
SOFTWARE Open Access

QL4MDR: a GraphQL query language for
ISO 11179-based metadata repositories
H. Ulrich1* , J. Kern2, D. Tas2, A. K. Kock-Schoppenhauer1, F. Ückert3, J. Ingenerf1,4† and M. Lablans2†

Abstract

Background: Heterogeneous healthcare instance data can hardly be integrated without harmonizing its schema-level
metadata. Many medical research projects and organizations use metadata repositories to edit, store and reuse data
elements. However, existing metadata repositories differ regarding software implementation and have shortcomings
when it comes to exchanging metadata. This work aims to define a uniform interface with a technical interlingua
between the different MDR implementations in order to enable and facilitate the exchange of metadata, to query
over distributed systems and to promote cooperation. To design a unified interface for multiple existing MDRs, a
standardized data model must be agreed on. The ISO 11179 is an international standard for the representation of
metadata, and since most MDR systems claim to be at least partially compliant, it is suitable for defining an interface
thereupon. Therefore, each repository must be able to define which parts can be served and the interface must be
able to handle highly linked data. GraphQL is a data access layer and defines query techniques designed to navigate
easily through complex data structures.

Results: We propose QL4MDR, an ISO 11179-3 compatible GraphQL query language. The GraphQL schema for
QL4MDR is derived from the ISO 11179 standard and defines objects, fields, queries and mutation types. Entry points
within the schema define the path through the graph to enable search functionalities, but also the exchange is
promoted by mutation types, which allow creating, updating and deleting of metadata. QL4MDR is the foundation for
the uniform interface, which is implemented in a modern web-based interface prototype.

Conclusions: We have introduced a uniform query interface for metadata repositories combining the ISO 11179
standard for metadata repositories and the GraphQL query language. A reference implementation based on the
existing Samply.MDR was implemented. The interface facilitates access to metadata, enables better interaction with
metadata as well as a basis for connecting existing repositories. We invite other ISO 11179-based metadata repositories
to take this approach into account.

Keywords: Metadata repository, Interoperability, GraphQL, HL7 FHIR

Background
Heterogeneity of healthcare data from different sources is
a well-known obstacle limiting data integration and ana-
lytics. If the same facts are expressed in various ways,
understanding and exchanging data becomes a demanding
process that ties up resources in the form of data special-
ists and is both labor-intensive and error-prone [1].
As a remedy, the unambiguous interpretation and, thus,

integration of such “instance data” can be facilitated by
describing their variety and characteristics using “meta-
data”. If curated and semantically annotated, metadata is

instrumental in data integration [2]. For example, meta-
data can be used for validation and transformation of
instance data: Having harmonized metadata at the schema
level, matchings and mappings between different metadata
sets can be used to generate the transformation of in-
stance data, as conceptually shown in Fig. 1. It has been
shown that such processing rules can serve to integrate
and exchange healthcare instance data [3].
Many projects and organizations in the field of

medical informatics research already utilize metadata re-
positories (MDR) to store, edit, use and reuse metadata.
As a result, a multitude of MDR implementations have
emerged, each one featuring its own web interface, e.g.
the Common Data Element Browser from the National

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: hannes.ulrich@itcr.uni-luebeck.de
1IT Center for Clinical Research, University of Lübeck, Lübeck, Germany
Full list of author information is available at the end of the article

Ulrich et al. BMC Medical Informatics and Decision Making (2019) 19:45
https://doi.org/10.1186/s12911-019-0794-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-019-0794-z&domain=pdf
http://orcid.org/0000-0002-8349-6798
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:hannes.ulrich@itcr.uni-luebeck.de

Institute of Health [4], the US Health Information
Knowledgebase, the Samply.MDR [5] and the METeOR
of the Australian Institute of Health and Welfare [6].
While mapping between data elements within one MDR
is a well-researched topic, the exchange between several
MDRs – a requirement for the exchange and integration
process across consortia – has been much less studied.
This shall be the focus of this study, represented on the
left side in Fig. 1. Fortunately, most MDR systems claim
to be partly conformant to the metadata standard ISO
11179, so that in principle metadata can be exchanged
between MDRs [4, 7–10]. However, while ISO 11179-3
defines a metamodel and basic attributes for describing
metadata, it does not provide an implementation. After
studying the several systems mentioned above, we dis-
covered that some systems either provide no query end-
point at all, or the existing interfaces are rather
deprecated. Existing metadata exchange standards are
not focused on the ISO 11179 standard, are proprietary
and rigid due to their design and technologies [11]. The
semantically enhanced metadata is therefore unavailable
due to technical or syntactical heterogeneity. In sum-
mary, before we can exploit metadata from several
MDRs for data integration, we face a problem of meta-
data integration.
We propose a uniform interface to access multiple

MDRs as long as they follow a specific metadata

standard. The idea of a uniform interface (of clinical sys-
tems) has a prominent example through HL7 Fast Health
Interoperability Resources (FHIR) [12]. Standardized ex-
change formats are provided equipped with modern tool-
ing like JSON, ATOM and REST. Although, the standard
is disadvantageous if deeply structured resources are to be
processed. Since metadata is predominantly a deeply
nested information, it is urgently dependent on imple-
menting effective access to real MDR systems on a tech-
nical level.

The ISO 11179 standard for metadata repositories
In order to design a uniform interface suitable for
several existing MDRs, a standard data model needs to
be agreed on. The ISO/IEC standard 11179 is commonly
used for the modelling of metadata, corresponding re-
positories and registries [13]. The standard defines a
core model in order to harmonize the formal representa-
tion of metadata. This core model is divided into two
layers: the representational and the conceptual layer.
The representational layer defines the key concept Data
Element as a single information element and a Value
Domain describing the datatypes and their value ranges.
The conceptual layer sorts Data Element in concept
groups to describe their semantical similarity. In
addition to the core model, the standard defines various
entities to capture the information corresponding to the

Fig. 1 Using metadata to support the integration of healthcare instance data. The process consists of the four stages: the metadata acquisition
stage with a uniform interface enables to reuse of information which is stored in project-specific MDRs. The matching stage aligns the metadata
and identifies potential correspondences. The mapping stage creates transformation rules, which are used in the transformation stage. The first
three stages only process metadata, whereas the last transformation stage includes healthcare instance data

Ulrich et al. BMC Medical Informatics and Decision Making (2019) 19:45 Page 2 of 7

metadata. As an objective, the interface must be able to
query a highly linked data model.

Fast health interoperability resources
A uniform interface is a common way to overcome the
problem of heterogeneity in data exchange. A significant
example is the Fast Health Interoperability Resources
standard, the newest member of the HL7 standards fam-
ily [12]. FHIR defines information components, called
resources, and a standardized way to retrieve and ma-
nipulate these components. The FHIR resource DataEle-
ment and the ISO 11179 profile, defined for representing
metadata in FHIR version DSTU2, were the base for a
functional MDR prototype [14]. With FHIR version STU3,
however, the DataElement resource has been marked dep-
recated, and a suitable successor has not been defined, yet.
In particular, FHIR developers state that REST interfaces
are not a suitable communication approach for the com-
plex, nested queries as required in exchange of ISO
11179-3 information [15].

GraphQL
GraphQL, initially developed by Facebook, is a query
language especially suited for highly linked data models
[16] used by GitHub, Twitter or the German railway
company Deutsche Bahn [17, 18]. The FHIR standard it-
self introduced GraphQL as a query alternative to REST
APIs [19]. Technically, GraphQL functions as a database
abstraction layer providing a single API endpoint both
for queries and mutations. The provided information ob-
jects are defined in a schema, which has an expressive
coverage, supports inheritance, interfaces, custom types
and attribute constraints such as non-nullable entries.
Creating a GraphQL schema requires to define:

� Objects and Fields to define information
representation

� Queries to define how object types can be queried,
including filtering and

� Mutations to enable input types for information
capturing and manipulation.

Providing a GraphQL endpoint based on a given
schema is achieved by implementing data fetchers and
resource resolvers collecting the enquired resources and
providing them in the defined format. Apart from the
interface specification, GraphQL supports introspection
based on the underlying schema, so the interface infor-
mation is machine-readable available to simplify inter-
action with clients to generate communication libraries
automatically [20]. It also provides reference implemen-
tation and software libraries in various programming
languages, like JavaScript, Erlang, C# and Java [16].

Implementation
We used the GraphQL reference library graphql-java
[20] to derive the QL4MDR API and its documentation
from the defined schema. As a next step, we imple-
mented the API in a widely used open-source ISO
11179-based metadata repository, Samply.MDR [21]. We
created the necessary data fetchers using the underlying
Samply.MDR database access layer that ensures back-
wards compatibility across MDR versions and allows the
use of the existing access control based on OpenID
Connect [22]. As an optimization, we implemented
resource resolvers to reduce the necessary connections
to the database via lazy-loading, e.g. fetching a name-
space including each data element with the correspond-
ing value domains without producing a large number of
database queries.

Results
Having reviewed the ISO 11179-3 core model, we propose
a compatible GraphQL schema, a GraphQL-based API
QL4MDR and a prototypical implementation of a modern
web-based interface.

Definition of an ISO 11179-compatible GraphQL schema
We derived the GraphQL schema for QL4MDR from
the ISO 11179 standard. Particularly the third part
describing the core model, was considered. Of the 26
entities described in the core model, the QL4MDR
schema consists of the following: a) Object types with
corresponding fields, b) Query and c) Mutation types.

Objects & Fields
The ISO 11179-3 core model is represented in four Object
types: Data Element, Value Domain, Data Element
Concept and Conceptual Domain. The standard also com-
prises Namespace and the customizable Slots as structures
for the identification of metadata. Also, all required
Objects related to the previous six types are included in
the QL4MDR schema, resulting in 13 Object types.
ISO 11179-3 further specifies these basic Object types

by attributes. We translated these attributes into
GraphQL fields, which can be used to filter and con-
strain the query. To enhance filter functionality, Object
types with less than two attributes are included in
related Objects as fields. For example, the ISO 11179
Property Class results in the string representation Prop-
erty related to the Data Element Concept.

Query
GraphQL queries start at an entry point and traverse
through the data graph. QL4MDR provides six entry
points: Data Element as the central information item,
Value Domain, Concepts and Conceptual Domain,
Namespaces and Slot. Each entry point provides a

Ulrich et al. BMC Medical Informatics and Decision Making (2019) 19:45 Page 3 of 7

particular set of filters to specify the enquired informa-
tion, e.g. all concepts regarding Person and its mass.
Since slots can contain custom information about each
data element, they allow additional parameters for better
querying.
The QL4MDR data graph has a defined direction,

which we derived from the cardinality described in the
ISO 11179-3 – represented with directed lines in Fig. 2.
QL4MDR queries should be formulated in a way travers-
ing the graph along the defined directions.

Mutation
Of the six available entry points for querying, we
selected three as valid starting points for mutations:
Namespace, Conceptual Domain and the pivotal Data
Element. This selection ensures two important guaran-
tees: first, each entity can be created, modified or deleted
as there is a guaranteed path. Second, it is impossible to
define cyclical mutations.

Discussion
The proposed interface follows two major design deci-
sions, which result in advantages with regards to MDR
interoperability: choosing GraphQL rather than RESTful
or a service-oriented interface and basing the QL4MDR
on the ISO 11179-3 standard rather than a proprietary
implementation.

GraphQL vs. traditional interfaces
GraphQL can be regarded as a variation of the widely
used RESTful design pattern but differs in specific
characteristic and yields both advantages and limitations:
As a GraphQL-based API, QL4MDR can answer even
complex questions navigating across the various entities
of the ISO 11179 standard, thus reducing the required

number of queries. In other words, the RESTful or
service-oriented interfaces need substantially more re-
quests to provide the same information. The number of
queries against a RESTful interface depends on the num-
ber of inquired data elements. For example, consider an
electronic data capture solution requesting validation
rules for all data elements present in a given namespace,
as shown in Fig. 3. Additionally, a RESTful client re-
ceives redundant information as it is forced to query
data elements with all properties and has to discard
those that are of no further benefit [16]. The RESTful
interface could implement tailored routes, but it is in-
feasible in the comparison of benefit from costs due to
maintenance.
In GraphQL, clients can define the desired response

format with each query, which future-proofs the inter-
face for new client requirements. This shifts the work-
load back from the client to the server to be compliant
with a larger number of client implementations but
yields technical limitations compared to REST. On the
one hand, the deeply nested queries are well-suited to
the highly networked metadata as they include more in-
formation and therefore reduce request roundtrips. On
the other hand, they cause a higher load on the MDR
databases. Even worse, GraphQL does not rely on stand-
ard HTTP mechanics and therefore does not profit from
the well-matured caching mechanisms of modern web
browsers and client libraries, which further amplifies the
database load with repeated queries [23]. Facebook is
aware of this shortcoming and provides a JavaScript
library to overcome this obstacle [16].
Another advantage of GraphQL lies in the creation of

meaningful documentation. In particular, GraphQL
implementations like graphql-java can generate both
human- and machine-readable documentation from the

Fig. 2 The six defined entry points, separated into the identified metadata (lower part) and the formal description of the metadata (upper part).
The three bold entities are suitable entry points for mutations. The right box shows an example query to request all data Data Elements
containing a Slot with the name “SNOMED-CT” and the value “723,232,008” (average blood pressure). The query defines the representation of the
response: each corresponding Data Element shall be returned with its identification and its definitions

Ulrich et al. BMC Medical Informatics and Decision Making (2019) 19:45 Page 4 of 7

defined schema. The introspection feature allows not
only users and developers to understand the interface
more easily, but the machine-readable representation en-
ables dynamic and loose coupling between server and
clients [16], thus facilitating the federation of various,
technically different ISO 11179-based MDRs. Previous
standards like the WS-MetadataExchange [11] cannot
stand that flexibility and loose coupling due to its heavy-
weight service-oriented architecture [24].

Adherence to metadata standards instead of their
implementations
QL4MDR is not tailored to a specific repository implemen-
tation but modelled strictly after the ISO 11179-3 standard.
This approach yields both advantages and limitations.
On the one hand, adhering to ISO 11179-3 as the

common metadata model ensures reusable queries that
can be executed against various MDR implementations,
as long as they follow ISO 11179-3 and implement
QL4MDR. On the other hand, metadata management
systems are sometimes customized for specific use cases

and specifications, which go beyond what ISO 11179-3
defines. For instance, Samply.MDR implements the
so-called Data Element Group to organize certain data
elements. As this entity is not included in the standard,
it obviously cannot be queried via QL4MDR. However,
workarounds are possible: in this case, for example,
Data Element Groups could be treated as complex data
elements consisting of several data elements, a designa-
tion and a definition.

Limitations
Designing a common interface is the first step on the
way to a simple federation of heterogeneous MDRs via a
uniform and standardized interface and therefore reus-
ing metadata. An interface alone, however, cannot
address common problems of handling of metadata in a
distributed context, such as consolidation of datasets
and/or the mediation between existing sets, matching
and mapping of data elements and protection of intellec-
tual property (study designs, etc.). Also, federating
various MDR instances yields the usual problems of

Fig. 3 This sequence diagram shows the required messages between the GraphQL client (left) including the used query (box), the RESTful client
(right) and the MDR server to receive the validation rules of each data element in a specific namespace. The GraphQL client needs only one
query shown in the box, whereas the message amount of the RESTful client depends on the number on data elements associated with the
chosen Namespace

Ulrich et al. BMC Medical Informatics and Decision Making (2019) 19:45 Page 5 of 7

distributed information systems such as replication,
consistency and duplicate detection, addressing and op-
erational availability and versioning. QL4MDR is made
for MDRs which are based on the 11,179–3, non-ISO-
based systems are currently out of scope.
Lastly, one must consider that like any other interface,

QL4MDR can offer only functionality or serve informa-
tion available in the underlying MDR. In the case of ISO
11179, not all MDRs implement all components of the
extensive standard. For example, although QL4MDR
does cover the conceptual layer, it is unavailable in our
reference implementation as it is not available in
Samply.MDR. To some extent, such limitations can be
mitigated: In our example, the additional semantic infor-
mation can be stored in the optional slot of a data elem-
ent. However, for the sake of interoperability across
MDR implementations, we argue that compliance to the
ISO 11179 standard is preferable to such workarounds.

Conclusion
We have presented a uniform query interface for various
implementations of metadata repositories. To ensure
compatibility and sustainability, we did not invent new
paradigms but reused existing standards, namely the
widely used ISO 11179 standard for metadata registries
and the GraphQL query language. We implemented a
reference implementation based on the widely used
Samply.MDR software, which is available under https://
bitbucket.org/medicalinformatics/. QL4MDR could be
integrated into other MDR implementations following
the ISO 11179 metadata representation by implementing
the required GraphQL data fetcher and the HTTP-based
query endpoint. Once integrated into MDRs, QL4MDR
can not only enable better interaction with a single
metadata repository in a uniform and based on the ISO
11179-3 standardized manner. In addition, it serves as
the foundation towards a federation of existing imple-
mentations and research networks’ instances. Thus, we
invite authors of other ISO 11179-based metadata regis-
tries to consider this approach for implementation.

Availability and requirements
The source-code are freely released in open source on
Bitbucket.
Project name: e.g. Samply.MDR.GraphQL.
Project home page: e.g. https://bitbucket.org/medica-

linformatics/samply.mdr.ql4mdr
Operating system(s): Platform independent.
Programming language: Java.
Other requirements: Java 1.3.1 or higher, Tomcat 4.0

or higher.
License: GNU Affero General Public License.
Any restrictions to use by non-academics: no licence

needed.

Abbreviations
FHIR: Fast Health Interoperability Resources; MDR: Metadata Repositories

Acknowledgements
Not applicable.

Funding
The project is partially supported by a grant LA 3859/2–1 by the German
Research Foundation (Deutsche Forschungsgemeinschaft). The funding
agency had no role in study design, data collection, data analysis, results
interpretation or in writing the manuscript.

Availability of data and materials
Not applicable.

Authors’ contributions
HU, JK and DT developed the interface, AKK-S, FÜ, JI and ML contributed
conceptually and conducted review and editing. All authors contributed to
the writing of the manuscript. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1IT Center for Clinical Research, University of Lübeck, Lübeck, Germany.
2Federated Information Systems, German Cancer Research Center,
Heidelberg, Germany. 3Medical Informatics in Translational Oncology,
German Cancer Research Center, Heidelberg, Germany. 4Institute of Medical
Informatics, University of Lübeck, Lübeck, Germany.

Received: 14 November 2018 Accepted: 6 March 2019

References
1. Khoumbati K, Themistocleous M, Irani Z. Integration Technology Adoption

in Healthcare Organisations: A Case for Enterprise Application Integration.
Proceedings of the 38th Annual Hawaii International Conference on System
Sciences. 2005:9.

2. Dugas M. Design of case report forms based on a public metadata registry:
re-use of data elements to improve compatibility of data. Trials. 2016;17:566.

3. Aubrecht P, Kouba Z. Metadata Driven Data Transformation. In: ISAS-SCI (1).
Citeseer; 2001. p. 332–336.

4. Nadkarni PM, Brandt CA. The common data elements for cancer research:
remarks on functions and structure. Methods Inf Med. 2006;45:594–601.

5. Kadioglu D, Weingardt P, Lablans M, Ückert F, Wagner TO. Samply. MDR–Ein
Open-Source-Metadaten-Repository. German Medical Science GMS
Publishing House. 2016.

6. Australien Institute of Health and Welfare. METeOR home. http://meteor.
aihw.gov.au/content/index.phtml/itemId/181162. Accessed 29 Jun 2018.

7. Stausberg J, Löbe M, Verplancke P, Drepper J, Herre H, Löffler M.
Foundations of a metadata repository for databases of registers and trials.
Stud Health Technol Inform. 2009;150:409–13.

8. Ngouongo SM, Löbe M, Stausberg J. The ISO/IEC 11179 norm for metadata
registries: does it cover healthcare standards in empirical research? J
Biomed Inform. 2013;46:318–27.

9. Richesson RL, Nadkarni P. Data standards for clinical research data collection
forms: current status and challenges. J Am Med Inform Assoc. 2011;18:341–6.

10. Park YR, Yoon YJ, Kim HH, Kim JH. Establishing semantic interoperability of
biomedical metadata registries using extended semantic relationships. Stud
Health Technol Inform. 2013;192:618–21.

Ulrich et al. BMC Medical Informatics and Decision Making (2019) 19:45 Page 6 of 7

https://bitbucket.org/medicalinformatics/
https://bitbucket.org/medicalinformatics/
https://bitbucket.org/medicalinformatics/samply.mdr.ql4mdr
https://bitbucket.org/medicalinformatics/samply.mdr.ql4mdr
http://meteor.aihw.gov.au/content/index.phtml/itemId/181162
http://meteor.aihw.gov.au/content/index.phtml/itemId/181162

11. Ballinger K, Box D, Curbera F, Davanum S, Ferguson D, Graham S, et al. Web
services metadata exchange (WS-MetadataExchange). OASIS draft. 2004.

12. Benson T, Grieve G. Principles of Health Interoperability. Springer; 2016.
13. ISO/IEEC 11179–3. Information Technology – Metadata Registries (MDR),

Part 3: Registry Metamodel and Basic Attributes, Edition 3, see https://www.
iso.org/standard/50340.html. 2013.

14. Ulrich H, Kock A-K, Duhm-Harbeck P, Habermann JK, Ingenerf J. Metadata
repository for improved data sharing and reuse based on HL7 FHIR. Stud
Health Technol Inform. 2016;228:162–6.

15. Hay D. GraphQL | Hay on FHIR. https://fhirblog.com/2017/08/17/graphql/.
Accessed 2 Jul 2018.

16. Buna S. Learning GraphQL and relay: Packt Publishing Ltd; 2016.
17. Facebook Inc. GraphQL: Users. http://graphql.org/users. Accessed 6 Jun 2018.
18. DB Systel GmbH. API-Portal - 1BahnQL-Free. https://developer.

deutschebahn.com/store/apis/info?name=1BahnQL-Free&version=
v1&provider=DBOpenData. Accessed 6 Jun 2018.

19. Health Level 7. Graphql - FHIR v3.4.0. http://build.fhir.org/graphql.html.
Accessed 27 Jun 2018.

20. Facebook Inc. GraphQL: A query language for APIs. http://graphql.org/.
Accessed 27 Jun 2018.

21. Kadioglu D, Breil B, Knell C, Lablans M, Mate S, Schlue D, et al. Samply.MDR -
a metadata repository and its application in various research networks. Stud
Health Technol Inform. 2018;253:50–4.

22. Sakimura N, Bradley J, Jones M, de Medeiros B, Mortimore C. OpenID
Connect Core 1.0 incorporating errata set 1. The OpenID Foundation,
specification. 2014.

23. Kern J, Tas D, Ulrich H, Schmidt EE, Ingenerf J, Ückert F, et al. A Method to
use Metadata in legacy Web Applications: The Samply.MDR.Injector. Stud
Health Technol Inform - In Press. 2018.

24. Kumari S, Rath SK. Performance comparison of soap and rest based web
services for enterprise application integration. In: Advances in Computing,
Communications and Informatics (ICACCI), 2015 International Conference
on. IEEE; 2015. p. 1656–1660.

Ulrich et al. BMC Medical Informatics and Decision Making (2019) 19:45 Page 7 of 7

https://www.iso.org/standard/50340.html
https://www.iso.org/standard/50340.html
https://fhirblog.com/2017/08/17/graphql/
http://graphql.org/users
https://developer.deutschebahn.com/store/apis/info?name=1BahnQL-Free&version=v1&provider=DBOpenData
https://developer.deutschebahn.com/store/apis/info?name=1BahnQL-Free&version=v1&provider=DBOpenData
https://developer.deutschebahn.com/store/apis/info?name=1BahnQL-Free&version=v1&provider=DBOpenData
http://build.fhir.org/graphql.html
http://graphql.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	The ISO 11179 standard for metadata repositories
	Fast health interoperability resources
	GraphQL
	Implementation

	Results
	Definition of an ISO 11179-compatible GraphQL schema
	Objects & Fields
	Query
	Mutation

	Discussion
	GraphQL vs. traditional interfaces
	Adherence to metadata standards instead of their implementations
	Limitations

	Conclusion
	Availability and requirements
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

