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Mechanosensing Piezo channels in tissue homeostasis
including their role in lungs
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Abstract

Piezo channels are deemed to constitute one of the most important family of mechanosensing ion channels since their discovery in

2010. With recent advances in identifying their topological structure and the discovery of the agonist Yoda1 as well as the specific

inhibitor GsMTx4, it is now possible to study the mechanisms by which Piezo channels are involved in physiological and patho-

physiological processes. During embryonic cardiovascular development, Piezo1 senses shear stress and promotes vasculature

growth. In adult mice, Piezo1 mediates the release of nitric oxide and ATP from endothelial cells to regulate blood pressure.

Piezo channels also play a crucial role in cell differentiation and tissue homeostasis by exquisite mechanical force sensing.

Piezo channels are also abundantly expressed in lung tissues. As the lung is exposed to complex pulmonary hemodynamics and

respiratory mechanics, cells in the lung, such as microvascular endothelial cells, bear mechanical forces from blood flow shear,

pulsatile strain, static pressure, and cyclic stretch due to respiratory movement. These mechanical stimuli are involved in a serial of

physiological function and pathophysiological processes of the lung, many of which Piezo channels may be the key player. Mutation

of genes encoding Piezo channels are also associated with hereditary human diseases, thus highlighting the critical role of Piezo

channels in both tissue homeostasis and disease.
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Role of Piezo channels in
mechanotransduction

Mechanotransduction is defined as a process by which cells
convert a mechanical stimulus into electrical or chemical
signals which allow the cells to adapt to mechanical changes
in the milieu. Mechanosensitive channels are transmembrane
proteins that respond to mechanical stress over a wide
dynamic range of external mechanical stimuli. Coste et al.,
in 2010,1 discovered a novel ion channel family—the Piezo
family with its members Piezo1 (Fam38a) and Piezo2
(Fam38b), which are 2500 and 2700 amino acids, respect-
ively. These proteins have a surprisingly large number of 18
transmembrane domains as recently demonstrated by
CryoEM2 and biochemical mapping of the intracellular
and extracellular domains.3 Piezo and its homologues are
found in all multicellular organisms except fungi and

brown algae. Recent evidence suggests that Piezo may
have been necessary for evolution of multicellularity and
cell–cell communication by allowing for the monitoring of
mechanical stimuli and sensing of neighboring cells.4

Another general means by which Piezo1 may control cell
size during evolution may have been through orchestrating
mechanical signal transduction with the Hippo pathway
through activating YAP/TAZ transcription factors.5
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Structure of Piezo channels

Piezo1 forms a three-blade, propeller-shaped architecture
(Fig. 1). The transmembrane region contains three extended
and twisted arrays of transmembrane helices. In addition to
the transmembrane helical array, three thick distal blades
are placed superficially with a helicoidal surface, respect-
ively. A single central cap is located above the transmem-
brane core surface. Piezo1 is activated by changes of
membrane curvature, both convex and concave.2 The
blade region of Piezo1 is highly flexible and could serve as
a force sensor which then responds to mechanical stimuli by
regulating the gating of cations.

Activation and inhibition of Piezo channels
using drugs

After screening nearly 3,200,000 substrates, the small mol-
ecule Yoda1 was identified as a specific activator of Piezo1.6

In vitro assays showed that Yoda1 functioned by slowing
the inactivation of Piezo1 and thus shifting the activation
curve leftward. Yoda1 can also gate Piezo1 channels at rest-
ing levels of tension. Piezo channels can be inhibited non-
specifically by Ruthenium Red and Gd3þ.1 A peptide

GsMTx4 isolated from tarantula venom also inhibits
endogenous stretch channels, including Piezo.7 Unlike
Ruthemium Red, GsMTx4 is a specific inhibitor of Piezo1
and inhibited mechanically activated Piezo1 currents in
patch clamp studies.8

Piezo channels in vasculature development

Before mid-embryogenesis in mammalian development, the
onset of vascular shear stress due to the emergence of car-
diac contraction is sensed by Piezo1 in the vasculature.9

Global and endothelial-specific deletion of Piezo1 leads to
disrupted embryonic vasculature development and notice-
able whole embryo growth lag as well as lethality. Even
though endothelial cells (ECs) differentiate, physiological
vessel formation and remodeling of vessels is compromised
in the absence of Piezo1. These data suggest that endothelial
Piezo1 plays a crucial role in sensing shear stress. Piezo1 is
required for Ca2þ influx and generation of non-selective
cation current in response to shear stress. After Piezo1 acti-
vation, extracellular Ca2þ enters into the cells, activates the
protease calpain-2, and remodels the extracellular matrix,
thus facilitating polarity of ECs and other adaptive
responses of cells in response to shear stress9 (Fig. 2).

Fig. 1. The schematic structure (PDB 3JAC) of Piezo1 (left) shows possible structural domains (right) that may play a role in mechanosensing and

channel activation. Reproduced with permission from Elsevier.12

Fig. 2. In response to shear stress, Piezo1 gates Ca2+ influx and activates Calpain-2, which proteolyzes cytoskeletal and focal adhesion proteins,

resulting in the alignment of endothelial cells along shear direction.
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Role of Piezo1 in blood pressure regulation

Piezo1 is also required for blood pressure control. EC-spe-
cific deletion of Piezo1 in mice decreases nitric oxide and
ATP generation in response to either shear stress or the
Piezo1 agonist Yoda1.10 These mice showed persistent
hypertension throughout the observation period of 2–3
weeks. Vascular smooth muscle-specific deletion of Piezo1,
on the other hand, disrupted arterial remodeling in response
to hypertensive stimuli,11 indicating a potential pathological
role for Piezo1 in hypertensive vascular remodeling.

Piezo1 in cellular homeostasis

Cells in many tissues are continuously exposed to traction
forces which are sensed by Piezo channels. Pathak et al.
analyzed the differentiation of neural stem cells (hNSPC)
on different substrates.5 Both Piezo1 inhibition by
GsMTx4 and Piezo1 siRNA knockdown increased astrocyte
differentiation as compared to neuronal differentiation, thus
suggesting a role for Piezo1 in the lineage choice of differ-
entiating neural stem cells. Furthermore, Piezo1 is critical
for sensing substrate stiffness in neural cells and retinal gan-
glion cells.13,14 Eisenhoffer et al. found that overcrowding of
epithelial cells could generate extrusion of cells to maintain
homeostasis. Knockdown of Piezo1 expression or channel
blockade using Gd3þ was shown to repress cell extrusion.15

However, low density of epithelial cells induces cell division
through activation of Piezo1 by mechanical stretch.16 Thus,
Piezo1-dependent Ca2þ influx appears to activate two
opposing processes dependent on where and how Piezo1 is
activated. In regions with sparse epithelial cells, Piezo1 accu-
mulates in the plasma membrane to activate epithelial cell
division, whereas Piezo1 localizes in cytoplasm in cell dense
regions allowing cell extrusion to maintain cell numbers at a
stable homeostatic level.

Diseases associated with mutations of Piezo1

Loss-of-function mutations of the Piezo1 gene in humans
are linked to non-immune hydrops fetalis and lymphe-
dema17 and congenital lymphatic dysplasia.18 A gain-of-
function mutation of Piezo1 occurs in autosomal dominant
hereditary xerocytosis (HX) (also termed as dehydrated sto-
matocytosis), which is a hereditary hemolytic anemia of
normocytic or macrocytic type.19–21 Hyperactivation of
Piezo1 is assumed to elevate intracellular [Ca2þ]I in HX
erythrocytes, resulting in upregulation of the intermediate
conductance of Ca2þ-activated Kþ channel KCNN4,
which in collaboration with the erythrocyte Cl- channel
gives rise to cell shrinkage and dehydration.

Role of Piezo2 in mechanical force sensing

Humans sense their mechanical environment partly through
touch sensors in the skin. Merkel cells, which are abundant
in fingertips and other specialized regions of the skin, make

up touch domes responsible for touch sensation. Studies
showed that Merkel cells depend on Piezo2 to sense mech-
anical forces22–24 (Fig. 3). In the gut epithelium, enterochro-
maffin cells function in a manner similar to Merkel cells by
sensing acute intraluminal mechanical force that distorts the
epithelium and thereby regulates mucosal secretion in
response to pressure changes in the gut to maintain
normal gastrointestinal function.25 Piezo2 is expressed in
enterochromaffin cells and is assumed to be the primary
mechanical sensor that adjusts gut mechanical sensitivity,
5-HT release, and downstream physiological processes.25

Diseases associated with Piezo2 mutations

Global knockout of mouse Piezo2 leads to lethality in the
perinatal period,26 whereas a bi-allelic loss-of-function
mutation of Piezo2 is associated with congenital and pro-
gressive arthrogryposis syndrome manifested with variable
clinical phenotype, which is not lethal. Piezo2 mutation-
associated arthrogryposis syndrome is manifested as distal
sensory neuropathy characterized by defective propriocep-
tion,27 muscular atrophy, and scoliosis,28 without evidence
of central neural system abnormality. Bi-allelic gain-of-func-
tion results in a group of syndromes related to distal arthro-
gryposis; these syndromes include Gordon syndrome (distal
arthrogryposis type 3), distal arthrogryposis type 5, and
Marden–Walker syndrome.29,30

Fig. 3. Piezo2 contributes to the constitution of the Merkel

cell-neurite complex in DRG neurons to mediate gentle touch

sensation and mechanotransduction. Reproduced with permission

from Elsevier.12
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Role of Piezos in cartilage biosynthesis

Synergy between Piezo1 and Piezo2 contributes to normal
function of mouse articular cartilage.31 Both Piezo1 and
Piezo2 mRNA are abundantly expressed in primary articu-
lar chondrocytes of mammals, which are responsible for
cartilage biosynthesis and remodeling. Chemical inhibition
or knockdown of either Piezo1 or Piezo2 suppressed mech-
anically induced calcium influx in chondrocytes, whereas cell
death due to high strain mechanical injury was reduced by
GsMTx4.

Role of Piezo channels in lung physiology and
pathophysiology

Piezo2 plays a critical role in the regulation of the Hering-
Breuer reflex which prevents over-inflation of the lung.26

The reflex is activated by pulmonary stretch receptors in
the smooth muscle of airways that respond to excessive
stretching of the lung during large inspirations. Piezo2 dele-
tion in vagal, spinal sensory, and dorsal root ganglion neu-
rons led to reduced vagal nerve activity in response to lung
inflation, increased tidal volume, prolongation of expiratory
airflow, and blunted Hering–Breuer reflex (Fig. 4), thus
establishing the critical role of Piezo2 in the Hering–
Breuer reflex. While global knockout of Piezo2 did not
impair embryonic lung development, respiratory distress
was seen in newborn mice shortly after birth leading to
death. Selective deletion of Piezo2 in neurons of the jugular
and thoracic dorsal root ganglia replicated the symptoms
seen in global knockout newborn mice. Selective knockout
Piezo2 in the nodose ganglion, on the other hand, allowed
mice survive to adulthood, but these mice also showed an
impaired Hering–Breuer reflex with increased tidal volume.

Both the lung epithelium and lung endothelium are
exposed to repeated mechanical stretch due to the cyclic
inflation of alveoli.32 Spontaneous breathing increases
alveolar surface area by 25% or �5% increase in circumfer-
ential stretch (CS) of epithelium and endothelium.
Increasing lung volume increases from 40% to 100% can
result in an increase of the alveolar surface area of 35%,

corresponding to as high as an �18% increase in CS.
Although the precise role of Piezos in mediating lung infla-
tion responses has not yet been examined, they may be cru-
cial for the adaptation to stretch of both the lung epithelium
and endothelium (Fig. 5). As Piezo1 regulates kidney epi-
thelial cell homeostasis,16 it is also likely an important
mechanosensor for lung epithelial cell integrity through its
promotion of proliferation and repair after alveolar injury.
Piezo1 deficiency resulted in impaired epithelial cell adhe-
sion and increased cell migration,33 which may be a factor
contributing to tissue repair in ARDS. Although this ques-
tion has not been examined, alveolar epithelial-expressed
Piezo1 and Piezo2 may regulate the response to stretch-
induced or ventilation-induced lung injury.

Role of Piezo channels in pulmonary
circulation and heart

Thus far, there is little known about the role of Piezo chan-
nels in mechanotransduction in the pulmonary circulation.
However, Piezo1 mRNA is expressed in right heart1,34 and
pulmonary ECs (Zhong et al, unpublished data). Piezo1
shares some similar electrophysiological characters with
non-selective stretch-activated ion channels of the heart,
including sensitivity to GsMTx4. In a murine heart ische-
mia-reperfusion model, GsMTx4 pretreatment was protect-
ive as manifested by decreased infarction area and improved
cardiac dynamics.35 In EC-specific Piezo1 knockout adult
mice, the heart and aorta appeared normal as assessed by
histological staining and echocardiography.36 Besides the
mediating of vascular relaxation,10 endothelial Piezo1 is
also crucial for mesenteric vasoconstriction and blood pres-
sure elevation during physical activity, which may re-direct
blood from gastrointestinal system to muscle tissue to facili-
tate physical performance. The authors concluded that
endothelial Piezo1 regulates anti-EDH (endothelium-
derived hyperpolarization) through flow-sensing.36 It is
unknown whether Piezo expressed in lung ECs also func-
tions in redirecting blow to better ventilated regions. These
publications suggest a role for Piezos in physiological and

Fig. 4. Piezo2 in airway vagal sensory neuron senses lung inflation and

activates afferent impulses through the jugular-nodose (J-N) ganglia

complex and thoracic dorsal root ganglia (DRG) to form the Hering–

Breuer reflex. Adapted by permisison from Elsevier.26

Fig. 5. Both alveolar and pulmonary capillary are exposed to mech-

anical stretch due to cyclic inflation of alveolar. The higher the tidal

volume, the higher the level of stretch borne by epithelium and

endothelium, which could be sensed and mediated by Piezo1.37
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pathological phenotypes, such as pulmonary arterial hyper-
tension and pulmonary vascular and right heart remodeling
but the evidence is inclusive.

Pulmonary circulation is a low-pressure vascular bed in
which pulmonary ECs are exposed to mechanical force
during lung inflation. A fundamental question, therefore,
is how Piezo1 expressed in ECs responds to stretch of ECs
and the role of Piezo1 in regulating endothelial barrier func-
tion. This question remains unaddressed. Another related
question relates to the role of Piezos in transmigration of
leukocytes and cancer cells; specifically, whether activation
of EC expressed Piezo1 contributes to the migration of cells
across the endothelial barrier. Studies using breast cancer
cell lines showed a relationship between malignancy and
Piezo1 expression.38

Conclusion

Since the discovery of the Piezo channel family,1 our under-
standing of the mechanisms of mechanotransduction has
advanced, yet many fundamental questions remain regard-
ing the regulatory role of Piezo channels in the lung. Since
alveolar epithelial and endothelial cells in the lung are sub-
jected to mechanical forces during each breath, Piezos likely
play a fundamental role in regulating multiple aspects of
lung biology from controlling the barrier properties of
alveolar epithelium and endothelium to controlling lung
inflation itself via the Hering–Breuer reflex. It is safe to
say that many questions about Piezos are outstanding and
that there are far more unknowns than knowns as of now,
but that studying Piezo channels in the lung epithelium and
endothelium will yield significant insights into lung physi-
ology and pathophysiology.
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