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repositioning for broad-spectrum
antivirals against RNA viruses
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SUMMARY

RNA viruses are responsible for many zoonotic diseases that post great chal-
lenges for public health. Effective therapeutics against these viral infections
remain limited. Here, we deployed a computational framework for host-based
drug repositioning to predict potential antiviral drugs from 2,352 approved
drugs and 1,062 natural compounds embedded in herbs of traditional Chinese
medicine. By systematically interrogating public genetic screening data, we
comprehensively cataloged host dependency genes (HDGs) that are indispens-
able for successful viral infection corresponding to 10 families and 29 species
of RNA viruses. We then utilized these HDGs as potential drug targets and inter-
rogated extensive drug-target interactions through database retrieval, literature
mining, and de novo prediction using artificial intelligence-based algorithms. Re-
purposed drugs or natural compounds were proposed against many viral patho-
gens such as coronaviruses including severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), flaviviruses, and influenza viruses. This study helps to
prioritize promising drug candidates for in-depth evaluation against these vi-
rus-related diseases.

INTRODUCTION

The recent outbreak and spreading of coronavirus 2019 disease (also known as COVID-19) has become a
severe public health crisis that threatens not only human health but also social lifestyle and global economy
(Zhu et al., 2020). RNA virus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the
underlying pathogen for COVID-19 (Li et al., 2020). Despite some progresses in early diagnosis and clinical
treatment, people still lack consistent and reliable solutions to defeat SARS-CoV-2 and halt COVID-19
pandemic globally (Altay et al., 2020). In addition to SARS-CoV-2 coronavirus, the outbreak of other path-
ogenic RNA viruses such as coronaviruses of various types (e.g., SARS-CoV and MERS-CoV), flaviviruses
(e.g., West Nile virus, Dengue virus and Zika virus), and influenza viruses (e.g., HIN1 and H3N2 stains)
also cause severe infectious diseases in human (Petersen et al., 2020; Pierson and Diamond, 2020).

Vaccination is one of the most effective approaches to prevent viral infection by conferring active immunity
to the host and helping to establish herd immunity. However, it usually takes years for a successful vaccine
to be developed and implemented. To achieve an immediate control of viral disease for the infected pa-
tients, therapeutic drug then serves as the primary option and is highly demanded especially for recently
emerging pathogens without known therapeutic formula. Encouraging efforts have been made toward
antiviral drug development or drug repositioning against the above mentioned RNA viruses and their
related diseases (Dighe et al., 2019; Mottin et al., 2018; Zhang et al., 2019; Zumla et al., 2016). Most of these
studies focused on various viral genes or proteins that are key mediators to complete the virus life cycle, for
instance, targeting spike proteins to block cell entry or inhibiting RNA polymerase to interfere viral gene
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solution and would be practical to respond to emerging contagious diseases, before valid vaccine and de
novo drugs are available. For COVID-19, several known antiviral drugs or compounds previously designed
for other RNA viruses have been proposed and tested in the first place, including Ebola virus-targeting
drug remdesivir that demonstrated in vitro activity but had unsatisfactory response during following clinical
trials (Wang et al., 2020a, 2020b). More rational drug repositioning strategies have been explored recently
with the aim to identify potential drugs that can target important viral proteins, given the rapid progresses
on SARS-CoV-2 protein structure characterization (Dai et al., 2020; Jin et al., 2020; Wu et al., 2020). Howev-
er, these approaches usually neglect host effect, and the drugs proposed often exhibit significant in vitro
activity but with less success in vivo.

Here, we interrogated a different drug repositioning strategy for COVID-19 and other notorious RNA virus-
related diseases from the host-centered perspective. Viruses require key host genes (or factors) for infec-
tion and replication, and these host dependency genes (HDGs) serve as potential targets for drug
repurposing. By a comprehensive literature collection and data mining, we cataloged HDGs and revealed
their molecular features in virus-host interactions for 29 RNA virus species across 10 viral families. We then
employed an integrative drug repositioning approach by combining known drug-target interactions (DTls)
from multiple databases with computational predictions for more potential DTls. We identified candidate
host-targeting drugs and natural compounds with broad-spectrum antiviral potentiality for diseases
caused by pathogenic coronaviruses, flaviviruses, and influenza viruses.

RESULTS
Strategic overview of host-centered antiviral drug repositioning

Although many host genes may interplay with viral genes within the host cells, only a few of them are essen-
tial for complete infection in a virus-specific manner. Blocking these host essential or dependency genes for
viral infection with targeted drugs underlies the principle of host-centered drug repositioning. In the current
study, we primarily focused on RNA viruses, especially SARS-CoV-2 and other recently prevalent species (Ta-
ble S1). The overall workflow of this study isillustrated in Figure 1. Firstly, we sought to systematically catalog
the virus-specific HDGs by comprehensively archiving and interrogating published studies that performed
functional genetic screens in human cells challenged with RNA viruses (Figure 1A). These works employed
multiple genetic perturbation platforms such as gene trap, RNA interference (RNAI), or clustered regularly
interspaced palindromic repeats (CRISPR) to identify HDGs whose loss of function renders host resistance to
specific viral infection. When genetically perturbed cell pool is challenged by the corresponding virus, the
HDG-deficient cells tend to escape from virus-inflicted cell deterioration and positively selected in the final
cell pool by which the HDG could be identified. Screening data from 63 independent studies spanning 10
families and 29 species of RNA viruses were collected (Figure 1A; Table S1). With higher priority for Coro-
naviridae due to the COVID-19 pandemic, we additionally performed in-depth literature mining to include
individual HDGs identified from 34 Coronaviridae-focused studies (Table S1). Notably, we primarily consid-
ered studies using human-derived cells or tissues as host systems to better reflect the clinically relevant host
response and for appropriate drug repurposing. Next, we performed comparative analysis of the host de-
pendency features across multiple viruses to extract consensus HDGs for the following drug repositioning
(Figures 1B and 1C). To establish the targeting relationship between drugs and genes, we not only consid-
ered the known DTls from several related databases (e.g., DGIdb3.0 and BindingDB) but also conducted de
novo DTl prediction with independent computational methods including DeepCPl and DTINet. Top drug
candidates were examined in detail, and ranked lists with two scoring systems for marketed drugs or natural
compounds were recommended as potential antiviral solutions (Figure 1D).

Cataloging virus-specific host dependency genes

To generate a comprehensive compendium of HDGs for RNA viruses in an efficient manner, we primarily
utilized the published studies to date performing functional genetic screens. In addition, to meet the ur-
gent need for fighting SARS-CoV-2 and COVID-19, we also included individual HDGs identified from 34
focused studies for Coronaviridae. We established a human-specific HDG compendium for 29 RNA virus
species across 10 families (Table S1). To make the compendium as inclusive as possible, we took a union
of HDGs for a given virus species across different studies and screening platforms. Phylogenetic analysis
based on the sequence evolution of viral RNA-dependent RNA polymerase (RdRp) gene among these spe-
cies showed that RNA viruses in the same taxonomic families tend to cluster together (Figures 2A and STA,
Table S2), indicating a potentially coherent mechanism by which different but evolutionarily close viruses
employ to live. RNAI represented the mostly adopted genetic perturbation technique, accounting for 54%
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Figure 1. Strategic workflow of this study

(A) Compiling of HDGs for ten families of RNA viruses. Human-specific HDGs were collected from related high-
throughput genetic screening studies predominantly using CRISPR, RNAI, and haploid gene-trap techniques. For HDGs
in Coronaviridae viruses, literatures specifically working on individual HDGs were also considered.

(B) Comparative analysis of HDGs across different RNA virus families.

(C) Functional enrichment analysis revealed molecular features of HDGs for corresponding virus families.

(D) Drug repositioning strategy in this study. We used high confident HDGs as host factors to be drugged. Two thousand
three hundred fifty two FDA-approved drugs and 1,062 nature compounds selected from TCM herbs were interrogated.
Potential DTls were established by both known database information and de novo DTI prediction with Al-based
computational methods. The top repurposed drug candidates were discussed in detail.

(34 out of 63) of all these screening studies. Most of the rest studies mainly employed the recently emerging
revolutionized genome editing tool CRISPR-Cas for gene loss of function, whereas only 4 studies utilized
the traditional gene-trap screening strategy in haploid cells (Table S1). Accordingly, RNAI screens identi-
fied the most HDGs, and only a fraction of them were recapitulated in CRISPR screens and gene-trap
screens (Figures 2B and 2C and S1B). The low-level concordance across the three types of screens may
be partially explained by (1) the unbalanced number of studies using different platforms, (2) intrinsically
technical biases between screening platforms or libraries, and (3) batch effect across independent studies.
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Figure 2. Systematically cataloging HDGs for different RNA viruses

(A) The phylogenetic tree for interrogated RNA viruses was constructed with nucleic acid sequence of viral RNA
polymerase RdRp gene using neighbor-joining (NJ) method.

(B) The Venn diagram of HDGs retrieved from different screening platforms.

(C) Summary and statistics of HDG compendium for all the viruses under investigation.

To further examine the variations of HDG calling across different studies, we re-analyzed a part of these
CRISPR screening data where raw sequencing or count data are available using the MAGeCK-VISPR pipe-
line we previously developed (Li et al., 2015). Each gene is assigned a "B score” by the pipeline to indicate
the function of the gene in screens. The higher the “B score”, the more positive selection for the corre-
sponding gene and the more likely for the gene to be an HDG hit in viral resistance screens. Re-analyzing
of CRISPR screen data with a uniform B score criteria does not significantly affect HDG calling compared to
the original analysis in corresponding studies, suggesting that computational algorithm bias here is min-
imal for such positive selection at least for CRISPR screens (Table S3). Different viruses across different
studies exhibit variations on HDG profiles based on these re-analyzed CRISPR screen data (Figure S2A).
The composite pool of HDGs identified by the re-analyzed CRISPR screens showed extensive protein-pro-
tein interactions and are enriched for infection-related pathways (Figures S2B and S2C; Table S3).

Crucial virus-host interplay revealed by functional host factors

We next sought to look into the biological features of these virus-host interactions. Comparative analysis of
HDGs showed that different families of RNA virus exhibit differential profiles of HDGs and some families
have fewer HDGs identified because of either fewer data sources or biological difference per se (Fig-
ure S3A). To minimize the analytic bias due to data insufficiency and fluctuation, we primarily focused on
Coronaviridae (e.g., severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory
syndrome coronavirus (MERS-CoV), and SARS-CoV-2 viruses), Flaviviridae (e.g., dengue virus, Zika virus,
and West Nile virus), and Orthomyxoviridae families (e.g., influenza A viruses HIN1, H3N2, and H5N1 sub-
types) that have the most HDGs collected (Figure 2C; Table S1). We filtered all the HDGs by only keeping
the one occurring more than once within respective families as high confidence HDGs to minimize the
noises. We then depended on this refined list of HDGs for the following analysis as well as for drug repur-
posing. Comparative analysis indicated some common HDGs within these three viral families, posing a
possibility to develop broad-spectrum antivirals when targeting these mutual targets (Figure 3A).

Pathway and functional gene category enrichment analysis with gene ontology and Kyoto Encyclopedia of
Genes and Genomes tools showed that autophagy and infection-related processes are significantly en-
riched among HDGs for Coronaviridae viruses (Figures 3B and 3C and S3B; Table S4). On the other
hand, Flaviviridae and Orthomyxoviridae viruses share several significantly enriched terms related to intra-
cellular membrane system and its implicated functions (Figures 3B and S3B; Table S4). Network analysis
demonstrated extensive protein-protein interactions between these HDGs and associated protein com-
plexes with targetable HDGs highlighted (Figures 3C and S3C). These results indicated that a significant
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Figure 3. Characterization of HDGs for corresponding RNA virus families

(A) Subsets of shared HDGs across different RNA viruses within corresponding virus families. HDGs present in at least two
different viruses within a given virus family were shown. The frequency of HDG occurrence across studies was denoted in
different colors.

(B) Gene ontology enrichment analysis of respective HDGs for corresponding virus families. The size of the dot indicates
the number of HDGs in the corresponding pathway. The color of the dot represents the value of Benjamini and Hochberg
FDR-adjusted p value.

(C) Protein-protein interaction network of HDGs in Coronaviridae family. Each HDG is presented as a node. The edge
between two nodes indicates a protein-protein interaction. The druggable HGDs with targeted drug candidates
predicted in this study were highlighted.

amount of host proteins encoded by HDGs may be physically associated to collectively function in certain
complexes, organelles, signaling pathways, or cellular processes that are essential for viral responses.

Mining known drug-target interactions across multiple databases

To identify potential drugs for viral HDGs, we firstly collected known DTls from multiple public databases
such as DGIdb3.0 (covering data from DrugBank, ChEMBL, therapeutic target database TTD, PharmGKB
and ClinicalTrials.gov, etc.), BindingDB, DrugCentral, and Stitch (Cotto et al., 2018; Gilson et al., 2016,
Kuhn et al., 2010; Ursu et al., 2019). DTls extracted from databases depend on multiple lines of evidence
ranging from approved drug description, in vitro binding assay, text mining and manual inspection, etc.
We primarily focused on 2,352 drugs approved by the Food and Drug Administration (FDA) since their
safety is validated and could be readily tested and applicable. In addition, we also included a selected
list of 1,062 natural compounds that are active ingredients of traditional Chinese medicine (TCM) herbs
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Figure 4. Drug repositioning using multiple prediction models

(A) The heatmap showing DTl prediction by DeepCPI or DTINet methods. Each row represents a targetable HDG, and
each column represents an FDA-approved drug. The top predicted DTl is color coded according to the color legend.
(B) The Venn diagram of FDA-approved drugs repurposed from known and de novo prediction sources of the top 100 hits
by two ranking methods (P-score; PN-score) for the three indicated virus families.

(C) Molecular docking analysis showing the potential binding pocket of the repurposed drug baricitinib and natural
compound solanocapsine with targeted host factors DYRK1A.

and pass special criteria for favorable druggability (Methods). With this database retrieval approach and
further manual inspection, we investigated known drug-gene pairs and introduced 31~103 FDA-approved
drugs targeting HDGs for respective Coronaviridae, Flaviviridae, and Orthomyxoviridae viral families (Ta-
bles S5 and S6).

Predicting drug-target interactions

We employed two machine learning methods (DeepCPI and DTINet) to predict more potential drug-gene
interactions in silico. DeepCPI, a high-throughput computational framework combining feature embed-
ding and deep learning technique to predict compound-protein interactions (Wan et al., 2019), was adop-
ted to extensively exploit potential DTls between HDGs and FDA-approved drugs or natural compounds.
Another independent method termed DTINet, a network-based machine learning pipeline for DTl predic-
tion on a large scale (Luo et al., 2017), was also utilized. DeepCPI can be applied for the DTI prediction
without much prior knowledge of drugs and targets, and it is superior in terms of computational speed
and easy installment. In contrast, DTINet requires a heterogeneous network that is constructed using
the known information from four domains such as drugs, proteins, diseases, and side effects. Although us-
ing different principles and strategies, both methods have been shown to perform well during cross-vali-
dation with large-scale DTl data (Luo et al., 2017; Wan et al., 2019) and may complement with each other for
better DTI prediction. Either method depends on a calculated score (DeepCPI score or DTINet score) to
quantify the confidence of predicted interaction for a given drug-target pair. We took the intersection of
the prediction results from both methods with normalized Z score cutoffs for FDA-approved drug repur-
posing (Figure 4A). On the other hand, we primarily relied on DeepCPI results for natural compound anal-
ysis since DTINet does not perform well due to insufficient modeling data for natural compounds.
Compared to known DTls retrieved from databases, more DTls are predicted for the three viral families
with some consensus (Figure 4B; Table S5).

Prioritizing candidate drugs and natural compounds

In addition to known DTl annotation, we prioritized potential drug candidates primarily by the predicted
DTls. Since one drug may target multiple HDG targets that may produce enhanced antiviral response,
we first ranked these repurposed drugs mainly according to their targeting number and potency of
HDG targets reflected by DTI prediction scores. For FDA-approved drugs, the two DTl prediction scores
from both DeepCPl and DTINet algorithms were considered and transformed into a joint P-score to
rank the predicted drugs (Methods; Table S5). This ranking system puts emphasis on the HDG targeting
effect but overlooks the negative impact from promiscuous non-HDG targets and cytotoxic essential
gene targets. Thus, we also provided a second ranking system by incorporating the promiscuousness
and cytotoxicity effect with a joint PN-score (Methods; Table S5). As shown in Tables 1, 2, S7, S8, S11,
and S12, the two ranking systems shared a great portion of common hits from the top candidate drugs
for antiviral purpose against Coronaviridae, Flaviviridae, and Orthomyxoviridae viruses, in agreement
with the fact that the promiscuousness and side effect of approved drug are already tested clinically and
usually controllable.

Of note, among these top drug candidates for Coronaviridae viruses (Tables 1 and 2), baricitinib, a Janus kinase
(JAK) inhibitor approved for rheumatoid arthritis treatment, has been shown to lower the cytokine effect and
reduce the viral load in patients with COVID-19 by targeting Janus kinase/signal transducers and activators of
transcription (JAK/STAT) signaling and numb-associated kinases, respectively (Stebbing et al., 2020). Several
clinical trials have been launched globally to evaluate the therapeutic effect of baricitinib (Clinical Trials.gov Iden-
tifier: NCT04358614, NCT04320277, and NCT04321993). Molecular docking analysis of baricitinib and its pre-
dicted targets showed high binding affinity between them, further supporting their potential interactions (Fig-
ures 4C and S4; Table S15). Another JAK inhibitor tofacitinib among the top ten repurposed Coronaviridae-
targeting drugs is also being evaluated for COVID-19 treatment in an active clinical trial (NCT04415151). More-
over, tofacitinib was previously shown to be a potent inhibitor for immunodeficiency virus type 1 (HIV-1)
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Table 1. Joint P-score ranking: the top ten repurposed FDA-approved drugs against Coronaviridae viruses

Drug candidate Approved indication ~ PubChem CID  Top 10 predicted host targets Known interaction  Joint P-score
Fostamatinib Chronic immune 11671467 P14KB DYRK1A ACVR1 CTSL SIK1 SYK 1.078
thrombocytopenia COGS5 COG7 ZFP36L2 ACE2

Baricitinib Rheumatoid arthritis 44205240 CTSL PI4KB DYRK1A ACVR1 ACE2 JAKT JAK2 0.407
COGS5 SIK1 COG7 ZFP36L2 JAK3 TYK2

Simvastatin Hypercholesterolemia 54454 ANPEP COG7 DPP4 COGS5 ZFP36L2 HMGCR 0.363
CTSL PI4KB DYRK1A ACVR1 ACE2

Tofacitinib Rheumatoid arthritis 9926791 DYRK1A ACVR1 CTSL ACE2 SIK1 JAK3 JAK2 JAK1 0.362
COG7 COGS ZFP36L2 DPP4

Etoricoxib Rheumatoid arthritis 123619 DYRK1A ACVR1 CTSL PI4KB ACE2 COX2 0.340
COGS5 SIK1 COG7 ZFP36L2

Bivalirudin Angina 16129704 CTSL PI4KB ACVR1 DYRK1A SIK1 F2 0.334
LDLR COG7 COGS5 ZFP36L.2

Flurbiprofen Arthritis 3394 CTSL PI4KB ACVR1 DYRK1TA ACE2 COX1 COX2 0.311
SIK1 ZFP36L2

Lusutrombopag Thrombocytopenia 49843517 PI4KB CTSL DYRK1A ACVR1 SIK1 MPL 0.309
COG7 COGS5 ZFP36L.2

Bosutinib Chronic Myelogenous 5328940 BECN1 COG5 COG7 LDLR FURIN SRC ABL1 0.253

Leukemia SIK1 PPIA DPP4 ZFP36L2 ACE2
Hydroxychloroquine  Rheumatoid arthritis 3652 ACE2 DYRK1A ACVR1 SIK1 ZFP36L2  N/A 0.252

N/A: not applicable.

replication in vitro, further supporting its antiviral activity (Gavegnano et al., 2014). Interestingly, hydroxychloro-
quine also stands out among the top ten candidates, consistent with its in vitro antiviral activity for SARS-CoV-2
albeit less effective in vivo (Maisonnasse et al., 2020; Wang et al., 2020a). Taken together, our analysis provides
encouraging repurposing candidates for antiviral application.

Candidate natural compounds were also ranked with two systems by either DeepCPI P-score or DeepCPI
PN-score (Methods; Tables 3 and 4; Tables S5, S9, S10, S13, and S14). We also summarized the herbs that
include the corresponding compound as part of their active ingredients. Among the top ten predicted nat-
ural compounds against Coronaviridae viruses (Tables 3 and 4), some of them, such as lysergol, solanocap-
sine, picrasidine D, and effusol, have emerged under both ranking methods. Interestingly, sophocarpine
has been reported to exhibit antiviral activity against enterovirus 71 (Jin et al., 2017). Moreover, Asari Radix
et Rhizoma (Xi Xin) and Codonopsis Radix (Dang Shen), the TCM herbs that contain selected compounds
picrasidine D and sophocarpine, respectively, are included in the current TCM formula to treat COVID-19 in
China according to Chinese National Health Commission Guidelines for COVID-19 Treatment, eighth edi-
tion (http://www.nhc.gov.cn/yzygj/). Representative molecular docking analysis was also performed for
compound solanocapsine and its predicted targets, and again, high-affinity interaction modules can be
generated between the compound and predicted targets (Figures 4C and S4; Table S15). These results
further supported the validity of our repurposing strategy, and it is worthy to evaluate these drug candi-
dates for corresponding antiviral purposes in depth. In addition to HDGs, we also applied our drug predic-
tion pipeline onto 38 SARS-CoV-2 viral proteins with DeepCPI algorithm. A tentative list of repurposed
drugs with direct antiviral functions was provided and ready for further experimental validation (Table S5).

DISCUSSION

Given the limited number of de novo antiviral drugs approved during recent years, drug repositioning or
repurposing has become a pivotal approach to combat pathogenic viruses and related diseases. In partic-
ular, when confronted with an emergent pandemic such as current COVID-19 caused by coronavirus SARS-
CoV-2, people highly demand quick and effective solutions for disease control and therapeutic treatment.
By systematically compiling the HDGs for RNA viruses and thoroughly digging tentative DTls, we took host-
centered angle to prioritize the potential FDA-approved drugs and natural products as repurposed anti-
viral candidates against a plethora of RNA viruses, including recently prevailing coronaviruses, Zika virus,
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Table 2. Joint PN-score ranking: the top ten repurposed FDA-approved drugs against Coronaviridae viruses

Drug candidate Approved indication  PubChem CID  Top 10 predicted host targets ~ Known interaction ~ Joint PN-score

Baricitinib Rheumatoid arthritis 44205240 CTSL PI4KB DYRK1A JAKT JAK2 0.155
ACVR1 ACE2 COG5 JAK3 TYK2
SIK1 COG7 ZFP36L.2

Lusutrombopag Thrombocytopenia 49843517 PI4KB CTSL DYRK1A MPL 0.127
ACVR1 SIK1 COG7
COGS5 ZFP36L2

Bivalirudin Thrombocytopenia 16129704 CTSL PI4KB ACVR1 F2 0.126

DYRK1A SIK1 LDLR
COG7 COG5 ZFP36L.2
Etoricoxib Rheumatoid arthritis 123619 DYRK1A ACVR1 CTSL PTGS2 0.123
PI4KB ACE2 COGS5 SIK1
COG7 ZFP36L.2

Semaglutide Type 2 diabetes 56843331 DPP4 COG5 COG7 GLP1R 0.108
ZFP36L2 ANPEP

Fostamatinib Chronic immune 11671467 PI4KB DYRK1A ACVR1 SYK 0.105

thrombocytopenia CTSL SIK1 COG5 COG7

ZFP36L2 ACE2

Histrelin Prostate cancer 25077993 BECN1 EGLN1 COG5 GNRH1 0.087
COG7 ZFP36L2

Lopromide X-ray contrast agent 3736 GDI2 RAB10 PYROXD1 PGP 0.081
FIG4 PPP2R2A VPS33A
TMEM106B

Hydroxychloroquine  Rheumatoid arthritis 3652 ACE2 DYRK1A ACVR1 N/A 0.079
SIK1 ZFP36L2

Vildagliptin Type 2 diabetes 6918537 DPP4 COG7 ZFP36L2 DPP4 0.073

N/A: not applicable.

dengue viruses, influenza viruses, etc. These recommended drugs or natural compounds are readily tested
in the laboratory and clinical settings for their antiviral uses.

Compared to virus-centered antiviral strategy that targets viral genes to directly interfere with virus reproduction
and infection, a host-centered antiviral approach has several advantages such as (1) functional host genes are
more conserved and evolutionally stable than viral genes, which makes host-targeting drugs more tolerant to
frequent viral mutations than those virus-targeting counterparts; 2) different viruses may share a similar set of
host genes during certain stages of viral life cycle, which underlines the basis of developing broad-spectrum an-
tivirals so that one host-targeting drug may treat multiple virus infection; and (3) there are significantly more tar-
geted drugs approved for host genes than those for viral genes, thus likely increasing the success rate of drug
repurposing by adopting host-centered strategy. Previous studies have extensively tried targeting host genes
for developing antiviral solutions (Ackerman et al., 2018; Bosl et al., 2019; Li et al., 2019; Loganathan et al.,
2020; Luo et al., 2017; Saiz et al., 2018; Zhou et al., 2020). Host receptors mediating viral entrance into the cells
represent the most popular host targets for drugs to block viral infection. A wider range of host genes identified
through protein-protein interaction with viral genes serves as the predominant source of host factors to be tar-
geted. In addition, targeting the host transcriptome change resulted from viral infection can be viewed as another
host-based drug repositioning strategy. Recent studies also identified SARS-CoV-2-associated human proteins,
changed transcriptome, and proteome of human cells in response to SARS-CoV-2 infection to facilitate drug re-
purposing (Bojkova et al., 2020; Gordon et al., 2020). However, most of these host targets are not essentially
required or functionally redundant for complete viral reproduction and infection, even though they are closely
associated to the viral components or processes. In principal, effective host drugs should target those functional
host genes or related processes on which the virus depends to hinder viral functions within a cell. Therefore, our
work particularly focused on those HDGs identified primarily by recent genome-wide screening studies for mul-
tiple RNA viruses, which may greatly improve the success rate of drug repositioning compared to previous host-
based approaches.
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Table 3. DeepCPI P-score ranking: the top ten repurposed natural compounds against Coronaviridae viruses

DeepCPI

Drug candidate TCMSP? MOL ID PubChem CID Herb Top 10 predicted host targets P-scEre

Lysergol MOL005261 14,987 Pharbitidis Semen ANGPT2 BECN1 COG2 COG6 4.059
PCBD1 RTCB TMED2 UGDH VPS29

Atropine MOL002219 174174 Lycii Cortex, COG2 HNF4A KDM6A KEAP1 PGGT1B 3.842

Hyoscyami Semen RABL3 RAD54L2 SIRT6 SMARCB1 UGDH

Solanocapsine MOLO007356 73,419 Solanum Nigrum ANGPT2 BECN1 COG2 COG7 CTSL 3.587
EXOC1 KDM6A PCBD1 PGGT1B

Costaclavine MOL008145 160462 Ricini Semen ANGPT2 BECN1 COGé6 DOHH PCBD1 3.473
RTCB SAR1TA TMED2 VPS26A VPS29

Chanoclavine MOL005260 5281381 Semen Pharbitidis ANGPT2 ANPEP COG2 PCBD1 RTCB 3.299
SAR1TA TMED2 UGDH VPS26A VPS29

Triptofordin B1 MOL003232 122391803 Tripterygii Radix BECN1 EP300 HIRA KEAP1 PCBD1 3.175
PGGT1B TADA1 TOM1 VPS11 VPS29

Picrasidine D MOL012140 5316876 Asari Radix et Rhizoma HIRA EP300 HNF4A RAD54L2 SCAP 3.141
SIRT6 SMARCB1 TADAT TOM1 WDR?1

9alpha-hydroxysophoramine  MOL006570 50695119 Sophorae Flavescentis CTSL DPF2 KEAP1 PIK3C3 RAD54L2 2.976

Radix SCAP SIRT6 SMARCA4 UGDH WDR91

Effusol MOL007910 100801 Junci Medulla AKAP6 ANGPT2 COG6 HIRA KDM6A 2.886
PIAS1 RLF RTCB SMARCB1

Sophocarpine MOL003627 115269 Codonopsis Radix DDX1 DPF2 GDI2 PIK3C3 SCAP SMARCA4 2.833

SMARCC1 TMEM106B TMPRSS2 UGDH

“TCMSP database: Traditional Chinese Medicine Systems Pharmacology Database.

Given a set of host genes, how to evaluate the potential drug effect on specific genes becomes the major
challenge for successful drug repurposing. Experimental evaluation of physical interaction strength and ki-
netics between a drug and a target is an ideal way to establish a definite drug-target relationship. Never-
theless, it tends to be exhausting and impractical when dealing with multiple drugs versus multiple targets.
Although drug-related databases have annotated some DTls from multiple lines of evidence including
experimental data, marketed drug description, and literature mining, more systematic and logic ap-
proaches to define DTls especially in a high-throughput manner are still highly demanded. Artificial intel-
ligence such as machine learning and deep learning has been implemented in several computational tools
to predict the potential DTls at a large scale (D'Souza et al., 2020; Rifaioglu et al., 2019; Zhou et al., 2019). In
addition to database-retrieved information, here we applied two independent computational pipelines to
predict de novo DTls with quantitative measures. We expect to improve DTl identification with these
combinatorial approaches by prioritizing the consensus results. Furthermore, quantitative evaluation of
DTl with interaction scores enables a likelihood ranking of potential drug candidates, which may provide
better guidance for the following in-depth evaluation.

The repurposed drug candidates recommended by this study not only cover FDA-approved drugs but also
include natural compounds especially present in TCM herbs. The active ingredients from the TCM herbs
provide a wealth of resource by which new drugs for specific diseases can be discovered, including for anti-
viral purposes. As our approach is primarily based on targeting HDGs, the viral families that share common
druggable host targets may occasionally result in similar repurposed drug or compounds (Tables 1, 2, 3,
and 4, S7-514). Although vaccination is a major strategy to build immune barrier among the population
against viral spread, effective drugs are still quite crucial for those individuals already infected by the virus,
especially for those detrimental ones investigated here. The fundamental difference of this study with pre-
vious drug repositioning work largely lies in target selection, DTI determination, and final repurposed drug
candidates.

In summary, our study presents a host-based strategy by focusing on HDGs for a series of RNA viruses to identify
potential candidate drugs or natural compounds against related viral diseases, with special emphasis on drug
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Table 4. DeepCPI PN-score ranking: the top ten repurposed natural compounds against Coronaviridae viruses

DeepCPI
Drug candidate TCMSP? MOL ID  PubChem CID  Herb Top 10 predicted host targets PN-spcore
Solanocapsine MOL007356 73,419 Solanum Nigrum ANGPT2 BECN1 COG2 COG7 CTSL 0.378
EXOC1 KDM6A PCBD1 PGGT1B
Vitexifolin C MOL011912 11033408 Viticis Fructus EIFAG2 HIRA KDM6A 0.374
Dehydroeffusal MOL007904 101191858 Junci Medulla DPF2 KDM6A PIAS1 RLF 0.341
Lysergol MOL005261 14,987 Pharbitidis Semen ~ ANGPT2 BECN1 COG2 COGé 0.338
PCBD1 RTCB TMED2 UGDH VPS29
Picrasidine D MOL012140 5316876 Asari Radix et HIRA HNF4A RAD54L2 SCAP SIRTé 0.334
Rhizoma SMARCB1 TADA1 TOM1 WDR91
Isolimonic acid MOLO013443 131752314 Aurantii Fructus ANGPT2 ANPEP BECN1 COG2 COG7 0.329
Immaturus EXOC1 RAB6A SMARCB1 UGDH
Methyl 15-hydroxydehydroabietate  MOL012165 11573479 Solidaginis Herba ~ AKAP6 BAGALT7 0.305
Neotigogenin MOL008519 12304433 Trigonellae Semen  AKAP6 ANGPT2 BECN1 COG2 COG4  0.301
EXOC1 PIAS1T VPS11 VPS29
Cyclopamine MOL009027 442972 Fritiliariae Irrhosae ~ ANGPT2 BECN1 DPF2 EP300 KDM6A  0.298
Bulbus LDLR PIAS1 RLF VPS11
Effusol MOL007910 100801 Junci Medulla AKAP6 ANGPT2 COG6 HIRA KDM6A  0.291

PIAS1 RLF RTCB SMARCB1

“TCMSP database: Traditional Chinese Medicine Systems Pharmacology Database.

repositioning scheme toward SARS-CoV-2 and COVID-19. This work not only reveals key essential features of
viral infection from the host perspective but also provides reasonable and promising antiviral drug candidates
for further evaluations in hope of finally controlling these detrimental viral diseases.

Limitations of the study

There are several limitations in the current study. Firstly, we were unable to perform experimental evalua-
tions of these proposed drugs for their antiviral effect at current stage, due to the restricted access to those
highly pathogenic viruses. Secondly, the compiling of HDGs may not be complete enough for some viruses
to infer the whole host dependency basis and perform appropriate drug repurposing since the currently
available data for HDGs are still limited despite the studies collected in this work. Thirdly, we mainly relied
on DeepCPI, DTINet, and database-retrieved information followed by manual inspection to assign drug-
gene pairing relationship. Further application of more other computational DTl prediction tools may
compensate or improve the outcomes of drug selection.
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Supplemental Figure 1
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Figure S1. HDG collection for different RNA viruses, Related to Figure 2
(A) The phylogenetic tree for interrogated RNA viruses was constructed with
protein sequence of viral RNA polymerase RdRp gene using maximum
parsimony method.

(B) The venn diagrams of HDGs for indicated RNA virus families retrieved from
different screening platforms.
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Figure S2. Re-analysis of CRISPR screening data for HDGs, Related to

Figure 3

(A) The heatmap clustering of corresponding gene’s 3 score calculated by
MAGeCK-VISPR for multiple CRISPR screen studies related to HDG
identification. HDG would have a high B score indicating a positive selection

against corresponding virus challenge.

(B) The protein-protein interaction network for all the HDGs identified from

re-analyzed CRISPR screens.

(C) Functional category enrichment analysis by KEGG for HDGs identified

from re-analyzed CRISPR screens.
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Figure S3. Comparative analysis and characterization of HDGs for
indicated RNA virus families, Related to Figure 3

(A) The landscape of all the collected HDGs for indicated RNA viruses. The
occurrence frequency of each HDG across studies was indicated by color
legend.

(B) KEGG enrichment analysis of HDGs for the three indicated virus families.
The size of the dot indicates the number of HDGs in the corresponding terms.
The color of the dot represents the value of Benjamini and Hochberg FDR-
adjusted p-value.

(C) The protein-protein interaction network of HDGs for Flaviviridae and
Orthomyxoviridae virus families. Each HDG is presented as a node. The edge



between two nodes indicates a protein-protein interaction. The druggable
HGDs with targeted drug candidates predicted in this study were highlighted.
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Figure S4. Molecular docking analysis for indicated drug-target pairs,

Related to Figure 4

Molecular docking analysis showing the potential binding pockets between the
repurposed drug Baricitinib and natural compound Solanocapsine with their
corresponding targeted host factors.



Supplemental Tables
Table S1. Compendium of host dependency genes for multiple RNA
viruses, Related to Figure 1 (attached dataset)

Table S2. Sequence sources for phylogenetic analysis, Related to Figure
2 (attached dataset)

Table S3. Re-analysis of CRISPR screening data, Related to Figure 3
(attached dataset)

Table S4. Functional gene enrichment analysis of host dependency
genes, Related to Figure 3 (attached dataset)

Table S5. List of drug-target interactions and repurposed drug
candidates, Related to Figure 4 (attached dataset)

Table S6. Summary of host dependency genes with repurposed drugs or
natural compounds, Related to Figure 4

Druggable host dependence gene

Virus Family High confidence host dependence gene
Predicted Knowns

Coronaviridae 29 32 166

Flaviviridae 79 8 81

Orthomyxoviridae 22 13 63
* Interaction Database: BindingDB, DGIdb3.0, DrugCentral, Stitch, ChEMBL




Table S7. Joint P-score ranking: the top ten repurposed FDA-approved
drugs against Flaviviridae viruses, Related to Table 1

Drug candidate ﬁx‘:i?cr:;:z: Pul::C"I;em Top10 Predicted Host Targets in:(er::::ir:)n P:,:cig:'e
Aatrofloxcin Bacteral necton 3086677 EMC2 RABGEF1 ARCN1 KRT31 COPB2 TRIMG2 UGP2 NA 1578
Fostamatinib lf";’ﬂ‘:’;';%“p‘:’“fa 11671467 NUAK2 TGFBR1 TYK2 JAK1 CHUK SYK 1.240
Ozenoxacin Impetigo 9863827 S’;ﬁ:‘kﬁ?&zm‘zﬁ UGP2 COPB2 RPSEKL1 TRIME2 GyrA 1.191
Crepationad alimecton 72474 USP2CKAPS IFNARI SPCS3 SECE2 NOPS6 UBEZ1 A 1001
Reodivormyes Bacterial infoction 6915744 ;s_rra;As;scg:L SECE3 SSR2 CDB1 IFNAR1 EMC3 DPIV3 A 0810
Gramicidin D Bacterial infection 45267103 Dro- 2o EMC4 MMGT! SECE18 OST4 DDOST NIA 0732

Triclosan Bacterialinfection 5564 SrColt VP! OSTS CO81 TUSC3 DAD1 DERL2 NIA 0.700
Tofacitinib Rheumatoid arthritis 9926791  TYK2 JAK1 NUAK2 TGFBR1 CHUK JAK3 JAK2 JAK1 0.697
Omedacydine Bacterial infection 54697325 gsggsng::g CKAP5 ARCN1 COPB2 RPN1 CD81 SEC62 WA 0600
Lasofoxif o i 216416  ATPGVIE1ATPEVOC ATP6VOD1 ATP6VOB ATP6VIACHUK  ESR1, ESR2 0597

N/A: Not applicable

Table S8. Joint PN-score ranking: the top ten repurposed FDA-approved
drugs against Flaviviridae viruses, Related to Table 2

PubChem Known Joint

Drug candidate Approved Indication cID Top10 Predicted Host Targets interaction PN-score

. . . EMC2 RABGEF1 ARCN1 KRT31 COPB2 TRIM62 UGP2
Alatrofloxacin Bacterial infection 3086677 SPCS3 DPM1 TEAD3 N/A 1.566

. . ARCN1 EMC2 RABGEF1 UGP2 COPB2 RPS6KL1 TRIM62
Ozenoxacin Impetigo 9863827 DPM1 KRT31 CKAPS N/A 1.181

UGP2 CKAPS IFNAR1 SPCS3 SEC62 NOP56 UBE2J1

Grepafloxacin Bacterial infection 72474 RPS6KL1 SSR2 OST4 NA 1.083
) 2 tal & . SSR1 SEC62 SEC63 SSR2 CD81 IFNAR1 EMC3 DPM3
Roxithromycin Bacterial infection 6915744 STT3AB3GALT6 N/A 0.804

DERL2 B4GALT7 EMC4 MMGT1 SEC61B OST4 DDOST

Gramicidin D Bacterial infection 45267103 DAD1 TUSC3 VMP1

N/A 0.727

. s . SEC61A1 VMP1 OST4 CD81 TUSC3 DAD1 DERL2
Triclosan Bacterial infection 5564 TMEM41B MMGT1 B3GALT6a N/A 0.695

Omadacycine  Bacterial infection B1697325  gotan g 0 ARCNT COPBZRPN1 CD81 SECE2 NA 059

Lasofoxi Ostec i 216416 ATP6V1E1 ATP6VOC ATP6VOD1 ATP6VOB ATP6V1ACHUK ESR1, ESR2 0.550

KAT8 WDR7 STAT2 UBE2J1 USP11 ASCC2 SEC63

RABGEF1 SEL1L TRIM62 NA 0.536

Candicidin Bacterial infection 10079874

CKAPS5 USP11 SEC62 SEC63 EMC7 B3GALT6 SSR1 NA

SSR2 OSTC SSR1 0392

Troleandomycin Bacterial infection 202225

N/A: Not applicable



Table S9. DeepCPl P-score ranking: the top ten repurposed natural
compounds against Flaviviridae viruses, Related to Table 3

Drug candidate WC')“LSIFI; Pubc(igem Herb Top10 Predicted Host Targets ?::zgrzl
Lysergol MOLO0S261 14987  Semen Pharbitidis She i e | oV 1E1 TEADS COPB2 AARZ RABGEFT 3918
Adropine MOLO02219 174174 Hy;-sytf;'a Cotex,  TEADS AARZ PAPSS1 ARCN1 RPN1 COPB2 ATPEVOD1 IRFO 2501

Costaclavine MOL008145 160462 Ricini Semen a;m\gsapsgngiéwsvom SECB1A1 RPN1 ARCN1 RPN2 3.545
Solanocapsine  MOL007356 73419 SolanumNigum vz oboLr ) ATPEVIET TEADS KRT31 STAT2 ATPEVOD1 3.389
Chanoclavine ~ MOLO05260 5281381  Semen Pharbitidis 5:;‘5:;:3’315’ ARCNT RPNT AAR2 EMC2 TEAD3 ATP6VOD1 3.321
TriptofordinB1 ~ MOL003232 122391803  Tripterygii Radix gsrzsi%?ﬁ RPN2 TEAD3 ASCC2 TMEM41B BAGALTY IL4l1 2931
Penniclavin MOLO05257 115247  Semen Pharbitidis 5:'1‘25‘41’\;?;,‘:‘02[’&63’;‘:”1 HSPA13 ATPGVOC SPCS3 TPTH 2620
PicrasidneD ~ MOLO12140 5316876 ~ San Radxet  KAWS RABSEF] AAR2 TEAD3 STATZ ARCNT ASCCZ IRFS g0
elymoclavine  MOLO05267 16758153 Semen Pharbitidis $F“,‘1(,:12T':AT:$X?S1 ARCNT SECE1A1 HSPAT3 RPN1 DPM3 SPCS3 2519
dehydrlzg:f;oridine MOL006573 Flavioo%:%r::zaaix LT?BARRA%?PQARZRABGEH STATZ COPBZ TRINGZ PAPSST 2614

*TCMSP database: Traditional Chinese Medicine Systems Pharmacology Database

Table S10. DeepCPI PN-score ranking: the top ten repurposed natural
compounds against Flaviviridae viruses, Related to Table 4

. TCMSP* PubChem . DeepCPI
Drug candidate MOL ID ciD Herb Top10 Predicted Host Targets PN-score
_ NA{B{o- _ NDST1 TMEM41B DERL2 VMP1 MMGT1 EMC3
acridinylamino)hexylloen  MOL005935 146515 Sophora Japonica L. ATPEVOD1 RPN2 TECR EMC1 0.535
zamide
) ATP6VOD1 SPCS2 SPCS3 UGP2 ASCC3 MMGT1 CHUK
14b-pregnane MOL009604 176992 Lycil Fuctus 1ot EMC2 DEIA 0.465
(S)-Canadine MOL001455 21171 Chelidonii Herba f‘gg%yvﬁﬁf‘,ﬁgﬁﬁggfwm ATPGVOB DER1 2 0.460
(R)-Canadine MOL002903 443422 Coptidis Rhizoma  SEC6 A1 ATREV0C RPN2 TeacMA18 ATP6VOB DERL2 0.460
Androstane MOL003790 6857536 Styrax T areS3 SrCS2 WMPT CHUK ASCCS HSPATS 0.407
) Papaveris DERL2 OST4 NDST1 EXT2 TECR MMGT1 ATP6VOB
Narcein MOL009329 8564 Pericarpium  SSR2 CD81 STT3A 0.404
malkangunin MOLOOS360 90473155  StemonaeRadix cpig. z’;’;sﬁuggf P2 EXTL3 ATPOVIA AARZ ASCC3 0390
alpha-berbine MOL008182 164543 Dichroae Radix 353213105%7'42?1 c/[\);ﬁ'sglggss;\wevos DERL2 0363
. Uncariae Ramulus  SEC61A1 DERL2 TMEM41B ATP6VOC VMP1 ATP6VOB
yohimbine MOL00B43S 8969 Cumuncis TECR MMGT1 SPCS3 SEC61B 0359
. Uncariae Ramulus SEC61A1 DERL2 TMEM41B ATP6VOC VMP1 ATP6VOB
coryincine MOL008635 3058605 Cumuncis  TECR MMGT1 SPCS3 SEC618 0.359

*TCMSP database: Traditional Chinese Medicine Systems Pharmacology Database



Table S11. Joint P-score ranking: the top ten repurposed FDA-approved
drugs against Orthomyxoviridae viruses, Related to Table 1

. Approved PubChem . Known Joint
Drug candidate Indication cID Top10 Predicted Host Targets interaction P-score
- Chronic immune
Fostamatinib throm openia 11671467 CAMK2B CLK3 FGFR2 GSK3A MAP2K3 MAPK13 RIOK3 SYK 2724
) . ATPBAP1 ATP6VOA1 ATPEVOB ATPEVOC ATP6VOD1 ATPEV1A
Lasofoxifene Osteoporosis 216416 ATP6V1B2 ATP6V1G1 ATPEVIH ESR1 ESR2 1.259
PR " - JAK1T JAK2
Baricitinib Rheumatoid arthritis 44205240 CAMK2B CLK3 GSK3A MAP2K3 MAPK13 RIOK3 JAK3 TYK2 0.869
L . . JAK3 JAK2
Tofacitinib Rheumatoid arthritis 9926791 CAMK2B CLK3 GSK3A MAP2K3 RIOK3 MAPK13 FGFR2 JAK1 0.859
Lusutrombopag Thrombocytopenia 49843517 CAMK2B CLK3 GSK3A MAP2K3 MAPK13 RIOK3 MPL 0814
Chronic
Bosutinib Myelogenous 5328940 MAPK13 ATP6V1H ATP6V1G1 ATP6AP1 ATP6VOD1 ATPEV1A SRC ABL1 0.799
Leukemia
Raloxifene Breast cancer 5035 ATP6AP1 ATPBVOB ATP6VOC ATPEV1A ATP6V1B2 ATPEV1G1 ESR1. ESR2 0.787
ATP6V1H
Etoricoxib Rheumatoid arthritis 123619 CAMK2B CLK3 GSK3A MAP2K3 RIOK3 MAPK13 CcOox2 0.770
Hydroxychlorog Rh toid arthritis 3652 CAMK2B CLK3 GSK3AMAP2K3 RIOK3 MAPK13 N/A 0.667
Eltrombopag Thrombocytopenia 135449332 CAMK2B CLK3 GSK3AMAP2K3 MAPK13 ATP6V1A FGFR2 cD110 0.637
N/A: Not applicable
Table S12. Joint PN-score ranking: the top ten repurposed

FDA-approved drugs against Orthomyxoviridae viruses, Related to Table

2

Drug candidate ﬁ%?;:zs: Pul::(llgem Top10 Predicted Host Targets Known interaction Pr‘;l-osi:(‘)re
Fostamatinib ﬁg’m:‘p‘;:?a 11671467 g@f(l;za CLK3 FGFR2 GSK3A MAPZK3 MAPK13 SYK 1.751
Lasofoxifene Osteoporosis 216416 ':ncl:; Am\:ggk%ﬁ\giﬁggfy : C ATP6VOD1 ESR1, ESR2 1.212

Raloxifene Breast cancer 5035 o APovae ATPEVOC ATPGVIA ATPOVIBZ  gsRr1. EsR2 0.724
Lusutrombopag ~ Thrombocytopenia 49843517 CAMK2B CLK3 GSK3A MAP2K3 MAPK13 RIOK3 MPL 0.632
Baricitinib Rheumatoid arthritis 44205240 CAMK2B CLK3 GSK3A MAP2K3 MAPK13 RIOK3 j:z; ..Il_¢lé22 0617
Etoricoxib Rheumatoid arthritis 123619 CAMK2B CLK3 GSK3A MAP2K3 RIOK3 MAPK13 COox2 0.553
Vancomycin Bacterial infection 14969 2%“81 IRTTE’GGC’::{ A?;PGS\@BZ PgTsm);:mg\TPsvom N/A 0.526
Eltrombopag  Thrombocytopenia 135449332 gétggzza CLK3 GSK3A MAP2K3 MAPK13 ATPEVIA cD110 0.495
Hydroxychloroquine Rheumatoid arthritis 3652 CAMK2B CLK3 GSK3A MAP2K3 RIOK3 MAPK13 N/A 0.495
Ibandronate Osteoporosis 60852 ATP6VOA1 ATPEV1H FPPS 0.459

N/A: Not applicable



Table S13. DeepCPIl P-score ranking: the top ten repurposed natural

compounds against Orthomyxoviridae viruses, Related to Table 3

Drug candidate .:fg:_sg Puté(ligem Herb Top10 Predicted Host Targets D:_:zg?
Lysergol MOLO0S261 14987  Semen Pharbitisis fraun: N';(TTZGF‘,’&[;;:*COPBZ COPGT FAU IFITS IVNS1ABP 4410
e voouze e UCo R ATy com2 cor0 €30 S WSS

Costaclavine ~ MOLO08145 160462 Ricini Semen  AICNT s"LT;GX;D’ COPG1 EIF3A FAU IFITS KPNB1 NXT2 3935
Chanoclavine ~ MOL00S260 56281381  Semen Pharbitidis Arsvs pcares . - COPG1 EIF3A EIF3G FAU IFITS KPNB1 3.868
Solanocapsine MOL007356 73419 Solanum Nigrum QIT&S;IO%"S;PBZ COPG1 EIF3A IFITS KPNB1 NXT2 PIK3R3 3.770
Penniclavin MOLO0S257 115247  Semen Pharbitidis i mpevog SLC1A3 ARCN1 IFITS STARDS FAU 3.151
Piorasidned  MOLOT2140 5316876 Asgr'i‘ sggget ngF& :2%1 ARCN1 COPG1 PHF3 AKAP13 EIF3A PIK3R3 2140
olymociavine  MOLO05267 440904  Semen Pharbiidis gy ang araabe o o T2 IFITS KPNB1 PIK3R3 3.009
e r&;::‘lmpf;:mm MOLGEETD 60606110 Flavess(::':r:\l:{saeRad . RFS IINSTABP EIFSG PIKIR3 COPG1 BUB3 NXF3 SFIA1 3006
TriptofordinB1 ~ MOL003232 122391803  Tripterygil Radix \VNS1ABP IRF6 COPG1 ATP6VOA1 TRIM21 NXT2 ATP6AP2 2.984

EIF3A NXF1 SLC1A3

*TCMSP database: Traditional Chinese Medicine Systems Pharmacology Database

Table S14. DeepCPI PN-score ranking: the top ten repurposed natural

compounds against Orthomyxoviridae viruses, Related to Table 4

Drug candidate TthMLSIPD' Pul::C"r;em Herb Top10 Predicted Host Targets PD;?:;:
Deoxycamptothecine ~ MOL008209 169724  Andrographis Herba ?ARS:‘QIT‘Z‘TI,':@‘;°,5’)1T§TP6V1G1 ATPEVIH EIF3A EIF3G 0.908
Lysergol MOL005261 14987  Semen Pharbiidis  ferunt nocrs pioara . 2 o o AU IFITS IVNSTABR 0.690
Chanodlavine MOLO0S260 5281381  Semen Pharbitidis  ferin; N’;‘(TTFZ’GQ'ISZR:,COPG EIFSA EIFSG FAU IFITS 0.685
Costaclavine MOL008145 160462 Ricini Semen  acva miesme sLotag ! EIF3A FAULIFITS KPNBT 0.608
elymoclavine MOLOOS267 440004  Semen Pharbitidis  mxars sic1an S1aRD . | 2 [FITS KPNBT 0.580

ATP6VOD1 COPB2 COPG1 EIF3A IFIT5 KPNB1 NXT2

Solanocapsine MOL007356 73419 Solanum Nigrum  PIK3R3 RIOK3 TRIM21 0.562
Penniclavin MOLO0S257 115247  Semen Pharbitidis s ey o oo A ARCNTIFITS STARDS 0.531
Vitexifolin C MOLO11912 11033408 Viticis Fructus EBNPBB; ;ﬁg&gl;ﬁgmwzxs FGFR2 EIFSA IFT2 0.428
R OLo02219 174174 Hy;.gcc;a(’:n?nszn ,, ARON ATPOVOD1 COPBZ COPG1 EIFIG IFITS IRFS 0.426
Isolimonic acid MOLO13443 131752314  AYENUEMCs - TETS RRCNT NXF1 RIOKS KPNB1 FAU USP4G EIF3A 0420

*TCMSP database: Traditional Chinese Medicine Systems Pharmacology Database



Table S15. Key parameters of molecular docking analysis, Related to
Figure 4

PubChem CID Drug or natural compound  PDB ID Target Docking score Glide energy (kcal/mol)
44205240 Baricitinib S5MAE CTSL -5.818 -44 565
44205240 Baricitinib 6EIS DYRK1A-A chain -9.431 -48.038
44205240 Baricitinib 6EIS DYRK1A-B chain -8.288 -48.185
44205240 Baricitinib 6EIS DYRK1A-C chain -8.289 -46.526
44205240 Baricitinib 6EIS DYRK1A-D chain -6.793 -44.422
44205240 Baricitinib 6GL3 P14KB -8.069 -51.705
44205240 Baricitinib 7A21 ACVR1-A chain -8.766 -55.284
44205240 Baricitinib 7A21 ACVR1-B chain -8.413 -50.806
73419 Solanocapsine SMAE CTSL -4.853 -33.11
73419 Solanocapsine 6EIS DYRK1A-A chain -4.128 -34.175
73419 Solanocapsine 6EIS DYRK1A-B chain -4.297 -37.025
73419 Solanocapsine 6EIS DYRK1A-C chain -4.961 -29.42
73419 Solanocapsine 6EIS DYRK1A-D chain -5.011 -34.605
73419 Solanocapsine 6GL3 P14KB -4.268 -39.101
73419 Solanocapsine 7A21 ACVR1-A chain -5.416 -41.888
73419 Solanocapsine 7A21 ACVR1-B chain -5.413 -42.105
14987 Lysergol 6FYV CLK4 -7.132 -23.175
5316876 Picrasidine D 6FYV CLK4 -6.939 -31.901
154417 Hyoscyamine 6FYV CLK4 -6.279 -18.605
14987 Lysergol 5T4E DPP4 -6.196 -31.612
154417 Hyoscyamine 5TAE DPP4 -6.064 -29.032

Table S$16. 2D structures of the top drug candidates, Related to Tables
1-4 (attached dataset)



Transparent Methods

Host dependency gene collection and literature mining

By systematically searching the literature to date, studies performing genetic
screening for human-specific HDGs corresponding to RNA viruses were
collected. Screens for DNA viruses or in non-human cells were not included
with an exception for SARS-CoV-2 virus-related screens. We collected all the
recently published viral resistance CRISPR screens against SARS-CoV-2
virus, with 5 studies in human cells and 1 study in Vero-E6 cells (Table S1).
Under this criteria, data from 63 studies with different genetic perturbation
techniques (CRISPR knockout, RNAi and haploid gene-trap mutagenesis)
were collected. These studies identified virus-specific HDGs for 29 RNA
viruses spanning 10 RNA virus families. Due to the high interest for
Coronaviridae virus family, we collected additional 34 individual gene-focused
non-screening studies to include as many Coronaviridae HDGs as possible. A
gene is defined as a HDG when it meets any of the following criteria: 1) Its
loss-of-function impedes or reduces viral infection or activity by experimental
evidence in non-screen studies; 2) It has been clearly classified into HDG
group in screen studies; 3) When HDG group is not specified in screen studies,
we took the top ~5% of all the interrogated genes in the positive selection list
as HDGs with a custom log fold change cutoff in CRISPR knockout or RNAI
screens challenged by the corresponding virus. The detailed information
concerning to these literatures and HDGs was summarized in Table S1. For
Coronaviridae, Flaviridae and Orthomyxoviridae viruses, we only took a subset
of HDGs that occurred more than once within its corresponding family as high
confidence HDGs for further analysis. In general, around one hundred HDGs
for each group of the above three virus families were used for molecular
characterization and drug repurposing analysis (Table S6).

Phylogenetic tree construction

The sequences of nucleic acid and protein corresponding to viral
RNA-dependent RNA polymerase (RdRp) gene for indicated RNA viruses
were downloaded from online sources (https://www.ncbi.nim.nih.gov) and
were used for phylogenetic tree analysis (Table S2). The nucleic acid and
protein sequences were analyzed by Multiple Sequence Alignment in Muscle
calculation using MEGA X software. The phylogenetic tree was subsequently
constructed based on neighbor-joining (NJ) method or maximum parsimony
(MP) method using pairwise phylogenetic distance with 1000 bootstrap
replicates.

Re-analysis of CRISPR screening data

Among the 25 CRISPR screening studies, we downloaded the raw sequencing
or read count data from 7 studies wherever these raw data were available. We
re-analyzed these CRISPR screening data to re-call the HDGs using the same



MAGeCK-VISPR pipeline (Li et al., 2015). In total, 36 samples across the 9
viruses are included in the analysis. The beta scores of each screening,
generated by MAGeCK-VISPR, were combined together and normalized using
quantile normalization. Next, we filtered the data using the following two
thresholds: First, the maximum of the beta score of a gene across all the
samples must be greater than 3. Second, the average beta score of a gene
across all the samples must be greater than 1. After filtering, 261 genes were
retained as positively selected HDG hits. Then hierarchical clustering and
protein-protein interaction network was performed using StringDB.

KEGG and GO enrichment analysis

The high confidence HDGs for Coronaviridae, Flaviridae and
Orthomyxoviridae viruses (166, 81 and 63, respectively) were used for this
analysis (Table S6). KEGG and GO enrichment analysis were performed using
clusterProfiler R package with a strict cutoff of p-value < 0.001 and false
discovery rate (FDR) < 0.05 (Yu et al.,, 2012). Enrichment analyses were
visualized using the R package clusterProfiler with default settings.

Network analysis

The input HDGs were uploaded to the STRING database (version 11.0,
https://string-db.org) and high confidence protein-protein interactions (PPIs)
were extracted with a minimum required interaction score = 0.7. Next, the
interactions were imported into Cytoscape 3.2.1 software to visualize PPI
Network. The druggable HDG-encoding proteins with predicted drug
candidates in this study and proteins classified into certain functional protein
complexes or biological processes are highlighted.

Drug candidate selection for repurposing

FDA-approved drug information was extracted from DrugBank database
(version 5.1.7, released 2020-07-02; https://www.drugbank.ca) corresponding
to 2352 marketed drugs with InChl (the IUPAC International Chemical
Identifier) key information. Natural compound information is downloaded from
Traditional Chinese Medicine Systems Pharmacology (TCMSP) online
database (version 2.3, released 2014-05-31; https://tcmspw.com/tcmsp.php)
which is a unique systems pharmacology platform of Chinese herbal
medicines (Ru et al., 2014). To select the most favorable compound
candidates, we filtered the pool of 1455 natural compounds by requiring each
candidate passing the criteria of oral bioavailability (OB) = 30.0 %,
drug-likeness (DL) = 0.18 and blood-brain barrier (BBB) = -0.30, and finally
ended up with 1062 selected natural compounds for the downstream DTI
analysis.

DTI retrieval from related databases



Known drug-target interactions were extracted according to annotated
information associated with related drugs, compounds or target genes from
multiple databases including BindingDB (updated 2020-03-01), DGIdb3.0
(version 3.0.2), DrugCentral (version 10.12) and Stitch (version 5.0) (Cotto et
al., 2018; Gilson et al., 2016; Kuhn et al., 2010; Ursu et al., 2019). The high
confidence HDGs for Coronaviridae, Flaviridae and Orthomyxoviridae viruses
were used for the DTl analysis (Table S6). One HDG may be associated with
multiple drugs or compounds. Only FDA-approved drugs and selected natural
compounds were considered for compiling these known DTI information for
drug repurposing.

DTI prediction by DeepCPI

The source code of DeepCPl can be downloaded from
https://github.com/FangpingWan/DeepCPI. The binding activity score for each
drug-target pair was predicted by providing the InChl key information of a drug
or compound and the amino acid sequence of a protein target from UniProt
database. We applied DeepCPl on 4,563 high confidence DTls out of
7,444,710 putative pairs (3,030 druggable proteins and 2,457 FDA-approved
drugs) extracted from DGIdb3.0 database (version 3.0.2) as a benchmark
analysis and determined an optimal threshold with a normalized z-score =
0.641 (sensitivity: 73%; specificity: 51.9%) by receiver operating
characteristics (ROC) analysis. We then used this cutoff to filter confident DTI
in our analysis for virus-related HDGs and FDA-approved drugs as well as
selected natural compounds.

DTI prediction by DTINet

The source code of DTINet <can be downloaded from
https://github.com/luoyunan/DTINet. The drug-protein interactions and
protein-protein interactions were extracted from UniProt database. The
drug-disease associations and protein-disease associations were extracted
from the Therapeutic Target Database (Wang et al., 2020). The drug-drug
interactions were extracted from the BioSNAP Network database
(http://snap.stanford.edu/biodata/). Then the Jaccard similarity for these
interactions/associations was calculated to further augment the heterogeneity.
A heterogeneous network (including three types of nodes and five types of
edges) are constructed using these diverse drug-related and protein-related
information for the prediction task. The informative, but low-dimensional
feature vector was obtained by integrating the diverse information from the
heterogeneous network by combining the network diffusion algorithm (random
walk with restart, RWR) with a dimensionality reduction scheme (diffusion
component analysis, DCA). The restart probability is set to 0.50 and the
maximum number of iterations is set to 20. Intuitively, the low-dimensional
feature vector is used to encode the relational properties (e.g., similarity),
association information and topological context of each drug (or protein) node



in the heterogeneous network. Finally, the score for each drug-protein pair was
calculated based on the feature vectors by DTINet default parameters. Similar
to DeepCPI analysis, we also applied DTINet on the benchmark datasets and
determined an optimal threshold with a normalized z-score = 0.973 (sensitivity:
88.9%; specificity: 63.8%) by ROC analysis. We then use this cutoff to filter
confident DTI in our analysis for virus-related HDGs and FDA-approved drugs.
Due to the insufficient prior data for proper modeling, DTINet was not applied
for natural compound DTI analysis.

Prioritizing repurposed drug candidates

The repurposed FDA-approved drugs were prioritized by both known DTl and
predicted DTl with high confidence. The candidate drugs were ranked by
predicted DTI scores with known DTI annotation accompanied to the drug if
any. We adopted two ranking methods to prioritize these candidates. The first
ranking method only considers the HDG target-associated DTls. For
FDA-approved drugs with both DeepCPl and DTINet DTI prediction, we
extracted mutual confident DTls by both prediction algorithms and the mean of
normalized z-score by each prediction tool was calculated as a positive score
(P-score). A joint P-score by the sum of DeepCPI and DTINet P-score was
employed to rank the drug candidates. The second ranking method not only
considers HDG targets, but also incorporates non-HDG targets and common
essential gene targets to evaluate drug promiscuousness and cytotoxicity
effects. In addition to P-score, we introduced a negative score for DTls
between a given drug and non-HDG (among 3,030 druggable proteins in
DGIdb3.0 database) or essential gene targets (676 core essential
gene-encoded proteins) (Wang et al., 2019). An arbitrary weight was set for
positive score (1) and negative score (-0.333) for multiplexing to generate a
PN-score. For FDA-approved drugs, a joint PN-score was reported by adding
the DeepCPI and DTINet PN-score together, and used for ranking the drugs.
For natural compounds, we also employed these two ranking methods using
either DeepCPI P-score or DeepCPI PN-score.

The detailed formula was as follows:

For a given drug-target pair, we calculated the DTI score t;p; and ty.: by
DeepCPIl and DTINet, respectively. By collecting all the DTI scores, two score
matrices T.p; and Ty, were defined to quantify the confidence of predicted
DTls:

{TCPI € Rlxk (1)

TNet € Rlxk

Where, [ refers to the length of drug list and k refers to the length of target
list.

To ensure them comparable, the score matrices T.p; and Ty, were
normalized by Z-Score measurement:



Xcpl— HcCPI
————,Xcp; € Tepy

ocPI (2)

XNet— UNet
—— Xnet € Thet

Zepr =

Z =
Net
ONet

Where, u is mean value of the scores and ¢ is standard deviation of the
scores.
We further applied an optimal threshold (as discussed above, 0.641 and 0.973
were used for Zp; and Zy,.., respectively) to filter the non-significant scores
and only keep the confident DTI scores:

z,if z > 0.641

ZCPI_Sig = { 0, le < 0.641 zZ € ZCPI (3)
z,if z > 0.973
ZNet_sig = { 0' lf 7 < 0.973 zZ € ZNet (4)

For each FDA-approved drug, the mean value of the normalized z-scores was

defined as its positive score:
P_scorecp; = Y, zEP [k
P_scorey,, = Y¥_,zNet /k

()

Similar as above, we defined negative scores N_scoregyggapie and

N_score ssentiaiome fOr Nnon-HDG and essential gene targets, respectively. The
final negative was the sum of N_scoreg,yggapie @Nd N_scoreygsentiaiome:

{N_SCOTeCPI = N_ScoreDruggableCpl + N_ScoreEssentialome_CPI (6)

N_ScoreNet = N_ScoreDruggableNet + N_ScoreEssentialome_Net

The PN-score was the sum of weighted positive score and negative score:
{PN_scoreCP, = 1x* P_scorecp; + (—0.333) * N_scorecp; (7)
PN_scoreye = 1 * P_scorey,: + (—0.333) x N_scorey,;

Here, we defined a joint P-score by the sum of P_score.p; and P_scorey,: for
each drug:
Joint_P_score = P_scorecp; + P_scorey,; (8)

The joint PN-score was the sum of PN_scorecp; and PN_scorey,.: for each
drug:
Joint_PN_score = PN_scorecp; + PN_scorey,; (9)

Molecular Docking

The structures of target protein were downloaded from PDB database
(http://www.rcsb.org). The drug or compound structures were downloaded
from TCMSP and PubChem database (https://pubchem.ncbi.nim.nih.gov). The
structures of proteins and compounds were imported into prime tool of Maestro



(version 11.8.012) suite of Schrédinger software (released 2018-4). Next the
preprocessing step was performed by adding hydrogens and missing atoms as
well as removing water molecules for the proteins using the Protein
Preparation tool. Ligand preprocessing was performed using default settings
with Ligprep tool of Maestro software. Then, the top-ranked potential binding
site was defined using Receptor Grid Generation tool. Glide tool was used to
detect the interactions between ligands and proteins. The docking score < -6
was considered as a high confidence binding event between tested ligand and
protein. The Glide energy for each docking pair was also shown in Table S15.
The 2D structures of the top candidate drugs were presented in Table S16.
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