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SUMMARY

RNA viruses are responsible for many zoonotic diseases that post great chal-
lenges for public health. Effective therapeutics against these viral infections
remain limited. Here, we deployed a computational framework for host-based
drug repositioning to predict potential antiviral drugs from 2,352 approved
drugs and 1,062 natural compounds embedded in herbs of traditional Chinese
medicine. By systematically interrogating public genetic screening data, we
comprehensively cataloged host dependency genes (HDGs) that are indispens-
able for successful viral infection corresponding to 10 families and 29 species
of RNA viruses. We then utilized these HDGs as potential drug targets and inter-
rogated extensive drug-target interactions through database retrieval, literature
mining, and de novo prediction using artificial intelligence-based algorithms. Re-
purposed drugs or natural compounds were proposed against many viral patho-
gens such as coronaviruses including severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), flaviviruses, and influenza viruses. This study helps to
prioritize promising drug candidates for in-depth evaluation against these vi-
rus-related diseases.

INTRODUCTION

The recent outbreak and spreading of coronavirus 2019 disease (also known as COVID-19) has become a

severe public health crisis that threatens not only human health but also social lifestyle and global economy

(Zhu et al., 2020). RNA virus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the

underlying pathogen for COVID-19 (Li et al., 2020). Despite some progresses in early diagnosis and clinical

treatment, people still lack consistent and reliable solutions to defeat SARS-CoV-2 and halt COVID-19

pandemic globally (Altay et al., 2020). In addition to SARS-CoV-2 coronavirus, the outbreak of other path-

ogenic RNA viruses such as coronaviruses of various types (e.g., SARS-CoV and MERS-CoV), flaviviruses

(e.g., West Nile virus, Dengue virus and Zika virus), and influenza viruses (e.g., H1N1 and H3N2 stains)

also cause severe infectious diseases in human (Petersen et al., 2020; Pierson and Diamond, 2020).

Vaccination is one of the most effective approaches to prevent viral infection by conferring active immunity

to the host and helping to establish herd immunity. However, it usually takes years for a successful vaccine

to be developed and implemented. To achieve an immediate control of viral disease for the infected pa-

tients, therapeutic drug then serves as the primary option and is highly demanded especially for recently

emerging pathogens without known therapeutic formula. Encouraging efforts have been made toward

antiviral drug development or drug repositioning against the above mentioned RNA viruses and their

related diseases (Dighe et al., 2019; Mottin et al., 2018; Zhang et al., 2019; Zumla et al., 2016). Most of these

studies focused on various viral genes or proteins that are key mediators to complete the virus life cycle, for

instance, targeting spike proteins to block cell entry or inhibiting RNA polymerase to interfere viral gene

replication. Virus-centered strategy has been proved feasible in light of the successful development of anti-

viral drugs in recent years. This approach heavily relies on the specific knowledge about each viral path-

ogen and its virus-host interplay, which usually requires extensive investigation efforts and is preferable

for de novo antiviral drug development spanning years of time (De Clercq and Li, 2016). In contrast,

drug repositioning or drug repurposing that exploits existing ‘‘old’’ drugs for ‘‘new’’ purposes offers a quick

1College of Life and Health
Sciences, Northeastern
University, Shenyang 110819,
People’s Republic of China

2Key Laboratory of Data
Analytics and Optimization
for Smart Industry
(Northeastern University),
Ministry of Education,
Shenyang 110819, People’s
Republic of China

3Center for Genetic Medicine
Research, Children’s National
Hospital, 111 Michigan
AvenueNW,Washington, DC
20010, USA

4Department of Genomics
and Precision Medicine,
George Washington
University, 111 Michigan
AvenueNW,Washington, DC
20010, USA

5School of Pharmaceutical
Sciences, Fujian Provincial
Key Laboratory of Innovative
Drug Target Research,
Xiamen University, Xiamen,
Fujian 361102, China

6High Throughput Drug
Screening Platform, Xiamen
University, Xiamen, Fujian
361102, China

7These authors contributed
equally

8Lead contact

*Correspondence:
wli2@childrensnational.org
(W.L.),
feiteng@mail.neu.edu.cn
(T.F.)

https://doi.org/10.1016/j.isci.
2021.102148

iScience 24, 102148, March 19, 2021 ª 2021 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:wli2@childrensnational.org
mailto:feiteng@mail.neu.edu.cn
https://doi.org/10.1016/j.isci.2021.102148
https://doi.org/10.1016/j.isci.2021.102148
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102148&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


solution and would be practical to respond to emerging contagious diseases, before valid vaccine and de

novo drugs are available. For COVID-19, several known antiviral drugs or compounds previously designed

for other RNA viruses have been proposed and tested in the first place, including Ebola virus-targeting

drug remdesivir that demonstrated in vitro activity but had unsatisfactory response during following clinical

trials (Wang et al., 2020a, 2020b). More rational drug repositioning strategies have been explored recently

with the aim to identify potential drugs that can target important viral proteins, given the rapid progresses

on SARS-CoV-2 protein structure characterization (Dai et al., 2020; Jin et al., 2020; Wu et al., 2020). Howev-

er, these approaches usually neglect host effect, and the drugs proposed often exhibit significant in vitro

activity but with less success in vivo.

Here, we interrogated a different drug repositioning strategy for COVID-19 and other notorious RNA virus-

related diseases from the host-centered perspective. Viruses require key host genes (or factors) for infec-

tion and replication, and these host dependency genes (HDGs) serve as potential targets for drug

repurposing. By a comprehensive literature collection and data mining, we cataloged HDGs and revealed

their molecular features in virus-host interactions for 29 RNA virus species across 10 viral families. We then

employed an integrative drug repositioning approach by combining known drug-target interactions (DTIs)

from multiple databases with computational predictions for more potential DTIs. We identified candidate

host-targeting drugs and natural compounds with broad-spectrum antiviral potentiality for diseases

caused by pathogenic coronaviruses, flaviviruses, and influenza viruses.

RESULTS

Strategic overview of host-centered antiviral drug repositioning

Althoughmany host genes may interplay with viral genes within the host cells, only a few of them are essen-

tial for complete infection in a virus-specificmanner. Blocking these host essential or dependency genes for

viral infectionwith targeted drugs underlies the principle of host-centered drug repositioning. In the current

study, weprimarily focusedonRNAviruses, especially SARS-CoV-2 andother recently prevalent species (Ta-

ble S1). The overall workflowof this study is illustrated in Figure 1. Firstly, we sought to systematically catalog

the virus-specific HDGs by comprehensively archiving and interrogating published studies that performed

functional genetic screens in human cells challenged with RNA viruses (Figure 1A). These works employed

multiple genetic perturbation platforms such as gene trap, RNA interference (RNAi), or clustered regularly

interspacedpalindromic repeats (CRISPR) to identify HDGswhose loss of function renders host resistance to

specific viral infection. When genetically perturbed cell pool is challenged by the corresponding virus, the

HDG-deficient cells tend to escape from virus-inflicted cell deterioration and positively selected in the final

cell pool by which the HDG could be identified. Screening data from 63 independent studies spanning 10

families and 29 species of RNA viruses were collected (Figure 1A; Table S1). With higher priority for Coro-

naviridae due to the COVID-19 pandemic, we additionally performed in-depth literature mining to include

individual HDGs identified from 34Coronaviridae-focused studies (Table S1). Notably, we primarily consid-

ered studies using human-derived cells or tissues as host systems to better reflect the clinically relevant host

response and for appropriate drug repurposing. Next, we performed comparative analysis of the host de-

pendency features across multiple viruses to extract consensus HDGs for the following drug repositioning

(Figures 1B and 1C). To establish the targeting relationship between drugs and genes, we not only consid-

ered the knownDTIs from several related databases (e.g., DGIdb3.0 and BindingDB) but also conducted de

novo DTI prediction with independent computational methods including DeepCPI and DTINet. Top drug

candidates were examined in detail, and ranked lists with two scoring systems for marketed drugs or natural

compounds were recommended as potential antiviral solutions (Figure 1D).

Cataloging virus-specific host dependency genes

To generate a comprehensive compendium of HDGs for RNA viruses in an efficient manner, we primarily

utilized the published studies to date performing functional genetic screens. In addition, to meet the ur-

gent need for fighting SARS-CoV-2 and COVID-19, we also included individual HDGs identified from 34

focused studies for Coronaviridae. We established a human-specific HDG compendium for 29 RNA virus

species across 10 families (Table S1). To make the compendium as inclusive as possible, we took a union

of HDGs for a given virus species across different studies and screening platforms. Phylogenetic analysis

based on the sequence evolution of viral RNA-dependent RNA polymerase (RdRp) gene among these spe-

cies showed that RNA viruses in the same taxonomic families tend to cluster together (Figures 2A and S1A;

Table S2), indicating a potentially coherent mechanism by which different but evolutionarily close viruses

employ to live. RNAi represented the mostly adopted genetic perturbation technique, accounting for 54%
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(34 out of 63) of all these screening studies. Most of the rest studies mainly employed the recently emerging

revolutionized genome editing tool CRISPR-Cas for gene loss of function, whereas only 4 studies utilized

the traditional gene-trap screening strategy in haploid cells (Table S1). Accordingly, RNAi screens identi-

fied the most HDGs, and only a fraction of them were recapitulated in CRISPR screens and gene-trap

screens (Figures 2B and 2C and S1B). The low-level concordance across the three types of screens may

be partially explained by (1) the unbalanced number of studies using different platforms, (2) intrinsically

technical biases between screening platforms or libraries, and (3) batch effect across independent studies.

A

B C

D

Figure 1. Strategic workflow of this study

(A) Compiling of HDGs for ten families of RNA viruses. Human-specific HDGs were collected from related high-

throughput genetic screening studies predominantly using CRISPR, RNAi, and haploid gene-trap techniques. For HDGs

in Coronaviridae viruses, literatures specifically working on individual HDGs were also considered.

(B) Comparative analysis of HDGs across different RNA virus families.

(C) Functional enrichment analysis revealed molecular features of HDGs for corresponding virus families.

(D) Drug repositioning strategy in this study. We used high confident HDGs as host factors to be drugged. Two thousand

three hundred fifty two FDA-approved drugs and 1,062 nature compounds selected from TCM herbs were interrogated.

Potential DTIs were established by both known database information and de novo DTI prediction with AI-based

computational methods. The top repurposed drug candidates were discussed in detail.
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To further examine the variations of HDG calling across different studies, we re-analyzed a part of these

CRISPR screening data where raw sequencing or count data are available using the MAGeCK-VISPR pipe-

line we previously developed (Li et al., 2015). Each gene is assigned a ‘‘b score’’ by the pipeline to indicate

the function of the gene in screens. The higher the ‘‘b score’’, the more positive selection for the corre-

sponding gene and the more likely for the gene to be an HDG hit in viral resistance screens. Re-analyzing

of CRISPR screen data with a uniform b score criteria does not significantly affect HDG calling compared to

the original analysis in corresponding studies, suggesting that computational algorithm bias here is min-

imal for such positive selection at least for CRISPR screens (Table S3). Different viruses across different

studies exhibit variations on HDG profiles based on these re-analyzed CRISPR screen data (Figure S2A).

The composite pool of HDGs identified by the re-analyzed CRISPR screens showed extensive protein-pro-

tein interactions and are enriched for infection-related pathways (Figures S2B and S2C; Table S3).

Crucial virus-host interplay revealed by functional host factors

We next sought to look into the biological features of these virus-host interactions. Comparative analysis of

HDGs showed that different families of RNA virus exhibit differential profiles of HDGs and some families

have fewer HDGs identified because of either fewer data sources or biological difference per se (Fig-

ure S3A). To minimize the analytic bias due to data insufficiency and fluctuation, we primarily focused on

Coronaviridae (e.g., severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory

syndrome coronavirus (MERS-CoV), and SARS-CoV-2 viruses), Flaviviridae (e.g., dengue virus, Zika virus,

and West Nile virus), andOrthomyxoviridae families (e.g., influenza A viruses H1N1, H3N2, and H5N1 sub-

types) that have the most HDGs collected (Figure 2C; Table S1). We filtered all the HDGs by only keeping

the one occurring more than once within respective families as high confidence HDGs to minimize the

noises. We then depended on this refined list of HDGs for the following analysis as well as for drug repur-

posing. Comparative analysis indicated some common HDGs within these three viral families, posing a

possibility to develop broad-spectrum antivirals when targeting these mutual targets (Figure 3A).

Pathway and functional gene category enrichment analysis with gene ontology and Kyoto Encyclopedia of

Genes and Genomes tools showed that autophagy and infection-related processes are significantly en-

riched among HDGs for Coronaviridae viruses (Figures 3B and 3C and S3B; Table S4). On the other

hand, Flaviviridae andOrthomyxoviridae viruses share several significantly enriched terms related to intra-

cellular membrane system and its implicated functions (Figures 3B and S3B; Table S4). Network analysis

demonstrated extensive protein-protein interactions between these HDGs and associated protein com-

plexes with targetable HDGs highlighted (Figures 3C and S3C). These results indicated that a significant

A B

C

Figure 2. Systematically cataloging HDGs for different RNA viruses

(A) The phylogenetic tree for interrogated RNA viruses was constructed with nucleic acid sequence of viral RNA

polymerase RdRp gene using neighbor-joining (NJ) method.

(B) The Venn diagram of HDGs retrieved from different screening platforms.

(C) Summary and statistics of HDG compendium for all the viruses under investigation.
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amount of host proteins encoded by HDGs may be physically associated to collectively function in certain

complexes, organelles, signaling pathways, or cellular processes that are essential for viral responses.

Mining known drug-target interactions across multiple databases

To identify potential drugs for viral HDGs, we firstly collected known DTIs from multiple public databases

such as DGIdb3.0 (covering data from DrugBank, ChEMBL, therapeutic target database TTD, PharmGKB

and ClinicalTrials.gov, etc.), BindingDB, DrugCentral, and Stitch (Cotto et al., 2018; Gilson et al., 2016;

Kuhn et al., 2010; Ursu et al., 2019). DTIs extracted from databases depend on multiple lines of evidence

ranging from approved drug description, in vitro binding assay, text mining and manual inspection, etc.

We primarily focused on 2,352 drugs approved by the Food and Drug Administration (FDA) since their

safety is validated and could be readily tested and applicable. In addition, we also included a selected

list of 1,062 natural compounds that are active ingredients of traditional Chinese medicine (TCM) herbs

A B

C

Figure 3. Characterization of HDGs for corresponding RNA virus families

(A) Subsets of shared HDGs across different RNA viruses within corresponding virus families. HDGs present in at least two

different viruses within a given virus family were shown. The frequency of HDG occurrence across studies was denoted in

different colors.

(B) Gene ontology enrichment analysis of respective HDGs for corresponding virus families. The size of the dot indicates

the number of HDGs in the corresponding pathway. The color of the dot represents the value of Benjamini and Hochberg

FDR-adjusted p value.

(C) Protein-protein interaction network of HDGs in Coronaviridae family. Each HDG is presented as a node. The edge

between two nodes indicates a protein-protein interaction. The druggable HGDs with targeted drug candidates

predicted in this study were highlighted.
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and pass special criteria for favorable druggability (Methods). With this database retrieval approach and

further manual inspection, we investigated known drug-gene pairs and introduced 31~103 FDA-approved

drugs targeting HDGs for respective Coronaviridae, Flaviviridae, and Orthomyxoviridae viral families (Ta-

bles S5 and S6).

Predicting drug-target interactions

We employed two machine learning methods (DeepCPI and DTINet) to predict more potential drug-gene

interactions in silico. DeepCPI, a high-throughput computational framework combining feature embed-

ding and deep learning technique to predict compound-protein interactions (Wan et al., 2019), was adop-

ted to extensively exploit potential DTIs between HDGs and FDA-approved drugs or natural compounds.

Another independent method termed DTINet, a network-based machine learning pipeline for DTI predic-

tion on a large scale (Luo et al., 2017), was also utilized. DeepCPI can be applied for the DTI prediction

without much prior knowledge of drugs and targets, and it is superior in terms of computational speed

and easy installment. In contrast, DTINet requires a heterogeneous network that is constructed using

the known information from four domains such as drugs, proteins, diseases, and side effects. Although us-

ing different principles and strategies, both methods have been shown to perform well during cross-vali-

dation with large-scale DTI data (Luo et al., 2017; Wan et al., 2019) andmay complement with each other for

better DTI prediction. Either method depends on a calculated score (DeepCPI score or DTINet score) to

quantify the confidence of predicted interaction for a given drug-target pair. We took the intersection of

the prediction results from both methods with normalized Z score cutoffs for FDA-approved drug repur-

posing (Figure 4A). On the other hand, we primarily relied on DeepCPI results for natural compound anal-

ysis since DTINet does not perform well due to insufficient modeling data for natural compounds.

Compared to known DTIs retrieved from databases, more DTIs are predicted for the three viral families

with some consensus (Figure 4B; Table S5).

Prioritizing candidate drugs and natural compounds

In addition to known DTI annotation, we prioritized potential drug candidates primarily by the predicted

DTIs. Since one drug may target multiple HDG targets that may produce enhanced antiviral response,

we first ranked these repurposed drugs mainly according to their targeting number and potency of

HDG targets reflected by DTI prediction scores. For FDA-approved drugs, the two DTI prediction scores

from both DeepCPI and DTINet algorithms were considered and transformed into a joint P-score to

rank the predicted drugs (Methods; Table S5). This ranking system puts emphasis on the HDG targeting

effect but overlooks the negative impact from promiscuous non-HDG targets and cytotoxic essential

gene targets. Thus, we also provided a second ranking system by incorporating the promiscuousness

and cytotoxicity effect with a joint PN-score (Methods; Table S5). As shown in Tables 1, 2, S7, S8, S11,

and S12, the two ranking systems shared a great portion of common hits from the top candidate drugs

for antiviral purpose against Coronaviridae, Flaviviridae, and Orthomyxoviridae viruses, in agreement

with the fact that the promiscuousness and side effect of approved drug are already tested clinically and

usually controllable.

Of note, among these top drug candidates forCoronaviridae viruses (Tables 1 and 2), baricitinib, a Janus kinase

(JAK) inhibitor approved for rheumatoid arthritis treatment, has been shown to lower the cytokine effect and

reduce the viral load in patients with COVID-19 by targeting Janus kinase/signal transducers and activators of

transcription (JAK/STAT) signaling and numb-associated kinases, respectively (Stebbing et al., 2020). Several

clinical trials have been launchedglobally to evaluate the therapeutic effect of baricitinib (ClinicalTrials.gov Iden-

tifier: NCT04358614, NCT04320277, and NCT04321993). Molecular docking analysis of baricitinib and its pre-

dicted targets showed high binding affinity between them, further supporting their potential interactions (Fig-

ures 4C and S4; Table S15). Another JAK inhibitor tofacitinib among the top ten repurposed Coronaviridae-

targeting drugs is also being evaluated for COVID-19 treatment in an active clinical trial (NCT04415151). More-

over, tofacitinib was previously shown to be a potent inhibitor for immunodeficiency virus type 1 (HIV-1)

Figure 4. Drug repositioning using multiple prediction models

(A) The heatmap showing DTI prediction by DeepCPI or DTINet methods. Each row represents a targetable HDG, and

each column represents an FDA-approved drug. The top predicted DTI is color coded according to the color legend.

(B) The Venn diagram of FDA-approved drugs repurposed from known and de novo prediction sources of the top 100 hits

by two ranking methods (P-score; PN-score) for the three indicated virus families.

(C) Molecular docking analysis showing the potential binding pocket of the repurposed drug baricitinib and natural

compound solanocapsine with targeted host factors DYRK1A.
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replication in vitro, further supporting its antiviral activity (Gavegnano et al., 2014). Interestingly, hydroxychloro-

quine also stands out among the top ten candidates, consistent with its in vitro antiviral activity for SARS-CoV-2

albeit less effective in vivo (Maisonnasse et al., 2020; Wang et al., 2020a). Taken together, our analysis provides

encouraging repurposing candidates for antiviral application.

Candidate natural compounds were also ranked with two systems by either DeepCPI P-score or DeepCPI

PN-score (Methods; Tables 3 and 4; Tables S5, S9, S10, S13, and S14). We also summarized the herbs that

include the corresponding compound as part of their active ingredients. Among the top ten predicted nat-

ural compounds against Coronaviridae viruses (Tables 3 and 4), some of them, such as lysergol, solanocap-

sine, picrasidine D, and effusol, have emerged under both ranking methods. Interestingly, sophocarpine

has been reported to exhibit antiviral activity against enterovirus 71 (Jin et al., 2017). Moreover, Asari Radix

et Rhizoma (Xi Xin) and Codonopsis Radix (Dang Shen), the TCM herbs that contain selected compounds

picrasidine D and sophocarpine, respectively, are included in the current TCM formula to treat COVID-19 in

China according to Chinese National Health Commission Guidelines for COVID-19 Treatment, eighth edi-

tion (http://www.nhc.gov.cn/yzygj/). Representative molecular docking analysis was also performed for

compound solanocapsine and its predicted targets, and again, high-affinity interaction modules can be

generated between the compound and predicted targets (Figures 4C and S4; Table S15). These results

further supported the validity of our repurposing strategy, and it is worthy to evaluate these drug candi-

dates for corresponding antiviral purposes in depth. In addition to HDGs, we also applied our drug predic-

tion pipeline onto 38 SARS-CoV-2 viral proteins with DeepCPI algorithm. A tentative list of repurposed

drugs with direct antiviral functions was provided and ready for further experimental validation (Table S5).

DISCUSSION

Given the limited number of de novo antiviral drugs approved during recent years, drug repositioning or

repurposing has become a pivotal approach to combat pathogenic viruses and related diseases. In partic-

ular, when confronted with an emergent pandemic such as current COVID-19 caused by coronavirus SARS-

CoV-2, people highly demand quick and effective solutions for disease control and therapeutic treatment.

By systematically compiling the HDGs for RNA viruses and thoroughly digging tentative DTIs, we took host-

centered angle to prioritize the potential FDA-approved drugs and natural products as repurposed anti-

viral candidates against a plethora of RNA viruses, including recently prevailing coronaviruses, Zika virus,

Table 1. Joint P-score ranking: the top ten repurposed FDA-approved drugs against Coronaviridae viruses

Drug candidate Approved indication PubChem CID Top 10 predicted host targets Known interaction Joint P-score

Fostamatinib Chronic immune

thrombocytopenia

11671467 PI4KB DYRK1A ACVR1 CTSL SIK1

COG5 COG7 ZFP36L2 ACE2

SYK 1.078

Baricitinib Rheumatoid arthritis 44205240 CTSL PI4KB DYRK1A ACVR1 ACE2

COG5 SIK1 COG7 ZFP36L2

JAK1 JAK2

JAK3 TYK2

0.407

Simvastatin Hypercholesterolemia 54454 ANPEP COG7 DPP4 COG5 ZFP36L2

CTSL PI4KB DYRK1A ACVR1 ACE2

HMGCR 0.363

Tofacitinib Rheumatoid arthritis 9926791 DYRK1A ACVR1 CTSL ACE2 SIK1

COG7 COG5 ZFP36L2 DPP4

JAK3 JAK2 JAK1 0.362

Etoricoxib Rheumatoid arthritis 123619 DYRK1A ACVR1 CTSL PI4KB ACE2

COG5 SIK1 COG7 ZFP36L2

COX2 0.340

Bivalirudin Angina 16129704 CTSL PI4KB ACVR1 DYRK1A SIK1

LDLR COG7 COG5 ZFP36L2

F2 0.334

Flurbiprofen Arthritis 3394 CTSL PI4KB ACVR1 DYRK1A ACE2

SIK1 ZFP36L2

COX1 COX2 0.311

Lusutrombopag Thrombocytopenia 49843517 PI4KB CTSL DYRK1A ACVR1 SIK1

COG7 COG5 ZFP36L2

MPL 0.309

Bosutinib Chronic Myelogenous

Leukemia

5328940 BECN1 COG5 COG7 LDLR FURIN

SIK1 PPIA DPP4 ZFP36L2 ACE2

SRC ABL1 0.253

Hydroxychloroquine Rheumatoid arthritis 3652 ACE2 DYRK1A ACVR1 SIK1 ZFP36L2 N/A 0.252

N/A: not applicable.
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dengue viruses, influenza viruses, etc. These recommended drugs or natural compounds are readily tested

in the laboratory and clinical settings for their antiviral uses.

Compared to virus-centered antiviral strategy that targets viral genes to directly interfere with virus reproduction

and infection, a host-centered antiviral approach has several advantages such as (1) functional host genes are

more conserved and evolutionally stable than viral genes, which makes host-targeting drugs more tolerant to

frequent viral mutations than those virus-targeting counterparts; 2) different viruses may share a similar set of

host genes during certain stages of viral life cycle, which underlines the basis of developing broad-spectrum an-

tivirals so that one host-targeting drug may treat multiple virus infection; and (3) there are significantly more tar-

geted drugs approved for host genes than those for viral genes, thus likely increasing the success rate of drug

repurposing by adopting host-centered strategy. Previous studies have extensively tried targeting host genes

for developing antiviral solutions (Ackerman et al., 2018; Bosl et al., 2019; Li et al., 2019; Loganathan et al.,

2020; Luo et al., 2017; Saiz et al., 2018; Zhou et al., 2020). Host receptors mediating viral entrance into the cells

represent the most popular host targets for drugs to block viral infection. A wider range of host genes identified

through protein-protein interaction with viral genes serves as the predominant source of host factors to be tar-

geted. Inaddition, targeting thehost transcriptomechange resulted fromviral infectioncanbeviewedasanother

host-based drug repositioning strategy. Recent studies also identified SARS-CoV-2-associated human proteins,

changed transcriptome, and proteome of human cells in response to SARS-CoV-2 infection to facilitate drug re-

purposing (Bojkova et al., 2020; Gordon et al., 2020). However, most of these host targets are not essentially

required or functionally redundant for complete viral reproduction and infection, even though they are closely

associated to the viral components or processes. In principal, effective host drugs should target those functional

host genes or related processes on which the virus depends to hinder viral functions within a cell. Therefore, our

work particularly focused on those HDGs identified primarily by recent genome-wide screening studies for mul-

tiple RNA viruses, whichmay greatly improve the success rate of drug repositioning compared to previous host-

based approaches.

Table 2. Joint PN-score ranking: the top ten repurposed FDA-approved drugs against Coronaviridae viruses

Drug candidate Approved indication PubChem CID Top 10 predicted host targets Known interaction Joint PN-score

Baricitinib Rheumatoid arthritis 44205240 CTSL PI4KB DYRK1A

ACVR1 ACE2 COG5

SIK1 COG7 ZFP36L2

JAK1 JAK2

JAK3 TYK2

0.155

Lusutrombopag Thrombocytopenia 49843517 PI4KB CTSL DYRK1A

ACVR1 SIK1 COG7

COG5 ZFP36L2

MPL 0.127

Bivalirudin Thrombocytopenia 16129704 CTSL PI4KB ACVR1

DYRK1A SIK1 LDLR

COG7 COG5 ZFP36L2

F2 0.126

Etoricoxib Rheumatoid arthritis 123619 DYRK1A ACVR1 CTSL

PI4KB ACE2 COG5 SIK1

COG7 ZFP36L2

PTGS2 0.123

Semaglutide Type 2 diabetes 56843331 DPP4 COG5 COG7

ZFP36L2 ANPEP

GLP1R 0.108

Fostamatinib Chronic immune

thrombocytopenia

11671467 PI4KB DYRK1A ACVR1

CTSL SIK1 COG5 COG7

ZFP36L2 ACE2

SYK 0.105

Histrelin Prostate cancer 25077993 BECN1 EGLN1 COG5

COG7 ZFP36L2

GNRH1 0.087

Lopromide X-ray contrast agent 3736 GDI2 RAB10 PYROXD1

FIG4 PPP2R2A VPS33A

TMEM106B

PGP 0.081

Hydroxychloroquine Rheumatoid arthritis 3652 ACE2 DYRK1A ACVR1

SIK1 ZFP36L2

N/A 0.079

Vildagliptin Type 2 diabetes 6918537 DPP4 COG7 ZFP36L2 DPP4 0.073

N/A: not applicable.
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Given a set of host genes, how to evaluate the potential drug effect on specific genes becomes the major

challenge for successful drug repurposing. Experimental evaluation of physical interaction strength and ki-

netics between a drug and a target is an ideal way to establish a definite drug-target relationship. Never-

theless, it tends to be exhausting and impractical when dealing with multiple drugs versus multiple targets.

Although drug-related databases have annotated some DTIs from multiple lines of evidence including

experimental data, marketed drug description, and literature mining, more systematic and logic ap-

proaches to define DTIs especially in a high-throughput manner are still highly demanded. Artificial intel-

ligence such as machine learning and deep learning has been implemented in several computational tools

to predict the potential DTIs at a large scale (D’Souza et al., 2020; Rifaioglu et al., 2019; Zhou et al., 2019). In

addition to database-retrieved information, here we applied two independent computational pipelines to

predict de novo DTIs with quantitative measures. We expect to improve DTI identification with these

combinatorial approaches by prioritizing the consensus results. Furthermore, quantitative evaluation of

DTI with interaction scores enables a likelihood ranking of potential drug candidates, which may provide

better guidance for the following in-depth evaluation.

The repurposed drug candidates recommended by this study not only cover FDA-approved drugs but also

include natural compounds especially present in TCM herbs. The active ingredients from the TCM herbs

provide a wealth of resource by which new drugs for specific diseases can be discovered, including for anti-

viral purposes. As our approach is primarily based on targeting HDGs, the viral families that share common

druggable host targets may occasionally result in similar repurposed drug or compounds (Tables 1, 2, 3,

and 4, S7–S14). Although vaccination is a major strategy to build immune barrier among the population

against viral spread, effective drugs are still quite crucial for those individuals already infected by the virus,

especially for those detrimental ones investigated here. The fundamental difference of this study with pre-

vious drug repositioning work largely lies in target selection, DTI determination, and final repurposed drug

candidates.

In summary, our study presents a host-based strategy by focusing onHDGs for a series of RNA viruses to identify

potential candidate drugs or natural compounds against related viral diseases, with special emphasis on drug

Table 3. DeepCPI P-score ranking: the top ten repurposed natural compounds against Coronaviridae viruses

Drug candidate TCMSPa MOL ID PubChem CID Herb Top 10 predicted host targets

DeepCPI

P-score

Lysergol MOL005261 14,987 Pharbitidis Semen ANGPT2 BECN1 COG2 COG6

PCBD1 RTCB TMED2 UGDH VPS29

4.059

Atropine MOL002219 174174 Lycii Cortex,

Hyoscyami Semen

COG2 HNF4A KDM6A KEAP1 PGGT1B

RABL3 RAD54L2 SIRT6 SMARCB1 UGDH

3.842

Solanocapsine MOL007356 73,419 Solanum Nigrum ANGPT2 BECN1 COG2 COG7 CTSL

EXOC1 KDM6A PCBD1 PGGT1B

3.587

Costaclavine MOL008145 160462 Ricini Semen ANGPT2 BECN1 COG6 DOHH PCBD1

RTCB SAR1A TMED2 VPS26A VPS29

3.473

Chanoclavine MOL005260 5281381 Semen Pharbitidis ANGPT2 ANPEP COG2 PCBD1 RTCB

SAR1A TMED2 UGDH VPS26A VPS29

3.299

Triptofordin B1 MOL003232 122391803 Tripterygii Radix BECN1 EP300 HIRA KEAP1 PCBD1

PGGT1B TADA1 TOM1 VPS11 VPS29

3.175

Picrasidine D MOL012140 5316876 Asari Radix et Rhizoma HIRA EP300 HNF4A RAD54L2 SCAP

SIRT6 SMARCB1 TADA1 TOM1 WDR91

3.141

9alpha-hydroxysophoramine MOL006570 50695119 Sophorae Flavescentis

Radix

CTSL DPF2 KEAP1 PIK3C3 RAD54L2

SCAP SIRT6 SMARCA4 UGDH WDR91

2.976

Effusol MOL007910 100801 Junci Medulla AKAP6 ANGPT2 COG6 HIRA KDM6A

PIAS1 RLF RTCB SMARCB1

2.886

Sophocarpine MOL003627 115269 Codonopsis Radix DDX1 DPF2 GDI2 PIK3C3 SCAP SMARCA4

SMARCC1 TMEM106B TMPRSS2 UGDH

2.833

aTCMSP database: Traditional Chinese Medicine Systems Pharmacology Database.
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repositioning scheme toward SARS-CoV-2 and COVID-19. This work not only reveals key essential features of

viral infection from the host perspective but also provides reasonable and promising antiviral drug candidates

for further evaluations in hope of finally controlling these detrimental viral diseases.

Limitations of the study

There are several limitations in the current study. Firstly, we were unable to perform experimental evalua-

tions of these proposed drugs for their antiviral effect at current stage, due to the restricted access to those

highly pathogenic viruses. Secondly, the compiling of HDGsmay not be complete enough for some viruses

to infer the whole host dependency basis and perform appropriate drug repurposing since the currently

available data for HDGs are still limited despite the studies collected in this work. Thirdly, we mainly relied

on DeepCPI, DTINet, and database-retrieved information followed by manual inspection to assign drug-

gene pairing relationship. Further application of more other computational DTI prediction tools may

compensate or improve the outcomes of drug selection.

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Teng Fei (feiteng@mail.neu.edu.cn).

Material availability

The study did not generate any unique reagents.

Data and code availability

This published article includes all data sets generated or analyzed during this study.

METHODS

All methods can be found in the accompanying Transparent methods supplemental file.
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Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102148.

Table 4. DeepCPI PN-score ranking: the top ten repurposed natural compounds against Coronaviridae viruses

Drug candidate TCMSPa MOL ID PubChem CID Herb Top 10 predicted host targets

DeepCPI

PN-score

Solanocapsine MOL007356 73,419 Solanum Nigrum ANGPT2 BECN1 COG2 COG7 CTSL

EXOC1 KDM6A PCBD1 PGGT1B

0.378

Vitexifolin C MOL011912 11033408 Viticis Fructus EIF4G2 HIRA KDM6A 0.374

Dehydroeffusal MOL007904 101191858 Junci Medulla DPF2 KDM6A PIAS1 RLF 0.341

Lysergol MOL005261 14,987 Pharbitidis Semen ANGPT2 BECN1 COG2 COG6

PCBD1 RTCB TMED2 UGDH VPS29

0.338

Picrasidine D MOL012140 5316876 Asari Radix et

Rhizoma

HIRA HNF4A RAD54L2 SCAP SIRT6

SMARCB1 TADA1 TOM1 WDR91

0.334

Isolimonic acid MOL013443 131752314 Aurantii Fructus

Immaturus

ANGPT2 ANPEP BECN1 COG2 COG7

EXOC1 RAB6A SMARCB1 UGDH

0.329

Methyl 15-hydroxydehydroabietate MOL012165 11573479 Solidaginis Herba AKAP6 B4GALT7 0.305

Neotigogenin MOL008519 12304433 Trigonellae Semen AKAP6 ANGPT2 BECN1 COG2 COG4

EXOC1 PIAS1 VPS11 VPS29

0.301

Cyclopamine MOL009027 442972 Fritiliariae Irrhosae

Bulbus

ANGPT2 BECN1 DPF2 EP300 KDM6A

LDLR PIAS1 RLF VPS11

0.298

Effusol MOL007910 100801 Junci Medulla AKAP6 ANGPT2 COG6 HIRA KDM6A

PIAS1 RLF RTCB SMARCB1

0.291

aTCMSP database: Traditional Chinese Medicine Systems Pharmacology Database.
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Supplemental Figure 1 

 
Figure S1. HDG collection for different RNA viruses, Related to Figure 2 
(A) The phylogenetic tree for interrogated RNA viruses was constructed with 
protein sequence of viral RNA polymerase RdRp gene using maximum 
parsimony method. 
(B) The venn diagrams of HDGs for indicated RNA virus families retrieved from 
different screening platforms. 
  



Supplemental Figure 2 

 
Figure S2. Re-analysis of CRISPR screening data for HDGs, Related to 
Figure 3 
(A) The heatmap clustering of corresponding gene’s β score calculated by 
MAGeCK-VISPR for multiple CRISPR screen studies related to HDG 
identification. HDG would have a high β score indicating a positive selection 
against corresponding virus challenge. 
(B) The protein-protein interaction network for all the HDGs identified from 
re-analyzed CRISPR screens. 
(C) Functional category enrichment analysis by KEGG for HDGs identified 
from re-analyzed CRISPR screens. 
  



Supplemental Figure 3 

 
Figure S3. Comparative analysis and characterization of HDGs for 
indicated RNA virus families, Related to Figure 3 
(A) The landscape of all the collected HDGs for indicated RNA viruses. The 
occurrence frequency of each HDG across studies was indicated by color 
legend.  
(B) KEGG enrichment analysis of HDGs for the three indicated virus families. 
The size of the dot indicates the number of HDGs in the corresponding terms. 
The color of the dot represents the value of Benjamini and Hochberg FDR–
adjusted p-value. 
(C) The protein-protein interaction network of HDGs for Flaviviridae and 
Orthomyxoviridae virus families. Each HDG is presented as a node. The edge 



between two nodes indicates a protein-protein interaction. The druggable 
HGDs with targeted drug candidates predicted in this study were highlighted. 
  



Supplemental Figure 4 

 
Figure S4. Molecular docking analysis for indicated drug-target pairs, 
Related to Figure 4 
Molecular docking analysis showing the potential binding pockets between the 
repurposed drug Baricitinib and natural compound Solanocapsine with their 
corresponding targeted host factors. 
  



Supplemental Tables 
 
Table S1. Compendium of host dependency genes for multiple RNA 
viruses, Related to Figure 1 (attached dataset) 

Table S2. Sequence sources for phylogenetic analysis, Related to Figure 
2 (attached dataset) 

Table S3. Re-analysis of CRISPR screening data, Related to Figure 3 
(attached dataset) 

Table S4. Functional gene enrichment analysis of host dependency 
genes, Related to Figure 3 (attached dataset) 

Table S5. List of drug-target interactions and repurposed drug 
candidates, Related to Figure 4 (attached dataset) 

Table S6. Summary of host dependency genes with repurposed drugs or 
natural compounds, Related to Figure 4 

 

  



Table S7. Joint P-score ranking: the top ten repurposed FDA-approved 
drugs against Flaviviridae viruses, Related to Table 1 

 

Table S8. Joint PN-score ranking: the top ten repurposed FDA-approved 
drugs against Flaviviridae viruses, Related to Table 2 

  



Table S9. DeepCPI P-score ranking: the top ten repurposed natural 
compounds against Flaviviridae viruses, Related to Table 3 

 

Table S10. DeepCPI PN-score ranking: the top ten repurposed natural 
compounds against Flaviviridae viruses, Related to Table 4 

  



Table S11. Joint P-score ranking: the top ten repurposed FDA-approved 
drugs against Orthomyxoviridae viruses, Related to Table 1 

 

Table S12. Joint PN-score ranking: the top ten repurposed 
FDA-approved drugs against Orthomyxoviridae viruses, Related to Table 
2 

 

  



Table S13. DeepCPI P-score ranking: the top ten repurposed natural 
compounds against Orthomyxoviridae viruses, Related to Table 3 

 

Table S14. DeepCPI PN-score ranking: the top ten repurposed natural 
compounds against Orthomyxoviridae viruses, Related to Table 4 

  



Table S15. Key parameters of molecular docking analysis, Related to 
Figure 4 

 

 
Table S16. 2D structures of the top drug candidates, Related to Tables 
1-4 (attached dataset) 
  



Transparent Methods 

Host dependency gene collection and literature mining 
By systematically searching the literature to date, studies performing genetic 
screening for human-specific HDGs corresponding to RNA viruses were 
collected. Screens for DNA viruses or in non-human cells were not included 
with an exception for SARS-CoV-2 virus-related screens. We collected all the 
recently published viral resistance CRISPR screens against SARS-CoV-2 
virus, with 5 studies in human cells and 1 study in Vero-E6 cells (Table S1). 
Under this criteria, data from 63 studies with different genetic perturbation 
techniques (CRISPR knockout, RNAi and haploid gene-trap mutagenesis) 
were collected. These studies identified virus-specific HDGs for 29 RNA 
viruses spanning 10 RNA virus families. Due to the high interest for 
Coronaviridae virus family, we collected additional 34 individual gene-focused 
non-screening studies to include as many Coronaviridae HDGs as possible. A 
gene is defined as a HDG when it meets any of the following criteria: 1) Its 
loss-of-function impedes or reduces viral infection or activity by experimental 
evidence in non-screen studies; 2) It has been clearly classified into HDG 
group in screen studies; 3) When HDG group is not specified in screen studies, 
we took the top ~5% of all the interrogated genes in the positive selection list 
as HDGs with a custom log fold change cutoff in CRISPR knockout or RNAi 
screens challenged by the corresponding virus. The detailed information 
concerning to these literatures and HDGs was summarized in Table S1. For 
Coronaviridae, Flaviridae and Orthomyxoviridae viruses, we only took a subset 
of HDGs that occurred more than once within its corresponding family as high 
confidence HDGs for further analysis. In general, around one hundred HDGs 
for each group of the above three virus families were used for molecular 
characterization and drug repurposing analysis (Table S6). 
 
Phylogenetic tree construction 
The sequences of nucleic acid and protein corresponding to viral 
RNA-dependent RNA polymerase (RdRp) gene for indicated RNA viruses 
were downloaded from online sources (https://www.ncbi.nlm.nih.gov) and 
were used for phylogenetic tree analysis (Table S2). The nucleic acid and 
protein sequences were analyzed by Multiple Sequence Alignment in Muscle 
calculation using MEGA X software. The phylogenetic tree was subsequently 
constructed based on neighbor-joining (NJ) method or maximum parsimony 
(MP) method using pairwise phylogenetic distance with 1000 bootstrap 
replicates. 
 
Re-analysis of CRISPR screening data 
Among the 25 CRISPR screening studies, we downloaded the raw sequencing 
or read count data from 7 studies wherever these raw data were available. We 
re-analyzed these CRISPR screening data to re-call the HDGs using the same 



MAGeCK-VISPR pipeline (Li et al., 2015). In total, 36 samples across the 9 
viruses are included in the analysis. The beta scores of each screening, 
generated by MAGeCK-VISPR, were combined together and normalized using 
quantile normalization. Next, we filtered the data using the following two 
thresholds: First, the maximum of the beta score of a gene across all the 
samples must be greater than 3. Second, the average beta score of a gene 
across all the samples must be greater than 1. After filtering, 261 genes were 
retained as positively selected HDG hits. Then hierarchical clustering and 
protein-protein interaction network was performed using StringDB. 
 
KEGG and GO enrichment analysis 
The high confidence HDGs for Coronaviridae, Flaviridae and 
Orthomyxoviridae viruses (166, 81 and 63, respectively) were used for this 
analysis (Table S6). KEGG and GO enrichment analysis were performed using 
clusterProfiler R package with a strict cutoff of p-value < 0.001 and false 
discovery rate (FDR) < 0.05 (Yu et al., 2012). Enrichment analyses were 
visualized using the R package clusterProfiler with default settings. 
 
Network analysis 
The input HDGs were uploaded to the STRING database (version 11.0, 
https://string-db.org) and high confidence protein-protein interactions (PPIs) 
were extracted with a minimum required interaction score ≥ 0.7. Next, the 
interactions were imported into Cytoscape 3.2.1 software to visualize PPI 
Network. The druggable HDG-encoding proteins with predicted drug 
candidates in this study and proteins classified into certain functional protein 
complexes or biological processes are highlighted. 
 
Drug candidate selection for repurposing  
FDA-approved drug information was extracted from DrugBank database 
(version 5.1.7, released 2020-07-02; https://www.drugbank.ca) corresponding 
to 2352 marketed drugs with InChI (the IUPAC International Chemical 
Identifier) key information. Natural compound information is downloaded from 
Traditional Chinese Medicine Systems Pharmacology (TCMSP) online 
database (version 2.3, released 2014-05-31; https://tcmspw.com/tcmsp.php) 
which is a unique systems pharmacology platform of Chinese herbal 
medicines (Ru et al., 2014). To select the most favorable compound 
candidates, we filtered the pool of 1455 natural compounds by requiring each 
candidate passing the criteria of oral bioavailability (OB) ≥ 30.0 %, 
drug-likeness (DL) ≥ 0.18 and blood-brain barrier (BBB) ≥ -0.30, and finally 
ended up with 1062 selected natural compounds for the downstream DTI 
analysis. 
 
DTI retrieval from related databases 



Known drug-target interactions were extracted according to annotated 
information associated with related drugs, compounds or target genes from 
multiple databases including BindingDB (updated 2020-03-01), DGIdb3.0 
(version 3.0.2), DrugCentral (version 10.12) and Stitch (version 5.0) (Cotto et 
al., 2018; Gilson et al., 2016; Kuhn et al., 2010; Ursu et al., 2019). The high 
confidence HDGs for Coronaviridae, Flaviridae and Orthomyxoviridae viruses 
were used for the DTI analysis (Table S6). One HDG may be associated with 
multiple drugs or compounds. Only FDA-approved drugs and selected natural 
compounds were considered for compiling these known DTI information for 
drug repurposing. 
 
DTI prediction by DeepCPI 
The source code of DeepCPI can be downloaded from 
https://github.com/FangpingWan/DeepCPI. The binding activity score for each 
drug-target pair was predicted by providing the InChl key information of a drug 
or compound and the amino acid sequence of a protein target from UniProt 
database. We applied DeepCPI on 4,563 high confidence DTIs out of 
7,444,710 putative pairs (3,030 druggable proteins and 2,457 FDA-approved 
drugs) extracted from DGIdb3.0 database (version 3.0.2) as a benchmark 
analysis and determined an optimal threshold with a normalized z-score ≥ 
0.641 (sensitivity: 73%; specificity: 51.9%) by receiver operating 
characteristics (ROC) analysis. We then used this cutoff to filter confident DTI 
in our analysis for virus-related HDGs and FDA-approved drugs as well as 
selected natural compounds.  
 
DTI prediction by DTINet 
The source code of DTINet can be downloaded from 
https://github.com/luoyunan/DTINet. The drug-protein interactions and 
protein-protein interactions were extracted from UniProt database. The 
drug-disease associations and protein-disease associations were extracted 
from the Therapeutic Target Database (Wang et al., 2020). The drug-drug 
interactions were extracted from the BioSNAP Network database 
(http://snap.stanford.edu/biodata/). Then the Jaccard similarity for these 
interactions/associations was calculated to further augment the heterogeneity.  
A heterogeneous network (including three types of nodes and five types of 
edges) are constructed using these diverse drug-related and protein-related 
information for the prediction task. The informative, but low-dimensional 
feature vector was obtained by integrating the diverse information from the 
heterogeneous network by combining the network diffusion algorithm (random 
walk with restart, RWR) with a dimensionality reduction scheme (diffusion 
component analysis, DCA). The restart probability is set to 0.50 and the 
maximum number of iterations is set to 20. Intuitively, the low-dimensional 
feature vector is used to encode the relational properties (e.g., similarity), 
association information and topological context of each drug (or protein) node 



in the heterogeneous network. Finally, the score for each drug-protein pair was 
calculated based on the feature vectors by DTINet default parameters. Similar 
to DeepCPI analysis, we also applied DTINet on the benchmark datasets and 
determined an optimal threshold with a normalized z-score ≥ 0.973 (sensitivity: 
88.9%; specificity: 63.8%) by ROC analysis. We then use this cutoff to filter 
confident DTI in our analysis for virus-related HDGs and FDA-approved drugs. 
Due to the insufficient prior data for proper modeling, DTINet was not applied 
for natural compound DTI analysis. 
 
Prioritizing repurposed drug candidates 
The repurposed FDA-approved drugs were prioritized by both known DTI and 
predicted DTI with high confidence. The candidate drugs were ranked by 
predicted DTI scores with known DTI annotation accompanied to the drug if 
any. We adopted two ranking methods to prioritize these candidates. The first 
ranking method only considers the HDG target-associated DTIs. For 
FDA-approved drugs with both DeepCPI and DTINet DTI prediction, we 
extracted mutual confident DTIs by both prediction algorithms and the mean of 
normalized z-score by each prediction tool was calculated as a positive score 
(P-score). A joint P-score by the sum of DeepCPI and DTINet P-score was 
employed to rank the drug candidates. The second ranking method not only 
considers HDG targets, but also incorporates non-HDG targets and common 
essential gene targets to evaluate drug promiscuousness and cytotoxicity 
effects. In addition to P-score, we introduced a negative score for DTIs 
between a given drug and non-HDG (among 3,030 druggable proteins in 
DGIdb3.0 database) or essential gene targets (676 core essential 
gene-encoded proteins) (Wang et al., 2019). An arbitrary weight was set for 
positive score (1) and negative score (-0.333) for multiplexing to generate a 
PN-score. For FDA-approved drugs, a joint PN-score was reported by adding 
the DeepCPI and DTINet PN-score together, and used for ranking the drugs. 
For natural compounds, we also employed these two ranking methods using 
either DeepCPI P-score or DeepCPI PN-score.  
The detailed formula was as follows:  
For a given drug-target pair, we calculated the DTI score 𝑡!"# and 𝑡!"# by 
DeepCPI and DTINet, respectively. By collecting all the DTI scores, two score 
matrices 𝑇!"# and 𝑇!"# were defined to quantify the confidence of predicted 
DTIs: 

𝑇!"# ∈ ℝ!×!

𝑇!"# ∈ ℝ!×!           (1) 

 
Where, 𝑙 refers to the length of drug list and 𝑘 refers to the length of target 
list. 
To ensure them comparable, the score matrices 𝑇!"#  and 𝑇!"#  were 
normalized by Z-Score measurement: 



𝑍!"# =  !!"#! !!"#
!!"#

, 𝑥!"# ∈ 𝑇!"#

𝑍!"# =   !!"#! !!"#
!!"#

, 𝑥!"# ∈ 𝑇!"#
           (2) 

 
Where, 𝜇 is mean value of the scores and 𝜎 is standard deviation of the 
scores. 
We further applied an optimal threshold (as discussed above, 0.641 and 0.973 
were used for 𝑍!"# and 𝑍!"#, respectively) to filter the non-significant scores 
and only keep the confident DTI scores: 

𝑍!"#_!"# =
 𝑧, 𝑖𝑓 𝑧 ≥ 0.641
 0, 𝑖𝑓 𝑧 < 0.641     𝑧 ∈ 𝑍!"#           (3) 

𝑍!"#_!"# =
  𝑧, 𝑖𝑓 𝑧 ≥ 0.973
  0, 𝑖𝑓 𝑧 < 0.973     𝑧 ∈ 𝑍!"#           (4) 

For each FDA-approved drug, the mean value of the normalized z-scores was 
defined as its positive score: 

𝑃_𝑠𝑐𝑜𝑟𝑒!"# =  𝑧!!"#!
!!! /𝑘

𝑃_𝑠𝑐𝑜𝑟𝑒!"# =   𝑧!!"#!
!!! /𝑘

           (5) 

 
Similar as above, we defined negative scores 𝑁_𝑠𝑐𝑜𝑟𝑒!"#$$%&'(  and 
𝑁_𝑠𝑐𝑜𝑟𝑒!""!#$%&'()! for non-HDG and essential gene targets, respectively. The 
final negative was the sum of 𝑁_𝑠𝑐𝑜𝑟𝑒!"#$$%&'( and 𝑁_𝑠𝑐𝑜𝑟𝑒!""!#$%&'()!: 

𝑁_𝑠𝑐𝑜𝑟𝑒!"# =  𝑁_𝑠𝑐𝑜𝑟𝑒!"#$$%&'!!"# +  𝑁_𝑠𝑐𝑜𝑟𝑒!""#$%&'()*#_!"#
𝑁_𝑠𝑐𝑜𝑟𝑒!"# =  𝑁_𝑠𝑐𝑜𝑟𝑒!"#$$%&'!!"# +  𝑁_𝑠𝑐𝑜𝑟𝑒!""#$%&'()*#_!"#

     (6) 

 
The PN-score was the sum of weighted positive score and negative score: 

𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"# = 1 ∗ 𝑃_𝑠𝑐𝑜𝑟𝑒!"# + (−0.333) ∗ 𝑁_𝑠𝑐𝑜𝑟𝑒!"#
𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"# = 1 ∗ 𝑃_𝑠𝑐𝑜𝑟𝑒!"# + (−0.333) ∗ 𝑁_𝑠𝑐𝑜𝑟𝑒!!"

      (7) 

 
Here, we defined a joint P-score by the sum of 𝑃_𝑠𝑐𝑜𝑟𝑒!"# and 𝑃_𝑠𝑐𝑜𝑟𝑒!"# for 
each drug: 

𝐽𝑜𝑖𝑛𝑡_𝑃_𝑠𝑐𝑜𝑟𝑒 =  𝑃_𝑠𝑐𝑜𝑟𝑒!"# +  𝑃_𝑠𝑐𝑜𝑟𝑒!"#      (8) 
 
The joint PN-score was the sum of 𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"# and 𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"# for each 
drug: 

𝐽𝑜𝑖𝑛𝑡_𝑃𝑁_𝑠𝑐𝑜𝑟𝑒 =  𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"# +  𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"#      (9) 
 
Molecular Docking 
The structures of target protein were downloaded from PDB database 
(http://www.rcsb.org). The drug or compound structures were downloaded 
from TCMSP and PubChem database (https://pubchem.ncbi.nlm.nih.gov). The 
structures of proteins and compounds were imported into prime tool of Maestro 



(version 11.8.012) suite of Schrödinger software (released 2018-4). Next the 
preprocessing step was performed by adding hydrogens and missing atoms as 
well as removing water molecules for the proteins using the Protein 
Preparation tool. Ligand preprocessing was performed using default settings 
with Ligprep tool of Maestro software. Then, the top-ranked potential binding 
site was defined using Receptor Grid Generation tool. Glide tool was used to 
detect the interactions between ligands and proteins. The docking score ≤ -6 
was considered as a high confidence binding event between tested ligand and 
protein. The Glide energy for each docking pair was also shown in Table S15. 
The 2D structures of the top candidate drugs were presented in Table S16. 
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