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Drug treatment efficiency depends 
on the initial state of activation in 
nonlinear pathways
Victoria Doldán-Martelli1 & David G. Míguez   2

An accurate prediction of the outcome of a given drug treatment requires quantitative values for 
all parameters and concentrations involved as well as a detailed characterization of the network of 
interactions where the target molecule is embedded. Here, we present a high-throughput in silico 
screening of all potential networks of three interacting nodes to study the effect of the initial conditions 
of the network in the efficiency of drug inhibition. Our study shows that most network topologies 
can induce multiple dose-response curves, where the treatment has an enhanced, reduced or even 
no effect depending on the initial conditions. The type of dual response observed depends on how 
the potential bistable regimes interplay with the inhibition of one of the nodes inside a nonlinear 
pathway architecture. We propose that this dependence of the strength of the drug on the initial state 
of activation of the pathway may be affecting the outcome and the reproducibility of drug studies and 
clinical trials.

Some of the main potential contributions of Systems Biology to the field of Pharmacology are to help design bet-
ter drugs1,2, to find better targets3 or to optimize treatment strategies4. To do that, a number of studies focus on the 
architecture of the biomolecular interaction networks that regulate signal transduction and how they introduce 
ultrasensitivity, desensitization, adaptation, spatial symmetry breaking and even oscillatory dynamics5,6. To iden-
tify the source of these effects, large scale signaling networks are often dissected into minimal sets of recurring 
interaction patterns called network motifs7. Many of these motifs are nonlinear, combining positive and negative 
feedback and feed-forward loops that introduce a rich variety of dynamic responses to a given stimulus.

In the context of protein-protein interaction networks, these loops of regulation are mainly based on interact-
ing kinases and phosphatases. The strength of these interactions can be modulated by small molecules that can 
cross the plasma membrane8 and block the activity of a given kinase in a highly specific manner9. Inhibition of 
a dysfunctional component of a given pathway via small-molecule inhibition has been successfully used to treat 
several diseases, such as cancer or auto-immune disorders. Nowadays, 31 of these inhibitors are approved by the 
FDA, while many more are currently undergoing clinical trials10.

Characterization of inhibitors and its efficiency11 and specificity towards all human kinases constitutes a 
highly active area of research12–14. Importantly, since these inhibitors target interactions that are embedded in 
highly nonlinear biomolecular networks, the response to treatment is often influenced by the architecture of the 
network. For instance, treatment with the mTOR-inhibitor rapamycin results in reactivation of the Akt path-
way due to the attenuation of the negative feedback regulation by mTORC115, also inducing a new steady state 
with high Akt phosphorylation16. In addition, the nonlinear interactions in the MEK/ERK pathway have been 
shown to induce different modes of response to inhibition17, and even bimodal MAP kinase (ERK) phosphoryl-
ation responses after inhibition in T-lymphocytes18. The same interplay between positive and negative feedbacks 
induces ERK activity pulses, with a frequency and amplitude that can be modulated by EGFR (epidermal growth 
factor receptor) and MEK (Mitogen-activated protein kinase kinase) inhibition, respectively19.

One of the basic characteristics that nonlinear interactions can induce in a system is multi-stability, commonly 
associated with the presence of direct or indirect positive feedback loops in the network. Multi-stability is charac-
terized by the dependence of the final steady state of the system on the initial conditions, and it has been observed 
experimentally in vitro20,21, in vivo22,23, and in synthetic circuits24,25. In the context of biological networks and drug 
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treatment, this dependence on initial conditions may result in differences in the effect of a given drug, depending 
on the initial state of the system.

Here, we investigate whether the efficiency of drug inhibition is affected by the initial conditions in the pro-
teins of signaling pathways. To do that, we set a computational high-throughput screening to explore all possible 
networks of 3nodes and monitor their response to inhibition of one of the nodes. Each network has a topol-
ogy that is represented by a system of three ODEs that describe a particular set of Michaelis-Menten interac-
tions between input, target and output nodes. Starting from two different initial conditions, we generate two 
dose-response curves for each set of parameter values. The comparison of these two curves allows us to charac-
terize each network topology in terms of its impact on the outcome of drug inhibition. Using this approach we 
found that, in most of the possible networks topologies, the initial state of the system determines the efficiency of 
a given drug, increasing, decreasing or even disrupting the efficiency of inhibition. We conclude that this depend-
ence on the initial conditions may be compromising the reproducibility of in vitro and in vivo studies that involve 
inhibitory treatments.

Results
The strength of inhibition depends on the initial conditions for most of the networks.  At first 
inspection, our screening reports differences between the two dose-response curves for around 80% of all net-
work topologies. This suggests that the efficiency of the inhibition depends on the initial conditions for most of 
the possible three-node network topologies, at least in a certain region of the parameter space. The percentage of 
networks where the two dose-response curves do not coincide increases with the connectivity of the network, as 
shown in Fig. 1 (blue bars and left vertical axis), up to 97% for networks with 8 links between input, target and 
output (251 of all possible 256 networks of 8 links in our study). The percentage of simulations that show multiple 
dose-response curves also increases with the number of links in the network (green bars and right vertical axis in 
Fig. 1) up to 5.5% for the more connected topologies.

When comparing the two dose-response curves, we can identify different scenarios of how the initial con-
ditions affect the efficiency of the drug treatment. The most common scenario corresponds to a shift in the 
dose-response curve, i.e., the initial condition affects the efficiency of the inhibitor. This behavior is characterized 
by a shift in the EC50 of the dose-response curve (i.e., the concentration of inhibitor that induces a half-maximal 
effect in the output). An example of this type of response is illustrated in Fig. 2a–d. The two dose-response curves 
are plotted in Fig. 2b, corresponding to each initial condition IClow and IChigh, in blue (DSlow) and red (DShigh), 
respectively. For this network configuration and these conditions, the EC50 of the inhibitor changes around 1.5 
orders of magnitude. This type of dependence on the initial conditions is simply a result of a bistable regime, as 
shown in the phase plane in Fig. 2c (i.e., outside the bistable region, the final steady state does not depend on the 
initial condition whereas inside bistable regions, different initial conditions may lead to different steady states). 
Inside the bistable regime, the nullclines for the inhibitor concentration marked in Fig. 2b show two stable fixed 
points coexisting for the same conditions (blue and red solid circles) and the unstable fixed point (empty black 
circle). Figure 2d shows the bifurcation diagram with two stable branches that coexist for a particular range of 
values of inhibitor. Video S1 is an animation of how the nullclines and the steady states change with the concen-
tration of inhibitor (black curves plot the trajectories of the initial conditions towards their corresponding steady 
state). This scenario can also occur in conditions where the inhibitor is acting as an activator of the output node, 
as illustrated in Supp. Figure 4b.

Another common scenario corresponds to one of the dose-response curves showing a standard response to 
treatment, while the other is not responding for the same range of concentrations of inhibitor. An example of 
these dual two dose-response curves is shown in Fig. 2f for the network illustrated in Fig. 2e. In this scenario, 

Figure 1.  General statistical analysis of the high-throughput screening. Bar plot showing the percentage of 
cases with multiple dose-response curves to inhibition increases with the network connectivity. Blue bars 
correspond to the percentage of network topologies (left vertical axis) and green bars correspond to the 
percentage of simulations (right vertical axis) that show multiple dose-response curves (each simulation 
corresponds to a particular combination of parameters). Values in each bar illustrate the number of positive 
cases over the total number of cases.



www.nature.com/scientificreports/

3Scientific Reports |  (2018) 8:12495  | DOI:10.1038/s41598-018-30913-9

the inhibitor acts as an activator of X3 when we start from IClow, but if the system starts from IChigh, it remains 
insensitive to changes in the concentration of inhibitor. Alternatively, different initial conditions can also reverse 
the effect of a given drug. For instance, the same treatment can result in inhibition or activation of the output 
signal, simply depending on the initial state of activation of input, target and output nodes. An example of this 
behavior is shown in Fig. 2i–l. The two dose-response curves in Fig. 2j for the network in Fig. 2i show one of the 
curves (DSlow) increasing when we increase the concentration of inhibitor, while the other (DShigh) decreases. The 
phase diagram (Fig. 2k) for intermediate values of the inhibitor shows two stable fixed points (filled red and blue 
circles), and an unstable fixed point (empty black circle). The bifurcation diagram (Fig. 2l) presents two stable 
branches, with the upper branch decreasing when the inhibitor is increased. This diagram shows that the increase 
in DSlow is caused by a transition from a bistable to a monostable regime with higher X3. This discontinuous 
jump in the dose-response curve is less pronounced for networks with higher connectivity, but we selected this 
example since its simplicity allows us to illustrate its nullclines in a two-dimensional phase plane, instead of a 
three-dimensional plot.

Different initial conditions can induce increased or decreased treatment efficiency.  Among all 
motifs that induce multiple dose-response curves, we can further characterize the topologies in terms of the 
comparison between the two curves with respect to the two initial conditions. The most common scenario cor-
responds to the situation illustrated in Fig. 2b and Video S1, where the less sensitive curve (higher EC50) cor-
responds to the initial condition that results from applying a low concentration of inhibitor IClow, and the more 

Figure 2.  The effect of initial conditions can shape the dose-response curve in different ways. (a–d) Shift 
in the EC50, (e–h) insensitization of one of the dose-response curves, (i–l) switch in the effect of the drug. 
Panels (a, e, i) represent the network topologies for each mode. Pointed arrows represent positive interactions 
(activation) and blunt arrows represent negative interactions (de-activation). Panels (b, f, j) represent the dose-
response curves DSlow (blue) and DShigh (red) for initial conditions IClow and IChigh, respectively. The rest of 
parameter values are the same between the two curves. Circles represent the steady state solutions of the system 
(blue and red solid circles correspond to SSlow and SShigh, respectively, and the empty black circle represents the 
unstable steady state) for a particular concentration of inhibitor (indicated by the vertical dashed lines in panels 
b, f, j). Panels (c, g, k) show the phase plane with vector field and nullclines for X3 (c, g, k) in blue and X2 (c, g) 
or X1 (k) in orange, representing the two stable steady states SSlow (blue) and SShigh (red), respectively. Panels 
(d, h, l) show the bifurcation diagram of X3. Black curves are the stable branches and the dashed red curve is the 
unstable branch.
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sensitive curve occurs when the system starts from the initial condition that results from applying a high concen-
tration of inhibitor IChigh. This increased sensitivity at intermediate concentrations of inhibitor occurs whether the 
treatment results in deactivation (as in Fig. 2b) or activation (as in Supp. Figure 4b) of the target. This situation 
occurs because, in the bistable regime, each initial condition IClow and IChigh evolves to its closest steady state in 
the phase space.

Several network topologies also exhibit a different scenario, characterized by an inversion in the sensitivity 
of the treatment between the two dose-response curves. This scenario is presented in Fig. 3b, and shows the red 
(DShigh) and blue curves (DSlow) swapped compared to Fig. 2b. For the inhibitor concentration indicated in Fig. 3b, 
the initial condition with lower X3 (red rhomb in Fig. 3c) evolves towards the steady state with higher X3 (red solid 
circle). On the other hand, the initial condition with higher X3 (blue rhomb) evolves to the steady state with lower 
X3 (blue solid circle). This is clearly shown by the trajectories (black dotted curves) corresponding to two simula-
tions with the same exact parameter values, but starting from the two different initial conditions (IClow and IChigh).

In terms of the effect of the drug, the initial condition that results from applying a high concentration of 
inhibitor (IChigh) shows a reduced response to the drug, compared to the initial condition that results from a low 
concentration of inhibitor (IClow). In other words, the EC50 of DShigh is now higher than DSlow, as shown in Fig. 3b. 
This contrasts with the scenario of Fig. 2b and Video S1, where the EC50 of the drug is lower for DShigh compared 
to DSlow. To understand this behavior, we plot the three-dimensional separatrix between the two basins of attrac-
tion of the bistable regime in Fig. 3c. Since the separatrix divides the phase space vertically, the system is forced to 
perform a long path in X3 concentration towards the steady state in its basin of attraction. This is translated into 
a shift in the dose-response curves in the bistable regime, and therefore, an increase in the EC50 when the system 
is initially inhibited.

Since now, each initial condition IClow and IChigh does not transit to its closest steady state, but instead, it 
evolves to the steady state that is further away in X3 concentration. We will refer to this scenario as inverse bista-
bility. Video S2 is an animation of how the two initial conditions transit to their corresponding steady state for 
increasing concentrations of the inhibitor. This inversion of the bistable solutions can also occur in conditions 
where the inhibitor is acting as an activator of the output node, as illustrated in Supp. Figure 5b.

Analog to the situation of Fig. 2e–h where the dose-response curve (DShigh) becomes insensitive to the drug, 
other topologies present the opposite scenario, i.e., the DShigh responds to the drug but the DSlow is insensitive. This 
scenario is illustrated in Fig. 3f for the network topology of Fig. 3e. Here, DSlow responds by reducing X3 activation 
in less than 10%, while now a high initial concentration of inhibitor sensitizes the system, i.e., the dose-response 
curve (DShigh) shows a much stronger inhibition of the output. Figure 3g plots the three-dimensional phase space 
for a particular inhibitor concentration in the bistable regime. Again, the separatrix divides the space in such a 

Figure 3.  The network architecture can induce inverse bistability. (a–d) Shift in the EC50. (e–h) Insensitization 
of one of the dose-response curves. Panels (a, e) represent examples of network topologies that show two 
different cases of inverse bistability. Pointed arrows represent positive interactions (activation) and blunt arrows 
represents negative interactions (de-activation). Panels (b, f) represent the dose-response curves DSlow (blue) 
and DShigh (red) for initial conditions IClow and IChigh, respectively. The rest of parameter values are the same 
for the two curves. Blue and red solid circles SSlow and SShigh represent the steady state solutions for a given 
concentration of inhibitor (vertical dashed line). Panels (c, g) represent the three-dimensional phase plane, with 
the trajectories of each simulation starting from each of the two initial conditions (red and blue rhombs), and 
the separatrix between the two basins of attraction (red surface). Panels (d, h) show the bifurcation diagram of 
X3. Black curves are the stable branches and the red dashed curve is the unstable branch.
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way that the initial IChigh evolves to the steady state with higher X3 and the switch in DShigh (red line in Fig. 3f). 
Figure 3h shows that the two branches are stable for all concentrations of inhibitor tested. Despite this, the system 
is able to switch from one solution to the other because the separatrix moves relatively to the fixed initial condi-
tions. Video S3 corresponds to an animation of this scenario. Please note that, depending on the parameter values, 
the same topology can exhibit different responses (for instance, the same network is used for Figs 2a and 3e to 
generate normal and inverse irreversible bistability). The transition between different regimes depending on the 
parameter values is analyzed in the next sections.

The network architecture can induce inverse hysteresis loops.  As discussed above, inverse bista-
bility occurs due to the interplay in phase space between the initial conditions and the basins of attraction of the 
two final stable steady states. Nonetheless, our screening revealed another family of topologies that shows an 
equivalent scenario of inverse bistability, but with additional features. An illustrative example of this behavior is 
shown in Fig. 4. The first example corresponds to a network topology of four links that shows inverse bistability as 
defined in the previous section, i.e, two dose-response curves where the DShigh has a higher EC50 than DSlow. Since 
X2 does not receive input from X1 and X3, the phase space is plotted in two dimensions to show the nullclines and 
the vector field (Fig. 4c). Interestingly, the bifurcation diagram in Fig. 4d shows a more complex configuration 
than in Fig. 3d, with the two stable branches now extending from low to high X3. This configuration induces 

Figure 4.  The network architecture can induce inverse hysteresis. (a) Example of a network architecture 
that induces inverse hysteresis. Pointed arrows represent positive interactions (activation) and blunt arrows 
represent negative interactions (de-activation). (b) Dose-response curves DSlow (blue) and DShigh red for initial 
conditions IClow and IChigh, respectively. The rest of the parameter values are the same between the two curves. 
Blue and red solid circles represent the two steady state solutions for a given concentration of inhibitor (SSlow 
and SShigh). (c) Phase plane with vector field and nullclines for X3 (blue) and X1 (orange). The black empty circle 
shows the unstable steady state. (d) Bifurcation diagram of X3. Black curves are the stable branches and the 
red dashed curve is the unstable branch, for the inhibitor concentration indicated in panel b. (e) Box plot for 
all parameter sets that show standard and inverse hysteresis. Blue, green and red background represents the 
saturated, unconstrained and linear regimes of the Michaelis-Menten kinetics, respectively. (f) Changes in the 
dose-response curves when two parameters are varied from standard to inverse hysteresis conditions.
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another interesting property to these types of networks: Inverse bistability does not only occur when we start 
with fixed initial conditions, but also if the concentration of the inhibitor is gradually increased or decreased from 
each initial condition. In other words, if the concentration of inhibitor is progressively increased or decreased, 
the system follows a hysteresis loop that is reversed compared to the standard hysteresis observed in magnetism, 
optical and other physical systems. To illustrate that, we developed an animation where the concentration of 
inhibitor is gradually increased and then decreased, and the evolution of steady states forms an inverse hysteresis 
loop (Video S4).

To understand the interactions that induce this inverse hysteresis response, we compared (Fig. 4e) 100 differ-
ent sets of parameters in a box plot where this topology produces standard (orange) and inverse bistability (blue). 
This plot allows us to see that most values show overlapping distributions for both types of bistability, while two 
of them are clearly separated (K2,3 and k1,3 for this particular network). Next, dose-response curves are generated 
by changing these two parameters between their average values that produce standard or inverse bistability (the 
rest of parameters are fixed and correspond to the average of the mean for both orange and blue distributions). 
This analysis reveals that K2,3 mainly affects the response of X3 in the range of low inhibition, k1,3 mainly affects 
the steady state in the range of high inhibition, while the intermediate bistable region remains almost unchanged. 
When both are simultaneously varied (Fig. 4f), we clearly observe that these changes in low and high range of 
inhibitor interplay to change the nature of the drug from inhibitor to activator of the node X3.

This sequence also illustrates that, in some particular topologies, standard bistability can be converted to 
inverse bistability by manipulating some key interactions that reverse the effect of the inhibitor while maintaining 
the bistable region at intermediate inhibitor concentrations. To do that in this particular topology, the strength 
of the interaction between X1 and X3 is reduced, while the interaction between X2 and X3 goes from a linear to an 
unconstrained regime. A different topology with a similar transition from standard to inverse bistability is shown 
in Supp. Figure 6 an additional example of a network topology able to produce inverse bistability and inverse 
hysteresis is shown in Supp. Figure 8.

Overall characterization of the topologies reveals the minimal motifs that exhibit inverse bistability.  
To characterize the basic ingredients underlying the inverse bistability, we proceed to analyze all potential topolo-
gies that exhibit this behavior and find relationships and similarities between them. When grouped by number of 
links, we observe that the percentage of networks that exhibit inverse bistability increases with the connectivity of 
the network (yellow columns in Fig. 5a); this also happens for the percentage of simulations (one simulation cor-
responds to one combination of parameters) showing inverse bistability (see Supp. Figure 3). Figure 5b represents 
all topologies that show inverse bistability as an atlas that correlates topologies by their architecture by identifying 
topologies that contain another topology of lower connectivity. This representation reveals 19 minimal motifs of 
4 links that are contained in most of the higher connected topologies (the number of links in a given motif cor-
responds to the number of nonzero entries of the first 3 rows of the interaction matrix). These 19 topologies are 
represented as 3 × 3 matrix plots (which correspond to the three first rows of the interaction matrix) as follows: 
white is “1” (activation), black is “−1” (deactivation) and grey is “0” (no interaction)). The 4-link topologies that 
can also induce an inverse hysteresis loop are highlighted in red. The row below groups these 19 topologies in sets 
that only differ by two interactions (a given topology can result in different modes of response).

All 19 minimal topologies combine positive and negative interactions (i.e, no networks where all interactions 
are positive or negative). In addition, all of them contain at least a positive feedback that can be direct or indirect 
(i.e, the self-activation of a node involves another node of the network). The negative interaction can take the 
form of an indirect feedback loop (as in Supp. Figure 8a), an incoherent feed-forward loop, or not be part of a 
loop at all (as in Fig. 4a). We have found topologies where the interactions modulated by the inhibitor can either 
influence a positive, a negative feedback, a feed-forward loop, or even several of them simultaneously. We suggest 
that inverse bistability results from the interplay between the positive feedback (that generates the bistability) and 
the negative interactions that shape the basins of attraction. Additionally, the inhibitor has to directly or indirectly 
affect the positive feedback and induce a change between the two stable states at a given concentration.

Discussion
In this paper, we present the first global analysis to study how the network topology influences drug treatment. 
To do that, we focus on small networks of three interacting nodes where one of the nodes is the target of a small 
molecule inhibitor. We compare dose-response curves of the same treatment starting from two different initial 
conditions. Our analysis reveals that the initial conditions affect the efficiency of the treatment in most network 
topologies of three nodes. This dependence arises from the nonlinear characteristics of the network topology, and 
it is translated into modifications in the dose-response curves and changes in the EC50 as well as in the overall 
effect of the inhibitor. Moreover, we found network configurations that show a novel behavior characterized by 
the inversion of the steady states with respect to the initial conditions. In some conditions, this “inverse bistabil-
ity” can also result in “inverse hysteresis loops”, where the reduction of the efficiency of the treatment also occurs 
when the concentration of inhibitor is varied gradually. To our knowledge, this is the first evidence of this type 
of responses. Finally, our study shows that most of the topologies that show this inverse bistability and hysteresis 
contain core motifs of four links composed by a positive feedback and a negative regulation.

The workflow of our high-throughput screening is an in silico simulation of the experimental workflow used to 
determine dose-response curves. The fact that all the points in a dose-response curve start from the same initial 
state interplays with the bistable regions generated by a given network topology, resulting in a complex scenario 
where the relationship between the initial states and the basins of attraction in the phase space induces reversible 
or irreversible inverse bistability, and even inverse hysteresis loops.
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When comparing the dose-response curves in standard versus inverse bistability, DShigh has a higher sensitivity 
(reduced EC50) than DSlow in standard bistability, while DShigh has a lower sensitivity (increased EC50) than DSlow 
in conditions of inverse bistability. This reduction in sensitivity is very different from the well-studied homolo-
gous or heterologous desensitization after repeated or prolonged receptor stimulation26,27. Receptor desensitiza-
tion is achieved mainly by a single negative feedback loop that reduces the number or the efficiency of receptors 
on the cell surface after an initial stimulation28,29. This is translated into an initial strong transient activation of 
the targets downstream, while a second application of the stimulus does not show the same transient activation. 
While receptor desensitization focuses on transient responses, the reduced sensitivity resulting from the inverse 
bistability refers to true final steady states of the network.

Our study is limited to topologies of three main nodes that play different roles in the network, in an attempt 
to identify the minimal motifs that induce these dual dose-response curves. In principle, our results also apply to 
more larger networks with increasing number of nodes that interact linearly, since linear protein-protein interac-
tions can be reduced to smaller networks with equivalent dynamics without reducing the spectrum of reported 
behaviors3,30,31. We also expect that larger more complex biological networks that contain any of the smaller 

Figure 5.  Characterization of networks that show inverse bistability and inverse hysteresis. (a) The percentage 
of topologies that show inverse bistability increases with the network connectivity. Blue bars correspond to the 
percentage of topologies with the same dose-response curve for both initial conditions; green and yellow bars 
correspond to the percentage of topologies that show an increase or decrease of the EC50, respectively. (b) Atlas 
for all network topologies that induce inverse bistability. Circles represent each of the topologies where our 
screening has shown inverse bistability. Networks of different connectivity are represented in different colors. 
Gray lines link topologies that contain another topology of lower connectivity. Networks of lower connectivity 
are represented as matrixplots for the interactions, where white represents activation, black is deactivation 
and grey means no interaction. These minimal networks are then grouped in families where just one or two 
interactions change (marked with diagonal lines). Matrix plots highlighted in red correspond to topologies 
that can also produce inverse hysteresis loops. The topology corresponding to each matrixplot is shown below 
(interactions that vary in sign or in terms of presence/absence inside a family of minimal network topologies are 
represented with dashed lines).
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motifs reported in our analysis (Fig. 5) will exhibit a similar or even stronger dependence on initial conditions 
(see for instance32), since our analysis shows that the percentage of the networks with multiple dose-response 
curves increases with the connectivity of the network. Our lab is currently working in the experimental validation 
and characterization of signaling pathways with dual response-curves when targeted by an inhibitor (manuscript 
in preparation).

The characterization of the effect of a drug starts with an accurate and reproducible in vitro or in vivo 
dose-response curve to establish the optimal dose or the optimal schedule or treatment. The fact that, for most 
topologies, different initial conditions give different dose-response curves may compromise the reproducibility 
of drug treatment between biological samples or even patients. In conclusion, when designing drugs and treat-
ments that target proteins embedded in highly inter-connected networks such as signal regulatory pathways, the 
efficiency of a given compound cannot be predicted if the state of activation of the network is unknown.

Methods
To study all potential network topologies that induce multiple dose-response curves, we set up a high-throughput 
approach that explores all possible network topologies, or connections between an input, a target and an output 
node, including positive and negative feedback auto-regulation (see Fig. 6a). This computational screening is 
inspired by previous studies that focus on network topologies inducing adaptation33, bistability and ultrasensitiv-
ity34 and spatial pattern formation35. Our approach introduces the effect of a drug inhibitor in one of the nodes of 
the network and focuses mainly on the characterization of the effect of the network in shaping the response to the 
inhibition. To do that, we generate and compare dose-response curves for a given topology and set of parameters, 
but starting from different initial conditions.

Our core network is composed of three main components: an input node that receives a constant external 
stimulus, a target node that is inhibited by the drug, and the output node, which is used as a readout of the sys-
tem activity. Details of the dynamics of the interaction between the nodes and automatization of the screening 
are described in the Supp. Material. In brief, the set of interactions can be generalized in the following equation:
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where X is the state vector that contains the concentration of the active version of the input X1, target X2 and out-
put X3, as well as the value of the background activator (X4, X5, X6), and a deactivator (X7, X8, X9) enzymes for each 
of them. These background interactions are incorporated to ensure that each node receives at least one activating 
and one deactivating interaction (see Supp. Material). Therefore, independently of the number of links, the system 
of equations for each topology only contains three equations (the concentrations X4, …, X9 are constants (param-
eters) rather than variables). Ii,j represents the components of the interaction matrices for all 5103 possible net-
works of interactions between input, target and output in our study (see Supp. Material). Here, a given component 
Ii,j of the matrix is zero if Xi does not affect Xj, 1 if the Xi activates Xj and −1 if Xi deactivates Xj. δ I( )(1)i j,

 and δ −I( )( 1)i j,
 

are Kronecker delta functions that are 1 when the value Ii,j is 1 or −1, respectively. This way, the left part of the 
sum is nonzero when the component Xi activates Xj, while the right side is nonzero when Xi deactivates Xj.

Parameters ki,j and Ki,j correspond to the catalytic and Michaelis-Menten constants for the activation or deac-
tivation of Xj by Xi. The effect of inhibitor is incorporated as a sigmoidal function, assuming fast dynamics of 
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Figure 6.  Scheme of the workflow for the high-throughput screening. (A) Scheme of the core network with 
all possible interactions between input, target, and output. (B) For each possible interaction matrix (5103 
possible topologies), the phase space is sampled by randomly generating 10000 sets of parameter values for the 
catalytic (k), Michaelis-Menten (K) matrices. For each of these parameter sets, the three differential equations 
for input, target and output are solved numerically for two different inhibitor concentrations ([inh]low = 0 nM 
and [inh]high = 103 nM). The resulting steady states are used as initial conditions (IClow and IChigh) for numerical 
simulations applying a range of inhibitor concentrations. The steady state value of the output node (X3) is 
plotted against the inhibitor concentration to generate dose-response curves DSlow and DShigh. Finally, both 
dose-response curves are compared.
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binding and unbinding to its target (quasi-steady state approximation) and that the inhibitor is in excess over the 
enzyme X2 (see Supp. Material). Considering this, X2 is substituted by the expression:

⇒
+ ×

X X
K inh1 ( ) (2)a

2
2

when i = 2 in Eq. 1 (i.e., whenever X2 acts as an activating or deactivating enzyme). This way, the effect of the 
inhibitor can be directly incorporated into the equations independently of the architecture of the network, 
strongly facilitating the screening process. We fix the value of Ka of our inhibitor as 107 1/M (see Supp. Material), 
and assume that it is in excess over the enzyme X2. This approach excludes all topologies from our screen-
ing where X2 regulates itself (see Supp. Material).

The workflow can be described as follows (see Fig. 6b): For each particular network topology, all components 
ki,j and Ki,j of the catalytic and Michaelis-Menten constant matrices are randomly set from a desired range of 
values (see Supp. Material). Then, the system is numerically solved for two different constant concentrations of 
inhibitor ([inh]low = 0 nM and [inh]high = 103 nM), and the resulting steady state values of input, target and output 
are then used as initial conditions for new numerical simulations. Next, different concentrations of inhibitor are 
applied to the networks starting from these two initial conditions. The steady state of the output X3 is used to 
draw the corresponding dose-response curve. Finally, the two dose-response curves are analyzed, compared and 
classified (see Supp. Material for a more detailed explanation). This is repeated 10000 times for each topology, 
with different catalytic and Michaelis-Menten constant matrices, to sample the parameters space and identify 
regions where the dose-response curve depends on the initial conditions. Based on this, all network topologies are 
classified depending on the relationship between the two dose-response curves. This way, if both curves DSlow and 
DShigh are identical, the response of the inhibitor does not depend on the initial conditions, while if the two curves 
are different, this means that the effect of the inhibitor is dependent on the initial state of activation of the system.

This workflow is designed to mimic the typical experimental methodology to determine dose-response 
curves: Starting from multiple equivalent samples in the same experimental condition, different concentrations 
of the drug are administered to each of the samples, and the final steady state of the readout is plotted against the 
concentration of the drug. This is different from the typical studies of bistability in physical and chemical sys-
tems20,21, where an input parameter is gradually increased or decreased (i.e., the initial condition for each point in 
the curve corresponds to the steady state of the previous point in the analysis).

References
	 1.	 Doldán-Martelli, V., Guantes, R. & Míguez, D. G. A mathematical model for the rational design of chimeric ligands in selective drug 

therapies. CPT: pharmacometrics & systems pharmacology 2, e26 (2013).
	 2.	  Ruiz-Herrero, T., Estrada, J., Guantes, R. & Miguez, D. G. A Tunable Coarse-Grained Model for Ligand-Receptor Interaction. PLoS 

Computational Biology 9 (2013).
	 3.	 Míguez, D. G. Network nonlinearities in drug treatment. Interdisciplinary Sciences: Computational Life Sciences 5, 85–94 (2013).
	 4.	 Doldán-Martelli, V. & Míguez, D. G. Synergistic interaction between selective drugs in cell populations models. PloS one 10, 

e0117558 (2015).
	 5.	 Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. 

Current Opinion in Cell Biology 15, 221–231 (2003).
	 6.	 Ferrell, J. E. et al. Simple, realistic models of complex biological processes: Positive feedback and bistability in a cell fate switch and 

a cell cycle oscillator. FEBS Letters 583, 3999–4005 (2009).
	 7.	 Milo, R. et al. Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 824–827 (2002).
	 8.	 Arkin, M. R. & Wells, Ja Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nature reviews. 

Drug discovery 3, 301–317 (2004).
	 9.	 Arkin, M. R., Tang, Y. & Wells, J. A. Small-molecule inhibitors of protein-protein interactions: Progressing toward the reality. 

Chemistry and Biology 21, 1102–1114 (2014).
	10.	 Wu, P., Nielsen, T. E. & Clausen, M. H. Small-molecule kinase inhibitors: An analysis of FDA-approved drugs. Drug Discovery Today 

21, 5–10 (2016).
	11.	 Holmgren, E. B. Theory of drug development, 1st edn (Chapman & Hall/CRC, 2013).
	12.	 Fabian, M. A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nature biotechnology 23, 329–36 (2005).
	13.	 Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science (New York, N.Y.) 306, 1194–8 (2004).
	14.	 Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology 26, 127–132 (2008).
	15.	 Wan, X., Harkavy, B., Shen, N., Grohar, P. & Helman, L. J. Rapamycin induces feedback activation of Akt signaling through an IGF-

1R-dependent mechanism. Oncogene 26, 1932–1940 (2007).
	16.	 Rodrik-Outmezguine, V. S. et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer 

discovery 1, 248–59 (2011).
	17.	 Vogel, R. M., Erez, A. & Altan-Bonnet, G. Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell 

analysis. Nature communications 7, 12428 (2016).
	18.	 Altan-Bonnet, G., Germain, R. N., Germain, R., Oltz, E. & Stewart, V. Modeling T Cell Antigen Discrimination Based on Feedback 

Control of Digital ERK Responses. PLoS Biology 3, e356 (2005).
	19.	 Albeck, J., Mills, G. & Brugge, J. Frequency-Modulated Pulses of ERK Activity Transmit Quantitative Proliferation Signals. Molecular 

Cell 49, 249–261 (2013).
	20.	 Vanag, V. K., Míguez, D. G. & Epstein, I. R. Designing an enzymatic oscillator: bistability and feedback controlled oscillations with 

glucose oxidase in a continuous flow stirred tank reactor. The Journal of chemical physics 125, 194515 (2006).
	21.	 Míguez, D. G., Vanag, V. K. & Epstein, I. R. Fronts and pulses in an enzymatic reaction catalyzed by glucose oxidase. Proceedings of 

the National Academy of Sciences of the United States of America 104, 6992–7 (2007).
	22.	 Elf, J., Nilsson, K., Tenson, T. & Ehrenberg, M. Bistable Bacterial Growth Rate in Response to Antibiotics with Low Membrane 

Permeability. Physical Review Letters 97, 258104 (2006).
	23.	 Karslake, J., Maltas, J., Brumm, P. & Wood, K. B. Population Density Modulates Drug Inhibition and Gives Rise to Potential 

Bistability of Treatment Outcomes for Bacterial Infections. PLOS Computational Biology 12, e1005098 (2016).
	24.	 Collins, J. J., Gardner, T. S. & Cantor, C. R. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).
	25.	 Burrill, D. R., Inniss, M. C., Boyle, P. M. & Silver, P. A. Synthetic memory circuits for tracking human cell fate. Genes & development 

26, 1486–97 (2012).



www.nature.com/scientificreports/

1 0Scientific Reports |  (2018) 8:12495  | DOI:10.1038/s41598-018-30913-9

	26.	 Fehmann, H. C., Habener, J. F. & Fehmann, H. C. Homologous desensitization of the insulinotropic glucagon-like peptide-i(7–37) 
receptor on insulinoma (hit-t15) cells. Endocrinology 128, 2880–2888 (1991).

	27.	 Sun, Y. et al. Mechanism of glutamate receptor desensitization. Nature 417, 245–253 (2002).
	28.	 Freedman, N. J. & Lefkowitz, R. J. Desensitization of G protein-coupled receptors. Recent progress in hormone research 51, 319–51; 

discussion 352–3 (1996).
	29.	 Gainetdinov, R. R., Premont, R. T., Bohn, L. M., Lefkowitz, R. J. & Caron, M. G. Desensitization of G protein Coupled Receptors and 

neuronal Functions. Annu. Rev. Neurosci 27, 107–44 (2004).
	30.	 Alon, U. Network motifs: theory and experimental approaches. Nature Reviews Genetics 8, 450–461 (2007).
	31.	 Wolf, D. M. & Arkin, A. P. Motifs, modules and games in bacteria. Current Opinion in Microbiology 6, 125–134 (2003).
	32.	 Straube, R. & Conradi, C. Reciprocal enzyme regulation as a source of bistability in covalent modification cycles. Journal of 

Theoretical Biology 330, 56–74 (2013).
	33.	 Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 

138, 760–73 (2009).
	34.	 Shah, N. A. & Sarkar, C. A. Robust Network Topologies for Generating Switch-Like Cellular Responses. PLoS Computational Biology 

7, e1002085 (2011).
	35.	 Cotterell, J. & Sharpe, J. An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen 

gradients. Molecular Systems Biology 6, 425 (2010).

Acknowledgements
This work has been supported by the Ministry of Science and Technology of Spain via a Ramón y Cajal Fellowship 
(Ref. RYC-2010-07450), a grant from Plan Nacional framework (Ref. BFU2011-30303 and & BFU2014-53299-P) 
and a FPU fellowship. We thank Raúl Guantes, Juan Díaz Colunga, Marta Ibañes, Rosa Martínez Corral, Saúl Ares 
and Katherine Gonzales for invaluable help and technical assistance.

Author Contributions
D.G.M. and V.D.M.: Designed research, performed research, wrote the manuscript. All authors reviewed the 
manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-30913-9.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-30913-9
http://creativecommons.org/licenses/by/4.0/

	Drug treatment efficiency depends on the initial state of activation in nonlinear pathways

	Results

	The strength of inhibition depends on the initial conditions for most of the networks. 
	Different initial conditions can induce increased or decreased treatment efficiency. 
	The network architecture can induce inverse hysteresis loops. 
	Overall characterization of the topologies reveals the minimal motifs that exhibit inverse bistability. 

	Discussion

	Methods

	Acknowledgements

	Figure 1 General statistical analysis of the high-throughput screening.
	Figure 2 The effect of initial conditions can shape the dose-response curve in different ways.
	Figure 3 The network architecture can induce inverse bistability.
	Figure 4 The network architecture can induce inverse hysteresis.
	Figure 5 Characterization of networks that show inverse bistability and inverse hysteresis.
	Figure 6 Scheme of the workflow for the high-throughput screening.




