechanisms of multi-gene 
triplosensitivity or haploinsufficiency and that the involved multigene networks are different from those of focal 
aberrations6. Moreover, in contrast to focal CNAs, few arm-level CNAs reach high amplitude changes in copy 
number7, and this feature should be taken into consideration in hypothesis regarding BCNA role in cancer 
progression.
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One of the most used parameter in the integrative analysis of chromosomal abnormalities and gene expression 
is the gene-by-gene correlation index of gene copy number with transcript level35. However, this strategy is better 
suited for focally high-level amplified genes and might underestimate the contribution of genes located in large 
low-level gain regions, such as trisomic chromosomes. It has been also suggested that this approach might intro-
duce a bias toward genes whose expression is almost exclusively modified by the BCNA-associated gene dosage 
effect, while neglecting those genes that are also strongly regulated by different regulatory processes34.

In the present work the influence of BGAs, both copy number abnormal and copy number neutral, on tran-
scriptome profile was investigated by SNP- and transcriptome-arrays in our series of colorectal cancer (CRC) 
samples adopting the following strategy: (1) identification of arm-level or entire chromosome BGAs by robust 
methods based on log2ratio, size thresholds and allele difference19,38, (2) generation of different CRC groups based 
on the presence of a selected BGA in the study group and its absence in the corresponding control groups, (3) 
identification of genes that are differentially expressed (at the transcript level) between selected CRC group and 
corresponding control CRC group (called OverT or UnderT genes) or between CRC group and correspond-
ing normal colonic tissues (called UpT and DownT genes), (4) evaluation of the contribution of genes located 
in a specific BGA region (BGA-genes) to a given transcript class by a novel parameter called “Chromosomal 
Distribution Index” (CDI).

Results show that cancer-upregulated transcripts are sensitive markers of BCNA-dosage effects and reveal 
a preferential involvement of gain BCNAs in a type of transcriptomic change denominated positive caricature 
transcriptomic effect.

Results
Chromosomal distribution of Broad Copy Number Abnormalities (BCNAs) and Somatic Broad 
Copy-Neutral Loss-Of-Heterozygosities (SB-CNLOHs) in CRC. SNP array analysis provides data on 
Copy Number Abnormalities (CNAs), at a lower limit of tens of kb. Among CNAs we selected the Broad Copy 
Number Abnormalities (BCNAs) defined as chromosomal aberrations that involve more than 25% of a chromo-
somal arm (p or q) or a whole chromosome (w). BCNAs can be distinguished in broad losses and broad gains. As 
previously reported38 broad gains and broad losses show a different distribution (Fig. 1). A high frequency (≥25% 
of the analyzed CRC samples) of broad gains can be observed in 20q/w (63%), 8q/w (61%), 13 (58%), 7q/w (51%), 
Xq/w (31%), 9q/w (25%) and a high frequency of broad losses in 18q/w (63%), 8p (40%), 17p (39%), 15q (25%). 
As expected the frequencies of gains and losses in different chromosomes show an inverse relationship.

The same SNP array analysis allows identification of CNLOH regions. The parameter “allele difference” (dif-
ference between allele A and allele B signal, each standardized with respect to their median values in the reference 
population) was used for visualization of CNLOH regions18,23. An analysis of somatic CNLOH regions larger 
than 3 Mb, called somatic broad CNLOH (SB-CNLOH), was performed in 29 tumor/normal tissue couples. The 
somatic nature of the chromosomal aberration was established in those samples by comparison with the corre-
sponding normal tissue. Chromosomal distribution of SB-CNLOHs is non-random but show a pattern different 
from both gains and losses. In general, the frequency of SB-CNLOH is lower than that of BCNAs. The chromo-
somes that show the highest frequency of SB-CNLOHs, such as 22q (17%), 6q/w (17%), 5q/w (17%), have only 
low or intermediate frequencies of BCNAs (Fig. 1) and SB-CNLOHs are the predominant chromosomal aberra-
tions in Chr6 and Chr22q. Moreover, CNLOH regions in Chr6 and 22q span the entire chromosome or the vast 
majority of the q arm.

Somatic BGAs and Transcriptome Analysis. In order to distinguish the transcriptional effects asso-
ciated to BGAs, both gene-dosage dependent and independent effects, from those related to other forms of 
cancer-associated transcriptional dysregulations, we organized CRC samples in groups bearing a specific 

Figure 1. Chromosomal distribution of BCNAs and SB-CNLOHs (>3 Mb) in CRC. Results are expressed as 
percentage of tumor samples bearing BCNAs or SB-CNLOH in p arm, q arm or whole chromosome (w). Results 
of q arm and whole chromosomes have been combined.
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somatic BGA in a selected chromosome called “Selected CRC” group. Each selected CRC group was com-
pared with a corresponding “Control CRC” group composed of tumors lacking any aberrations on the chosen 
chromosome. Five selected CRC groups were characterized by broad gains in Chr20, Chr8q, Chr13, Chr7, 
Chr9 and another two selected CRC groups by broad losses in Chr8p and Chr18. Moreover, we analyzed two 
“selected CRC” groups characterized by SB-CNLOH in Chr6 and Chr22 that, by definition, do not bear any 
copy number changes in the selected BGA regions. In Supplementary Table S1 we report some clinical (age, 
gender, anatomical site, tumor stage) and molecular features (MicroSatellite Instability “MSI” status, activating 
KRAS mutations, Consensus Molecular Subtypes “CMS” according to Guinney et al.39). As expected, CMS2 is 
enriched in the selected gain and loss CRC groups, in agreement with the fact that this molecular subtype dis-
plays higher chromosomal instability, measured by somatic CNA count39. On the contrary CMS1, that displays 
an almost normal karyotype, and CMS3, that bears fewer somatic CNAs in comparison to CMS2, are enriched 
in the corresponding control CRC groups. The enrichment of CMS2 is not observed in CNLOH selected CRC 
groups. MSI tumors are enriched in the control CRC groups (with the exception of Chr8q-gain), in agreement 
with the fact that MSI tumors display an almost normal karyotype. As expected, they represent a minor frac-
tion of control CRC groups (9–26%).

The frequencies of somatic genomic aberrations in “Selected CRC” and “Control CRC” groups are reported 
in Supplementary Table S2. For instance, all tumors (100%) in the Chr7-gain group show broad gains in Chr7q 
or whole Chr7, while the control group does not bear any type of broad aberrations in Chr7 (or isolated focal 
aberrations as defined in Barresi et al.38). Somatic genomic aberrations in other chromosomes were distributed 
among the selected and control groups. Indeed, some genomic aberrations show a preferential association: for 
instance, Chr7-gains are associated to gains of Chr8q (68%), Chr13 (73%), Chr20 (86%) and ChrX (55%). The 
selection did not take into account the presence of aberrations on the p arm and the same strategy was used for 
groups based on other chromosomes, except for Chr8. A separate analysis of p and q arm of Chr8 was performed 
(see Supplementary Table S2), since deletions of p arm of Chr8 were often associated to duplications of the q arm.

Then, transcriptome analysis has been performed and comparisons between sample groups are summarized 
in Fig. 2 and Supplementary Table S3. Four different indices were used in order to estimate transcript levels in 
CRC and to define different transcript classes: (a) linear fold-changes obtained comparing all CRC samples vs 
matched normal colonic mucosae (denominated FC1), (b) linear fold-changes obtained comparing CRCs bearing 
a specific BGA (Selected CRC group) to CRCs not bearing a specific BGA (Control CRC group) (denominated 
FC2), (c) linear fold-changes obtained comparing “Control CRC” group to normal colonic mucosae (denom-
inated FC3), (d) linear fold-changes obtained comparing “Selected CRC” group to normal colonic mucosae 
(denominated FC4) (Fig. 2 and Supplementary Table S3).

In order to analyze transcripts that contribute significantly to variability among groups we selected tran-
scripts that show statistically significant changes among selected CRC group, control CRC group and matched 
normal tissues (multiple comparisons) at a False Discovery Rate (FDR) adjusted p-value < 0.0540, denominating 
them as Variable Transcripts (VT). About 83% of transcripts transcribed on each chromosome were VT. Variable 
Transcripts are then grouped in different “transcript classes” according to cutoff values of the previously defined 
indices (Fig. 2).

Figure 2. Sample groups, Fold-Changes (FC) and transcript classes. Transcript classes defined on the basis of 
four indices (FC1, FC2, FC3, FC4), three CRC groups (All CRC, Control CRC, Selected CRC) and one Normal 
Colonic Mucosae group (Normal). CRCs with specific BGA form a “Selected CRC” group while CRC without 
specific BGA form a “Control CRC” group. Fold-changes (FC) are obtained by comparisons of RMA averages 
between different groups: FC1 between “all CRC” and “Normal”, FC2 between “Selected CRCs” and “Control 
CRCs”, FC3 between “Control CRC” and “Normal”, FC4 between “Selected CRC” and “Normal”.
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The number of transcripts belonging to a specific “transcript class” and transcribed in a specific chromosomal 
region (chromosome or chromosome arm) is reported as percentage of the total number of transcripts belonging 
to that class in the entire genome, thus obtaining the chromosomal distribution of a transcript class among each 
of the 24 chromosome types. We called this parameter “Chromosomal Distribution Index” (CDI) and calculated 
it with the following formula:

= ∗
∑

∗
=

n x
x

CDI of chromosomal region 1 100n
i
T

i1

where xn is the number of transcript belonging to a transcript class transcribed in the n-th chromosomal region 
and T is the total number of chromosomal regions subdividing the entire genome. The CDI of VT is strictly cor-
related to that of all analyzed transcripts, “all T” (Pearson’s r index = 0.99), thus showing that the chromosomal 
distribution of VT is simply dependent on the number of transcripts synthesized on each chromosomes. On the 
contrary significant deviations from “all T CDI” were observed when other transcript classes were analyzed. The 
difference between CDI of a specific transcript class and “all T CDI” on a selected BCNA chromosome provides 
an estimate of the sensitivity of such transcript class to BCNA-induced transcriptional cis-effects.

In the present paper we use the terms “Overexpressed Transcripts” (OverT) to indicate those “VT” that show 
a FC2 >1.3 and “Underexpressed Transcripts” (UnderT) to indicate those VT that show a FC2 < −1.3 by com-
paring “Selected CRCs” versus “Control CRCs” (Fig. 2).

Figure 3 summarizes the CDI values obtained for OverT and UnderT for each selected chromosome in 
all selected CRC groups (results obtained for every chromosome in all groups are reported in Supplementary 
Fig. S1). By comparison with CDI of all T, an increase of OverT CDI and a corresponding decrease of UnderT 
CDI in selected aberrant chromosomes is detected in “gain-groups”. An opposite trend is present in “loss-groups”: 
a significant increase of UnderT CDI is observed in “Chr18-loss” and “Chr8p-loss” groups, while a significant 
decrease of OverT CDI is observed only in “Chr8p-loss” group (Fig. 3). No significant difference is observed in 
the CNLOH groups, except for a significant decrease of UnderT CDI in Chr22.

Other types of transcript classes are based on the detection of differentially expressed transcripts between 
CRC and normal colonic tissue. In order to distinguish these transcripts from OverT and UnderT we use the 
terms “Upregulated Transcripts” (UpT) to indicate those VT that show a FC3 or FC4 >1.5 and “Downregulated 
Transcripts” (DownT) for those VT that show a FC3 or FC4 <−1.5 by comparing CRC versus normal colonic 
tissue (Fig. 2). It is obvious that “upregulated” and “overexpressed” (or “downregulated” and “underexpressed”) 
are usually considered as synonyms, but, for the purpose of this work, we are attributing a different meaning to 
these terms.

Figure 4 shows a comparison of the chromosomal distribution of UpT CDI (Fig. 4A) or DownT CDI (Fig. 4B) 
in Chr7-gain group and its control group (Chr7-disomic group). A clear increase of UpT CDI on Chr7 can 
be observed in Chr7-gain group in comparison to Chr7-disomic group. A similar increase can be observed in 
Chr20 and ChrX, in agreement with a partial enrichment of gains in these chromosomes in the Chr7-gain group 
(Supplementary Table S2).

Figure 3. “OverT” and “UnderT” classes. CDI of OverT and UnderT in selected chromosomes of each 
Selected CRC group. CDI of all transcripts analyzed in HTA (All T) is also reported for comparison. *p < 0.01 
comparing the selected chromosome versus all other chromosomes by chi-squared test.
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Figure 4C,D summarizes the results obtained for each selected chromosome in all “selected CRC” groups. 
A significant increase of UpT CDI in selected aberrant chromosomes is detected in all “gain” groups, while a 
decrease can be observed in the two “loss” groups (p < 0.05 comparing “selected CRC” vs “control CRC” by chi 
squared test, Fig. 4C). As expected no significant difference was observed in the CNLOH groups. These results 
confirm that a significant fraction of transcripts on BCNA- chromosomes follows a gene dosage transcriptional 
rule and that the BCNA-associated effect allows a group of transcripts to exceed the threshold to be classified 
as UpT in the “gain” groups or decreases the gene expression below such threshold in the “loss” groups. On the 
contrary, DownT CDI in aberrant chromosomes are not significantly different between control CRC group and 
selected CRC group (Fig. 4D), suggesting a lower sensitivity in the detection of BCNA-associated effects in the 
DownT class.

We also analyzed the entire collection of CRC samples as a single group in comparison to matched nor-
mal colonic mucosae (FC1 as shown in Fig. 2 and Supplementary Table S3), in order to test the correlation 
between CDI values of UpT (FC1 >1.5) and DownT (FC1 <−1.5) in each chromosome and the frequencies of 

Figure 4. “UpT” and “DownT” classes. CDI of UpT (A) or DownT (B) in Chr7-gain group and its control 
group (Chr7-disomic group). Arrow indicates a significant increase of UpT in Chr7 in the Chr7-gain CRC 
group (p < 0.05 comparing Chr7-gain CRC vs Chr7-disomic CRC by chi-squared test). A significant increase 
of UpT in Chr20 and ChrX can be also observed in A (*p < 0.05). CDI of UpT (C) and DownT (D) in selected 
chromosomes of each selected CRC group and its corresponding control (CTRL) CRC group. Chromosomal 
distribution of all transcripts (all T) is also reported for comparison. *p < 0.05 comparing selected CRC vs 
CTRL CRC by chi-squared test. (E) CDI of all T (all transcripts analyzed in HTA array), VT (all statically 
significant variable transcripts, FDR < 0.05), UpT (statistically significant VT that show a FC1 > 1.5 in 
comparison to normal tissue) and DownT (statistically significant VT that show a FC1 < −1.5 in comparison 
to normal tissue). Black star indicates significant increase of UpT in a specific chromosome (p < 0.002 by chi-
squared test in comparison to all other chromosomes); grey star indicates significant increase of DownT in 
a specific chromosome (p < 0.002 by chi-squared test). (F) Correlation analysis between percentage of UpT 
in each chromosome and the frequency of broad gains in the same chromosome, expressed a percentage of 
cancer samples bearing broad gains for that given chromosome. (G) Correlation analysis between percentage 
of DownT in each chromosome and the frequency of broad losses in the same chromosome, expressed a 
percentage of cancer samples bearing broad losses for that given chromosome. Squared Pearson’s correlation 
coefficients (R2) are reported in each plot in F and G.
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the corresponding aberrant chromosomes. As a first step we identified VT between all CRCs and matched nor-
mal tissues (pairwise comparison) at a false discovery rate (FDR) adjusted p-value < 0.05. The CDI of VT among 
the various chromosomes is strictly correlated to the CDI of all T (Fig. 4E, Pearson’s r index = 0.99), while the 
CDI of UpT and DownT show some relevant deviations from all T distribution. For instance, a highly significant 
increase of UpT CDI can be observed in Chr7, Chr16, Chr17 and Chr19 (p < 0.002 in comparison to all other 
chromosomes by chi squared test), while an increase of DownT CDI is detected in Chr2, Chr4, Chr5, Chr6, 
Chr13, Chr18, Chr21 (p < 0.002). It should be noted that chromosomes, such as Chr13, Chr20 and Chr2, that 
are frequently trisomic in CRC, do not show an enrichment in UpT. On the contrary, Chr13 and Chr2 show an 
increase of DownT CDI. Moreover, the chromosomal distributions of UpT and DownT are not significantly cor-
related to the frequencies of gains or losses detected at each chromosome (Fig. 4F,G). Therefore, the presence of 
a large number of upregulated or downregulated transcripts on a chromosome is not predictive of the frequency 
of gain or loss genomic aberrations.

In a subsequent analysis we calculated the CDI of the other four classes of transcripts defined by a combination 
of FC2 and FC3 indices, as indicated in Fig. 2 and Supplementary Table S3: Over-UpT, Under-UpT, Over-DownT, 
and Under-DownT. It should be noted that UpT or DownT in this subsection refer to genes that are differentially 
expressed when comparing control CRCs to normal tissue (comparison evaluated by FC3 as shown in Fig. 2 
and Supplementary Table S3), while OverT and UnderT genes refer to the comparison of selected BGA-bearing 
CRCs versus control CRCs (comparison evaluated by FC2 as shown in Fig. 2 and Supplementary Table S3). Since 
the overexpression of UpT (Over-UpT) can be viewed as an exaggeration of a distinctive transcriptional feature 
of tumors we defined such effect as a “caricature transcriptomic effect”. Indeed, a caricature is a representation, 
usually pictorial or literary, in which the subject’s distinctive features or peculiarities are exaggerated to produce 
grotesque effect (http://www.thefreedictionary.com). In this context the underexpression of UpT (Under-UpT) 
is defined as an “anticaricature effect”, since it produces an attenuation of a distinctive feature. Therefore, similar 
caricature and anticaricature effects on DownT are represented respectively by Under-DownT and Over-DownT. 
Moreover, caricature and anticaricature effects on UpT are collectively called “positive effects”, while caricature 
and anticaricature effects on DownT are denominated “negative effects”. We evaluated the contribution of tran-
scripts synthesized in the BGA chromosomal regions to such caricature and anticaricature effects, by analyzing 
the CDI of the four transcript classes.

Figure 5. Caricature and Anticaricature Transcriptomic Effects. CDI of Over-UpT and Under-UpT (A) and 
Under-DownT and Over-DownT (B) in selected chromosomes of each selected CRC group. Chromosomal 
distribution of all transcripts analyzed in HTA (all T) is also reported for comparison. (C) negative log2 of 
p-values calculated by chi-squared test comparing the selected chromosome versus all other chromosomes; 
a horizontal black line indicates a p-value = 0.01. (D) CDI of Over-UpT and Over-HighT in selected 
chromosomes of gain-CRC group. Chromosomal distribution of all transcripts (all T) and OverT is also 
reported for comparison. *p < 0.001 comparing CDI of Over-UpT vs Over-HighT or OverT by chi-squared test. 
•p < 0.01 comparing CDI of Over-HighT vs AllT.

http://www.thefreedictionary.com
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Figure 5A–C show a comparison of the CDI values of the four transcript classes with “all T CDI” in each 
selected aberrant chromosome and in all selected CRC groups. A sharp and significant increase of “Over-UpT 
CDI” is observed in all the gain-chromosomes, while a decrease is detected in the loss-chromosomes and no 
change in the CNLOH-ones (Fig. 5A and C). As far as anticaricature effects are concerned, the more evident result 
is an increased “Under-UpT CDI” in loss-chromosomes (Chr8p-loss and Chr18-loss group, Fig. 5A and C). A 
decreased “Under-UpT CDI” is also detected in the CNLOH groups (Fig. 5A and C). Analysis of caricature and 
anticaricature effects on DownT (negative effects) does not reveal significant or consistent changes of CDI among 
groups bearing the same type of abnormality (Fig. 5B and C). In conclusion, chromosomal distribution reveals 
that a subgroup of transcripts synthesized in gain-type chromosomal regions largely contribute to the global 
caricature effect on UpT (positive effect) and this phenomenon differentiates the gain CRC groups from loss or 
CNLOH ones (Fig. 5A and C). Moreover, “Over-UpT CDIs” in selected chromosomes are significantly increased 
when compared to OverT (Fig. 5D) or Over-DownT CDIs (Fig. 5B), suggesting an enrichment of transcripts 
sensitive to BCNA-associated effect in the Over-UpT class. These results confirm that UpT are sensitive markers 
for BCNA-associated gene dosage effects, thus revealing a basic feature that distinguishes them from DownT.

In Fig. 5 the CDI values are not normalized for chromosomal transcript content and the CDI values of all T 
are reported for comparison. CDI can be normalized for the total number of transcripts synthesized in a chromo-
somal region (Normalized CDI, NCDI) according to the following formula:

= ∗
∑

∗
=

n x
X

NCDI of chromosomal region 1 100n

n i
T x

X1
i

i

where Xn is the total number of transcripts transcribed in the n-th chromosomal region.
In Table  1 we report the normalized CDI (NCDI) of Over-UpT and Over-DownT synthesized in 

BGA-chromosomes or chromosomal arms. Data clearly show that NCDI of Over-UpT is the best parameter 
differentiating gain- from loss- and CNLOH-aberrant chromosomal regions. Table 1 also reports the number of 
Over-UpT and Over-DownT expressed as percentage of all T transcribed in the BGA-chromosomes (BGAT), in 
order to show that such parameter is not correlated with the type of chromosomal aberration.

Selected CRC Group
Selected 
BGA-Chr

Over-UpT in BGA-Chr Over-DownT in BGA-Chr

CDI NCDI
% of 
BGAT CDI NCDI

% of 
BGAT

Chr20-gain 20 18.66 27.86 4.65 2.27 3.54 3.16

Chr8q-gain 8q 12.80 19.48 3.50 3.21 5.26 1.99

Chr13-gain 13 11.43 17.24 4.90 2.63 4.37 2.68

Chr7-gain 7 14.52 11.33 0.54 4.91 4.03 13.03

Chr9-gain 9 10.98 9.85 1.31 4.70 4.40 7.48

Chr18-loss 18 0.30 0.76 0.10 1.55 4.34 4.20

Chr8p-loss 8p 0.34 0.98 0.63 0.35 0.98 0.11

Chr6-CNLOH 6 5.82 3.74 1.25 8.50 5.95 1.27

Chr22-CNLOH 22 1.94 3.63 1.30 1.75 3.39 1.02

Table 1. Over-UpT and Over-DownT expressed as CDI, NCDI, or percentage of transcripts synthesized in 
BGA regions (BGAT).

Figure 6. “Over-UpT” and “Over-DownT” classes. CDI of Over-UpT and Over-DownT in selected 
chromosomes of each Selected CRC group is reported as RMA averages. CDI of all transcripts analyzed in HTA 
(All T) is also reported for comparison. Transcripts were subdivided according to their expression level in two 
groups (low-expression transcripts with RMA <9 and high-expression transcripts with RMA >9).
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In order to evaluate if differences in RMA (robust multi-array average) transcript levels were the main deter-
minants of the observed differences between Over-UpT and Over-DownT, we also report a comparison of the 
chromosomal distribution of Over-UpT with that of overexpressed transcripts that display RMA value >10 (a 
value approximately equal to the average +2 SD in CRC samples). The latter group of transcripts has been denom-
inated as Over-HighT. As shown in Fig. 5D, although a significant enrichment of Over-HighT is observed in 
gain-aberrant Chr20, Chr8q and Chr13, but not in Chr7 and Chr9, the “Over-UpT CDI” in gain-aberrant chro-
mosomes is significantly higher than “Over-HighT CDI” (Fig. 5D).

A different analysis further confirmed that RMA transcript levels were not the main determinants of the 
observed differences between Over-UpT and Over-DownT. Transcripts were subdivided according to their 
expression level in two groups (low-expression transcripts with RMA <9 and high-expression transcripts with 
RMA >9) and analysis of CDI was performed as previously described. As shown in Fig. 6 the clear-cut difference 
between Over-UpT and Over-DownT CDI was confirmed in both groups of transcripts.

Since transcript classes are based on the choice of arbitrary thresholds, we tested different values of 
FC3-threshold for the definition of classes. We called “Positive Transcripts” (PositiveT) all VT (FDR <0.05) 
showing positive values of FC3 and “Negative Transcripts” (NegativeT) those VT with negative values. It is 
clear that UpT of previous section are PositiveT above the fixed FC3-threshold of 1.5 and DownT are NegativeT 
under the fixed FC3-threshold of <−1.5. Figure 7 shows the plots obtained by progressively increasing the 
FC3-threshold for the selection of PositiveT and progressively decreasing it for the selection of NegativeT, while 
the FC2-threshold for OverT is maintained at a constant value (>1.3). An increased “Over-PositiveT CDI”, in 
comparison to “positive CDI”, can be observed in gain-aberrant chromosomes (Fig. 7) at all the cutoff values 
tested, while no significant increase is detected in loss-aberrant chromosomes and CNLOH groups (Fig. 7). 
In agreement with previous results no differences between “Over-NegativeT CDI” and “NegativeT CDI” are 
detected.

So far we analyzed the enrichment of Over-UpT in gain chromosomes by selecting UpT according to FC3 
threshold. A similar analysis can be performed by selecting UpT genes according to FC4 threshold. As expected 
a comparison between Over-positiveT CDI calculated at varying FC3 or FC4 thresholds (Over-UpT CDI, cor-
responding to FC3 or FC4 >1.5, are also included in the plot) show only minor differences between the curves 
(Supplementary Fig. S2). In conclusion BCNA-associated cis-effect is mainly acting on positive transcripts (FC3 
>1) and this effect can be denominated positive caricature transcriptomic effect.

Figure 7. Varying FC3 thresholds for definition of transcript classes. CDI of Over-PositiveT, Over-NegativeT, 
PositiveT and NegativeT in selected chromosome of “gain”, “loss” and CNLOH CRC groups at different 
FC3 thresholds. CDI in selected chromosome for each group are calculated at progressively increasing 
FC3-threshold for PositiveT (transcripts with FC3 higher than threshold values shown in abscissa) and at 
progressively decreasing FC3-threshold for NegativeT (transcripts with FC3 lower than threshold values shown 
in abscissa). Horizontal dashed line indicates the CDI value of OverT.
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We also modified the FC2 threshold while keeping constant the FC3 threshold at the established values for 
UpT (>1.5) or DownT (<−1.5). As shown in Supplementary Fig. S3 the FC2 cutoff value of 1.3–1.4 represents 
the best parameter to differentiate Over-UpT and OverT CDI. In agreement with previous results an increased 
CDI is observed in Over-UpT, but not in Over-DownT.

List of Over-UpT and Under-UpT Genes and Cancer Gene Lists. In order to generate a list of 
Over-PositiveT genes located in BGA regions we adopted the cutoff values FC2 >1.3 and FC3 >1.5, thus obtain-
ing the list of the so-called Over-UpT genes. Fold-change values of ten representatives Over-UpT in Chr20, 
Chr8q and Chr13 are reported in Fig. 8. The complete list of Over-UpT genes in the selected CRC groups bearing 
gain-type BCNAs are reported in Supplementary Table S4.

In order to assess the presence of known cancer genes among Over-UpT genes we performed a compar-
ison with three different lists: (1) 719 known cancer genes obtained from the Cancer Gene Census41, (2) 820 
cancer-related genes, referred to as SCC-820, selected by Ohshima et al.42 in various databases and publications, 
(3) 299 cancer genes selected by Bailey et al.43 by merging results from 26 diverse bioinformatics tools and by 
manual curation.

In the Supplementary Table S5 we report the number of Over-UpT present in each selected chromosomes of 
the five gain groups (Chr20, Chr8q, Chr13, Chr7 and Chr9), the number of cancer driver genes of each list (CGC-
719, SCC-820, CG-299) present on the same chromosomes and the number of cancer genes of each list belonging 
to the Over-UpT class; the names of such genes are reported in Supplementary Table S4. By hypergeometric test a 
significant enrichment of cancer genes among Over-UpT was observed in some chromosomes by using the three 
different lists (in Chr8q by CGC-719; in Chr20, Chr8q, Chr13 by SCC-820 and in Chr13 and Chr9 by CG-299). 
Moreover, when the five chromosomes (selected on the basis of the high frequency of gain-type BCNAs) are 
considered as a whole and the total number of genes are considered for statistical analysis, a significant enrich-
ment was observed for each list (last column of Supplementary Table S5). It is relevant that a class of transcripts, 
selected for sensitivity to BCNA-induced transcriptional effects, shows a minor but significant enrichment of 
known cancer related genes. A larger enrichment was not expected since Over-UpT have been selected for their 
association to BCNAs (mild increase of copy number <4), while the majority of known cancer genes are selected 
for their association to point mutations, gene fusions and high-level (>4) amplifications.

When Over-UpT genes are ranked according to their overexpression levels, several genes already impli-
cated at the protein, functional and therapeutic level in cancer, can be observed in the top positions, such as 
CSE1L in Chr2044,45, PRKDC, encoding DNA-dependent protein kinase catalytic subunit46, and SQLE (squalene 
epoxidase)47 in Chr8q, HSPH1 (encoding HSP110)48 and CDK839,49, in Chr13, MACC150 in Chr7, CKS2 
(Cyclin-dependent kinases regulatory subunit 251,52, and SET oncogene53 in Chr9.

Figure 8. Fold changes of ten representative “Over-UpT” and “Under-UpT” genes. Over-UpT genes located 
in Chr20, Chr8q and Chr13 and Under-UpT genes located in Chr8p and Chr18. Ten representative genes 
for chromosome are shown. The plots show transcript levels in Normal Colonic Tissue (Normal), in Control 
(CTRL) CRC group and in selected CRC group (BCNA CRC). Transcript levels are expressed as fold-change 
relative to values in normal tissue (FC3 or FC4). A complete list of Over-UpT genes and their full names is 
reported in Supplementary Table S3. A complete list of Under-UpT genes and their full names is reported in 
Supplementary Table S4.
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Six of the top ten Over-UpT genes in Chr20 have been involved in tumorigenesis based on overexpression, 
functional assays and clinical data: CSE1L44,45, POFUT154, TPX255 RPN256, PLCB457, CPNE158,59.

Since the products of BCNA-associated cancer driver genes are predicted to act in cooperative manner, the 
lists of Over-UpT genes were also examined for the presence of strictly functionally cooperating proteins, such 
as subunits of protein complexes. Two genes encoding for eukaryotic translation initiation factors (EIF3E and 
EIF3H) are located in Chr8q. Their transcript levels are 4–5 fold higher in cancer samples with a disomic Chr8 
in comparison to normal tissue and overexpressed comparing cancer samples bearing Chr8q gain with those 
with disomic Chr8 (1.8-fold change). Interestingly, as reported in Supplementary Table S4, another two genes 
encoding for eukaryotic translation initiation factors (EIF2S2 and EIF6) are located in Chr20 and are significantly 
upregulated in comparison to normal tissue (4- and 2-fold change, respectively) and overexpressed comparing 
cancers bearing Chr20 gain with those with disomic Chr20 (2.2 and 1.67-fold change, respectively). Among 
Over-UpT genes located in Chr8q we also report the presence of MTDH (metadherin) and AGO2, whose prod-
ucts are members of the RNA-induced silencing complex (RISC).

Regarding the strong anticaricature effects on UpT (increased “Under-UpT CDI”) observed in loss-aberrant 
chromosomes, a list of Under-UpT genes is reported in Supplementary Table S6 and a plot of fold-change values 
of ten representative transcripts per chromosome is shown in Fig. 8. As an example of a Chr8p-located gene, 
the TNFRSF10B (tumor necrosis factor receptor superfamily, member 10b, also known as Death Receptor 5) is 
upregulated (1.95-fold increase) in CRC samples in comparison to normal tissue but its expression decreases in 
CRC samples bearing a Crh8p loss. Other putative TSGs, such as SMAD4, are present among Under-UpT genes 
located in Chr18.

RNA-Seq Transcriptome Profiling Data from TCGA-COAD Project. In order to compare results 
obtained in our cohort of CRC samples, we downloaded RNA-Seq transcriptome profiling data and masked 
copy number segment files (obtained by Affymetrix SNP 6.0 array) relative to the COAD (Colon adenocarci-
noma) project (The Cancer Genome Atlas, TCGA) from GDC Data Portal (NIH, National Cancer Institute, 
https://portal.gdc.cancer.gov/). Both raw counts and FPKM data (converted in TPM according to Wagner et 
al.60) were downloaded for RNA-Seq analysis. Since the complete dataset of COAD contained only 41 normal 
colonic mucosae, we selected the 46 tumor samples deriving from the same patients so to have a group of matched 
tumors and normal tissues. On the basis of copy number data, we formed 5 selected CRC groups (Chr20-gain, 
Chr8q-gain, Chr13-gain, Chr7-gain, Chr18-loss) and corresponding control CRC groups (number of samples for 
each group are reported in Supplementary Table S7). As shown in Fig. 9 data confirmed the increase of Over-UpT 
CDI in gain CRC groups and the lack of sensitivity of Over-DownT to BCNA-associated gene dosage effect. A 
large percentage of Over-UpT genes in the list compiled by microarray data were confirmed by the RNA-Seq data 
(66% in Chr20, 36% in Chr8q, 39% in Chr13, 57% in Chr7; names of the Over-UpT genes confirmed by RNA-Seq 
in COAD samples are indicated in Supplementary Table S3).

Discussion
In the present paper we report an integrative analysis of gene copy number and transcriptomic data in colorectal 
cancer with a focus on BCNAs, defined as whole-chromosome or arm-level copy number aberrations. Several 
previous works have been dedicated to similar integrative analysis, but the majority have concentrated their 
efforts on focal and high-level gene amplifications7,8,33,36,37.

Recently, Ohshima et al.42 reported an integrative analysis of copy number alterations and gene expression, 
suggesting that overexpression (corresponding to upregulation in our terminology) is a requisite for ampli-
fied genes to function as driver alterations. As an index of amplification-dependent overexpression of a spe-
cific gene they use the percentage of co-occurrence of amplification and overexpression out of the total cases of 
overexpression of that gene. However, the simple association of overexpression (higher expression in cancer in 

Figure 9. “Up-T”, “Over-UpT” and “Over-DownT” classes in the TCGA-COAD samples. CDI of Up-T, Over-
UpT and Over-DownT has been calculeted in selected chromosomes of each Selected CRC group using TPM 
values obtained by RNA-seq in TCGA-COAD samples. CDI of all transcripts analyzed in RNA-seq (All T) is 
also reported for comparison. *p < 0.01 comparing the selected chromosome versus all other chromosomes by 
chi-squared test.

https://portal.gdc.cancer.gov/
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comparison to normal tissues) and moderate gene amplification (copy number >3 and <5 such as those observed 
in gain-type BCNAs) does not necessarily imply a causal relationship between amplification and upregulation (i.e. 
amplification-dependent upregulation). Moreover, they restrict their analysis to lists of known cancer genes and 
their study is focused on determining which genes, in a list of already known or strongly suspected cancer genes, 
can be activated by the mechanism of amplification-dependent overexpression.

In our study we used an alternative approach: we evaluated the possible influence of copy number gains on 
gene expression by comparing tumor groups differing for the presence of a specific gain-type BCNA. Transcripts 
showing a significant higher expression in BCNA-bearing tumors in comparison to control tumors are indicated 
as overexpressed (OverT). However, the list of OverT genes only partially reflects the BCNA-sensitive genes 
for at least two reasons: (1) inclusion in OverT classes depends on the choice of a threshold; (2) several other 
cancer-associated transcriptional dysregulation processes, due to mutational and epimutational differences, dif-
ferentiate the two CRC groups and contribute to the appearance of OverT and UnderT61. Indeed, Fehrmann et 
al.34 reported that only 28% of the total expression variation between genomically stable and unstable human 
samples was strongly correlated with copy number variation and differences in expression profiles between class 
of tumors with different form of genomic instability are well known39. In order to provide an estimate of the 
association between OverT and the specific gain-type BCNA we used the variations of an index called the chro-
mosomal distribution index (CDI). The assumption behind the adoption of such quantitative index is that prior 
knowledge on the physical localization of genes can be useful in roughly estimating the proportion of OverT 
associated to BCNA-dosage effects. Indeed, one of the result of our work is that CDI shows significant variations 
in aberrant chromosomes selected for the formation of the cancer groups in a direction concordant with the 
type of BCNA (gain or loss). The presence of major CDI changes in selected aberrant chromosomes was true in 
different groups selected for gain- or loss-BCNAs and did not occur in two tumor groups formed on the basis of 
copy-neutral aberrations (CNLOH). On the basis of these results we used quantitative changes of CDI in selected 
chromosomes (aberrant chromosomes used for tumor group formation) as an index of sensitivity of different 
class of transcripts to BCNA-dosage effects. The largest variations of CDI in selected gain chromosomes were 
observed for the Over-UpT class (transcripts that are overexpressed in BCNA-bearing cancer in comparison 
to control cancer and upregulated in control cancer in comparison to normal colonic tissue), while no signif-
icant variations were observed for Over-DownT classes (transcripts that are overexpressed in BCNA-bearing 
cancer in comparison to control cancer but downregulated in control cancer in comparison to normal tissue). 
Therefore, another result of the study is that cancer up-regulated genes are enriched among genes sensitive to 
BCNA-associated gene dosage effects. We called this effect “BCNA-associated positive caricature transcriptomic 
effects”, based on the definition of “caricature” as an exaggeration of a tumor’s distinctive features.

This difference is not linked to the technology used for transcriptome analysis, as shown by the fact that we 
could reproduce similar results by using the transcriptome data generated through RNA-Sequencing (RNA-Seq) 
by the TGCA-COAD project. As far as global transcriptomic effects are concerned data by RNA-Seq are in agree-
ment with microarray results.

Fehrmann et al.34 have reported that genes abundantly expressed were more dosage sensitive than genes with 
low expression levels. Our data confirm that genes within a high range of expression level (RMA values >10) 
show an increased CDI in BCNA-chromosomes (Over-HighT genes). However, this effect is detectable only in 
a fraction of BCNA chromosomes (Chr20, Chr8q and Chr13) and is significantly lower than that observed with 
Over-UpT. Moreover, when transcripts are divided in highly expressed and moderately expressed the difference 
in dosage sensitivity between Over-UpT and Over-DownT is maintained (Fig. 6).

Previous results do not give any information on the presence of cancer driver genes (number or identity) 
among Over-UpT genes located in BCNAs. An estimate of the minimal value of fold-enrichment of cancer genes 
among BCNA-located Over-UpT genes has been obtained by comparisons with various lists of known cancer 
driver genes, yielding a low, but significant, value of 3.45–5.45 fold-enrichment in comparison to expectations. 
The low value is explained by the fact that most known cancer genes have been selected on the basis of point 
mutations, gene fusions or high level amplifications and such criteria do not correspond to the features of putative 
BCNA-associated cancer driver genes.

We are not suggesting that Over-UpT are cancer driver genes, but that this class of transcripts can be prior-
itized for further functional studies on such specific type of cancer genes (BCNA-associated). Indeed, the list 
of Over-UpT genes in Chr20, ranked according to overexpression, shows in the top positions several bona fide 
cancer driver genes, already implicated in cancer pathogenesis on the basis of evidence at the protein, functional 
and clinical level44,45,54–59,62. Moreover, it should be kept in mind that transcript level changes are not necessarily 
translated in phenotypic effects and several downstream mechanisms can counterbalance such modifications63,64.

In the list of Over-upT genes in Chr8q we also noted the presence of subunits of protein complexes, such 
as the eukaryotic translation initiation factors eIF3E and eIF3H. Indeed, it has been reported that increased 
expression of EIF3H gene increases CRC growth and invasiveness65. Moreover, Gandin et al.66 have reported that 
another eukaryotic translation initiation factors, eIF6, included in the list of Over-UpT genes located in Chr20, is 
rate-limiting in translation, growth and transformation. Another example of functional interaction between pro-
teins encoded by Over-UpT genes in Chr8q is represented by MTDH and AGO2, whose products are members of 
the RNA-induced silencing complex (RISC). MTDH (also known as AEG1) has been considered as an oncogene 
in melanoma, malignant glioma, breast cancer and hepatocellular carcinoma67. Of course these are only examples 
of functional interactions involving the products of Over-UpT genes. Their possible roles, as rate-limiting steps in 
the functional activity of pathways linked to cancer progression, need to be further investigated.

In agreement with the specificity of the phenomenon for gain-type BCNAs no caricature effects on UpT are 
observed in chromosomes bearing loss-type BCNA or CNLOH. On the contrary, the most evident effect asso-
ciated with loss-type BCNAs is an “anticaricature effect” on UpT genes located in Chr8p (i.e. several UpT genes 
are underexpressed in the presence of Chr8p-loss). It is known the transcription of some TSGs can increases 
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during cancerogenesis as an extreme compensatory mechanism that opposes to cancer growth. Loss of a chro-
mosomal arm may be responsible for their decreased transcriptional activity, thus facilitating cancer progression. 
As an example of an Under-UpT gene with potential tumor-suppressor activity we report the TNFRSF10B gene 
(also known as DR5). This gene encodes for one of the receptors for TRAIL, a potent death-inducing ligand that 
mediates apoptosis and serves as an important endogenous tumor suppressor mechanism68. Another example is 
provided by SMAD4, a TSG involved in the signal transduction cascade initiated by TGF-β superfamily and in 
CRC pathogenesis. SMAD4 is located in Chr18, the most frequently deleted chromosome in CRC, and shows 
the Under-UpT transcriptional profile typical of the anticaricature effect. This result is in agreement with pre-
vious data showing an increased expression of SMAD4 mRNA in colon adenomas and a decreasing expression 
with tumor progression69. We are not proposing that most genes with an Under-UpT transcriptional profile are 
classical TSGs (Type I TSG). Indeed, the majority of genes present in such category would not fit the actual 
experimental criteria for TSGs. Under-UpT could be candidate as cancer driver genes involved in cumulative 
haploinsufficiency, but different approaches are required for experimental validation.

We have observed only minor transcriptional effects in genes located in CNLOH-bearing chromosomes, 
such as a decreased anticaricature effect on UpT. This weak effect is in agreement with the presence of a normal 
gene copy number in this type of chromosomal aberration and could reflect the existence of subtler changes in 
gene transcription. Indeed, it has been proposed that expression of selected genes included in broad CNLOH 
region can be modified by gene dosage independent mechanisms17 and it is conceivable an impact of those 
expression changes on cancer phenotype. For instance, CNLOH in imprinted genomic regions may produce 
loss-of-imprinting or gain-of imprinting of selected genes and cumulative changes in gene expression25.

In conclusion, our results show that cancer up-regulated genes are enriched among genes sensitive to 
BCNA-associated gene dosage effects. To our knowledge this is the first description of the BCNA-associated 
positive caricature transcriptomic effect and we suggest that this effect could be exploited to prioritize candidate 
BCNA-associated cancer genes for experimental validation.

Methods
Genome-Wide DNA Copy Number and SNP Genotyping Analysis in CRC samples. Genome-wide 
DNA copy number and SNP genotyping analysis was performed on Affymetrix SNP 6.0 arrays (Affymetrix, Inc., 
Santa Clara, CA, USA), using 500 ng of input DNA. Tumor samples were collected from a cohort of 50 patients 
who underwent resection of primary CRC at “Centro Clinico Diagnostico S.r.l. G.B. Morgagni” in Catania (Italy). 
The study was approved by the Ethics Committee of ASL3 of Catania (Italy) and all methods were performed in 
accordance with relevant guidelines and regulations for research involving human participants. All patients gave 
informed consent for the study. Specimens were frozen and stored at −80 °C until DNA extraction. In 29 cases 
biopsies of adjacent normal mucosa (at distance of 3–6 cm from the tumor) were also collected (matched tumor/
mucosa pairs). For 16 patients, two biopsies were taken from the same tumor mass, at a distance ≥1 cm from 
each other (double-sampling pair). In one case, in addition to a double sampling, a synchronous tumor located in 
another site of the colon was present and biopsied.

Array scanning and data analysis were performed by using the Affymetrix® “GeneChip Command Console” 
(AGCC) and the “Genotyping Console™” (GTC) version 3.0.1 software. Broad Copy Number Abnormalities (BCNAs), 
defined as gains or losses involving more than 25% of a chromosomal arm or numerical aberrations involving whole 
chromosomes, were identified by using a bioinformatic tool called BroCyA, as described by Barresi et al.38.

Raw and processed data of SNP 6.0-array results have been submitted to public repository: “Gene Expression 
Omnibus-GEO” (www.ncbi.nlm.nih.gov/geo) with the following accession number: GSE80460.

Microsatellite Testing, Consensus Molecular Subtype Classifier and KRAS Mutation 
Detection. Samples were tested for microsatellite instability with five markers belonging to the Bethesda 
panel (D2S123, D5S346, D17S250, BAT25 and BAT26) and one additional marker (BAT40). Tumors were defined 
as MSI if ≥30% markers were found unstable when comparing tumor versus normal colonic tissue. Consensus 
molecular subtypes (CMS) of colorectal cancer were determined according to Guinney et al. 2015 by an R pack-
age (CMSclassifier), which included the Single Sample Predictor (SSP) classifier. For KRAS Sanger sequencing, 
codons 12 and 13 of KRAS exon 1 were amplified and PCR products purified and sequenced on an ABI Prism 
310 Genetic Analyzer (TermoFisher Scientific, MA, USA) with the Applied Biosystems BigDye terminator cycle 
sequencing ready reaction kit (TermoFisher Scientific, MA, USA).

Transcriptome Analysis. Transcriptome analysis (67528 transcripts) was performed from 100 ng of total 
RNA by amplification and target hybridization to the Gene-Chip Human Transcriptome Array (HTA) 2.0 (Cat. 
No. 902310, Cat. No. 900720; Affymetrix, Inc., Santa Clara, CA, USA). Array scanning and data analysis were 
performed with the Affymetrix® Expression ConsoleTM software version 1.4 (Affymetrix, Inc., Santa Clara, CA, 
USA) and the Affymetrix® Transcriptome Analysis Console (TAC) software (Affymetrix, Inc., Santa Clara, CA, 
USA). Transcript level analysis was performed using the normalization method based on the processing algo-
rithm called robust multi-array average (RMA)70. Linear fold-changes were calculated in the following way: 2[study 

group Average RMA – control group average RMA] if study group > control group, or −2[control group Average RMA – study group average RMA] if 
study group < control group. 46 tumoral samples and 26 normal matched mucosae were analyzed and data have 
been deposited to public repository “Gene Expression Omnibus-GEO” (www.ncbi.nlm.nih.gov/geo) and will be 
accessible through GEO: GSE7336071 and GSE84984.

Changes in Chromosomal Distribution Index. The statistical significance of the chromosomal enrich-
ment or depletion of a transcript class in a BGA-region (changes in CDI) was calculated by chi-squared test. 
Data of Figs 3, 4E and 5A–C were analyzed by 2 * 2 contingency table containing number of genes belonging or 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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not belonging to a transcriptional class located in a specific chromosome (or chromosomal arm) or in all other 
chromosomes (or chromosomal arms). Data of Fig. 4A,C were analyzed by 2 * 2 contingency tables containing 
number of genes belonging to a transcriptional class located in a specific chromosome (or chromosomal arm) 
or in all other chromosomes (or chromosomal arms) in selected or control CRC groups. Data in Fig. 5D were 
analyzed by 2 * 2 contingency table containing number of Over-UpT genes or OverT (or Over-HighT) located in 
a specific chromosome or in all other chromosomes.

Analysis of cancer gene lists. The probability (p-value) that Over-UpT genes are overlapping no less than 
“x” cancer genes in three different lists (719 genes downloaded on June 2018 at http://cancer.sanger.ac.uk/cen-
sus/41; 820 cancer-related genes, referred to as SCC-82042; 299 cancer genes43 by random chance was calculated 
according to a hypergeometric distribution model according the following equation:
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where “N” is the total number of genes located in the selected whole chromosome or chromosome arm, “r” is 
the number of cancer genes located in the selected whole chromosome or chromosome arm, “n” is the number 
of Over-UpT genes located in the selected chromosome, and “x” is the number of cancer genes, located in the 
selected whole chromosome or chromosome arm, that are overexpressed and upregulated.

Ethics, consent and permissions. Tumor samples were collected from patients who underwent surgical 
resection at “Centro Clinico Diagnostico S.r.l. G.B. Morgagni” in Catania (Italy). The study was approved by the 
Ethics Committee of ASL3 of Catania (Italy) and all methods were performed in accordance with relevant guide-
lines and regulations for research involving human participants. All patients gave informed consent for the study.
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and in public repository: “Gene Expression Omnibus-GEO” (www.ncbi.nlm.nih.gov/geo) with the following ac-
cession number: GSE80460; GSE73360 and GSE84984.
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