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Abstract

Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer’s disease. FG-Loop (FGL), a
neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown
to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition
memory were seen 24 days after a 5 mg/15 ml amyloid-beta(25–35) injection into the right lateral ventricle of the young adult
rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was
used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25–35)
injection. NeuN, a neuronal marker (for nuclear staining) was used to identify pyramidal cells, and immunocytochemistry
was also used to identify inactive glycogen synthase kinase 3beta (GSK3b) and to determine the effects of amyloid-beta(25–

35) and FGL on the activation state of GSK3b, since active GSK3b has been shown to cause a range of AD pathologies. The
cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions
showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated
partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal
cells. The action of FGL may be due to inactivation of GSK3b, as an increased proportion of CA1 pyramidal neurons
contained inactive GSK3b after FGL treatment. These data suggest that FGL, although potentially disruptive in non-
pathological conditions, can be neuroprotective in disease-like conditions.
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Introduction

Alzheimer’s disease (AD) pathology includes formation of

amyloid plaques and neurofibrillary tangles, neuroinflammation

[1], neurotransmitter deficits [2], synaptic alterations [3] and

neuronal cell loss [4]. A decrease has been noted in the density and

total number of neurons in the temporal cortex, frontal cortex [5–

7], entorhinal cortex, particularly layers II and IV [8,9], the

Nucleus Basalis of Meynert, the locus coeruleus [7,10], cerebellum

[11] and hippocampus correlating to regional atrophy in AD [12].

Mann et al. (1985a) found that in the temporal cortex there is a

direct correlation between neuronal cell loss, and amyloid plaque

and neurofibrillary tangle accumulation [13]. In both the temporal

cortex and frontal cortex, Hansen et al. (1988) found a 15 to 18%

decrease in neuronal density in late stage cases of AD but there

was actually a greater neuronal loss (23 to 26% decrease) in the

early stages of AD [14]. The most well known feature of AD,

memory impairment (particularly episodic and spatial memory), is

correlated with decreased hippocampal volume [15] due to the

dysfunction of neurons and synapses in the CA1 and entorhinal

cortex [16–19].

At present there is no effective treatment for AD; only short

term means to alleviate symptoms [20]. Previous work from our

group has shown that FG-Loop (FG-Loop - FGL), a neuronal cell

adhesion molecule (NCAM)-derived peptide that is known to be

an agonist of the fibroblast growth factor receptor (FGFR), may

act as a neuroprotective agent in AD [21]. FGL mimics a 15

amino acid long segment of the second fibronectin type III

homology module of the NCAM close to the N-terminal in the

turn of the F and G b strands (E681VYVVAENQQGKSKA695;

[22]). This site in NCAM was able to bind to the immunoglobulin-

like domain D3 of the FGFR1 [22] and FGFR2 [23]. FGL has

been shown to be neuroprotective in a range of pathological

situations in vitro [24], and in vivo in the aged rodent [25–27], the

ischemic male Mongolian gerbil model [28] and, of particular

interest for the current study, in the cingulate cortex and CA3 of

the amyloid beta25–35 (Ab25–35-)-injected rat brain [21]. The

NCAM-derived peptide has also been shown to be anti-
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inflammatory both in vitro and in vivo, particularly in the aged rat

hippocampus [26,29,30], and a cognitive enhancer [28,31,32]. All

the effects of FGL have been dependent on the activation of

FGFR1 and FGFR2 rather than NCAM-induced signalling [24].

Neiiendam et al. (2004) found the activation of FGFR led to

downstream activation of mitogen-activated protein/extracellular-

regulated kinase kinase (MEK), phosphatidylinositol-3-kinase

(PI3K), and phosphorylation of extracellular signal-regulated

kinase 1/2 (ERK1/2) and protein kinase B (AKT) [24].

Klementiev et al. (2007) have shown that FGL activity was

associated with an increased inhibition of glycogen synthase kinase

3b (GSK3b), which is downstream from AKT [21]. FGL may be

beneficial in AD via the inhibition of GSK3b, as the activation of

GSK3b, possibly via Ab accumulation is known to cause many

AD pathologies such as further Ab accumulation, tau hyperpho-

sphorylation and apoptosis [33].

Although transgenic animal models are particularly useful tools

to study the pathology of familial AD, injections of different

fragments of Ab have provided an important experimental

approach without manipulating genetic make up, when consider-

ing sporadic AD, and investigating the amyloid cascade hypoth-

esis. One of these injection models has been used in the current

study; it involves the injection of the Ab25–35 fragment into the

right lateral ventricle (for ease of handling due to the dexterity of

the researcher) of the rat brain. Previous studies have shown that

Ab25–35 is equally as neurotoxic as full length Ab1–42 causing cell

degeneration and loss [21,34–37] increased immunoreactivity of

phosphorylated tau [38], learning and memory impairments

[21,39–41] and inflammatory upregulation [21], whilst promoting

endogenous production of Ab1–40 and Ab1–42 [21]. Whilst FGL

has been shown to alleviate the effects of Ab little is known about

its effect on neurons in the hippocampus. The aim of the present

investigation was to elaborate further previous findings by

Klementiev et al., 2007 [21] by carrying out a morphological

examination of the effects of a single intracerebroventricular (i.c.v.)

injection of Ab25–35 on the young adult rat hippocampus, and

following systemic treatment of FGL, specifically in the hippo-

campal regions, implicated in memory formation.

Materials and Methods

Ethical Statement
This study was performed in strict accordance with Danish

legislation. An animal licence was obtained from the Danish

animal experiments inspectorate (2001/561–483). Administration

of Ab25–35 or vehicle was performed under anaesthesia using an

intraperitoneal (i.p.) injection of Hypnorm/Midazolam (23.6 mg

fentanyl, 0.75 mg fluanisone, 375 mg midazolam/100 g animal;

0.3 ml/100 g, Pharmacy of the Royal Veterinary and Agricultural

University, Frederiksberg, Denmark) and every effort was made to

minimize suffering.

Experimental Animals
Young adult male Wistar rats (300 g at the start of the

experiment; Charles River, Sulzfeld, Germany) were housed in

cages (2 per cage) with free access to food and water, in a regulated

environment (23uC, 50% humidity, diurnal 12 hour light/dark

cycle). The rats were split equally into 4 groups (n = 4; Ab25–

35+vehicle, Ab25–35+FGL, vehicle+FGL, control).

Intracerebroventricular Administration of Amyloid-
beta25–35

Aggregates of Ab25–35 (Bachem AG, Weil am Rhein, Germany)

were prepared by incubating the peptide at a concentration of

3 mg/ml in distilled water for 4 days at 37uC prior to administra-

tion, as previously described by Delobette et al. (1997) to form

fibril-like structures and globular amporphous aggregates [39].

Two months from the date of delivery of the animals, 5 mg/15 ml

of aggregated Ab25–35 or distilled water as a vehicle, were i.c.v.

injected (the tip of the syringe needle being 0.8 mm posterior to

bregma, 1.5 mm lateral to the sagittal suture and 3.8 mm beneath

the surface of the brain) into the right lateral ventricle using a 10 ml

syringe on day 0 of the experiment. These injections were

administered between 10 am and 1 pm, during the light part of

the cycle.

Subcutaneous Administration of FGLL

FGLL, consisting of two FGL monomers linked via aminodia-

cetic acid through their N terminal, was synthesised by Polypep-

tide Laboratories (Hillerød, Denmark) as mentioned in Secher

et al. (2006) [32] and Klementiev et al. (2007) [21]. 2 ml/kg

(10.8 mg/kg) of FGLL was dissolved in 0.5% w/v albumin bovine

serum (BSA; Sigma-Aldrich Company LTD, Gillingham, UK) in

0.01 M phosphate saline buffer (PBS, pH 7.4). Seven days after

the i.c.v. injection and every third day up to, and including, day 25

of the experiment, either FGLL or 0.5% w/v BSA in 0.01 M PBS,

as a vehicle, was subcutaneously (s.c.) administered using a 1 ml

sterile syringe. These treatments were administered also during the

light part of the cycle, between 2 pm and 3 pm without

anaesthesia.

Secher et al. (2006) used an enzyme-linked immunosorbent

assay (ELISA) to determine the concentration of FGLL in the

plasma and cerebrospinal fluid (CSF) of adult rats after s.c.

administration [32]. They found that FGLL was detectable in the

plasma and CSF 10 minutes after administration and was still

detectable up to five hours later, which suggests FGLL is able to

cross the blood brain barrier [32]. The hippocampus is a major

target for FGL [26], with phosphorylation of FGFR1 in the

hippocampus occurring within one hour of s.c. administration of

the peptide [42].

Social Recognition Memory Test
On day 24 (one day prior to the final FGL treatment), short-

term memory was measured using the social recognition memory

test [43]. The test rats were placed into individual cages 15

minutes before a novel juvenile male Wistar rat was introduced.

The juvenile rat was left in the cage for four minutes and then

removed. After a 30-minute interval, the same juvenile rat was

placed in the cage. The time taken to investigate the juvenile was

recorded on both occasions. Investigatory behaviours included

direct contact with inspection and sniffing of the juvenile’s body,

and also following the juvenile rat closely [43]. The social

recognition ratio was calculated from the times spent investigating

the juvenile during each encounter. If the rat had no memory of

the first encounter there would be no difference between the two

times and the ratio would be 0.50. Whilst the lower the ratio,

compared with 0.5, the quicker the rat was at recognizing the

juvenile during the second exposure.

Transcardial Perfusion and Tissue Sectioning
On day 27 (two days after the final FGL treatment), each animal

was given a terminal i.p. dose of sodium pentobarbitone (200 mg/

kg; Pharmacy of the Royal Veterinary and Agricultural University,

Frederiksberg, Denmark). The animals were transcardially

perfused with 100 ml of 0.9% w/v sodium chloride and 0.5%

w/v heparin sodium salt (from Porcine intestinal mucosa –

endotoxin free; Sigma-Aldrich Company LTD, Gillingham, UK)

in distilled water at a flow rate of 1.08 ml/second using a
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peristaltic pump (Watson Marlow Bredel Pumps digital 505 s with

313 D Pumphead 3 rollers, 1.6 mm wt tubing, Falmouth, UK).

This was followed by 50 ml of fixative solution; 3.75% w/v

acrolein (TAAB Laboratories Equipment LTD, Aldermaston, UK)

and 2% w/v paraformaldehyde (Sigma-Aldrich Company LTD,

Gillingham, UK) in 0.1 M phosphate buffer (PB, pH 7.4), at a rate

of 1.63 ml/second. Finally, a perfusion of approximately 400 ml

of 2% w/v paraformaldehyde in 0.1 M PB, pH 7.4 at a rate of

1.08 ml/second. Whole brains were then carefully removed from

the skull. The hippocampus (21.60 mm to 27.04 mm relative to

bregma [44]) was coronally cut out of each brain as a block and

serially sectioned in the coronal plane in a bath of 0.1 M PB,

pH 7.4 using a Leica vT1000S vibrating microtome (Leica

Microsystems LTD, Milton Keynes, UK). The majority of sections

were cut at 50 mm, with every fifth section cut at 100 mm for

different histological and immunocytochemical techniques. The

section at which the CA3 was visible in the ventral region of the

hippocampus (bregma 24.00 mm) was noted for dorsal-ventral

analysis.

Volume Estimation
The volume of the hippocampus and its subregions were

calculated using the Cavalieri principle. The first 50 mm section

was taken from every 1-in-5 series of sections throughout the

hippocampus (an average of 21 sections per hippocampus with

300 mm between each section). The sections were stained with

0.5% w/v Toluidine blue (Agar Scientific LTD, Stansted, UK) in

distilled water, mounted on gelatin-coated glass slides, dehydrated

through an ascending series of alcohols (Hayman LTD, Witham,

UK), passed through xylene (VWR International BDH, Lutter-

worth, UK) and glass cover slips were applied to the slides using

Pertex (Cell path LTD, Newtown, UK). Images of the hippocam-

pus were captured using a Nikon DXM1200 digital camera

attached to a Nikon Eclipse E800 microscope (Nikon UK LTD,

Kingston-upon-Thames, UK) at a magnification of 10X (Nikon

Plan Fluor 1x/0.30 and optical lens CFI 10x/22). Images were

then layered, aligned and stacked using Adobe Photoshop CS2

version 9.0 (Adobe Systems Europe LTD, Uxbridge, UK). The

stacks were exported to the freely available reconstruction

program ‘IGL Trace’ version 1.24 b [45]. The right and left

hippocampi, and their cytoarchitecturally distinct subregions, as

defined by Paxinos and Watson (1998) [44], and West et al. (1991)

[46] were then outlined throughout the stack and the program

calculated volume estimations for each structure.

Double Immunohistochemistry
A 1-in-10 series of hippocampal sections (50 mm thickness) were

taken and double immunohistochemically stained for NeuN, a

neuronal marker (nuclear staining) and inactive GSK3b, phos-

phorylated at serine 9 (GSK3bps9; cytoplasmic staining, figure 1).

The tissue was washed in 0.1 M P.B, pH 7.4, and then subjected

to a series of blocking steps using 1% w/v sodium borohydride

(Sigma-Aldrich Company LTD, Gillingham, UK) in 0.1 M PB,

pH 7.4, 10% v/v methanol (Fisher Scientific UK LTD,

Loughborough, UK) and 3% v/v hydrogen peroxide (Sigma-

Aldrich Company LTD, Gillingham, UK) in 0.1 M PB, pH 7.4

and 10% v/v BSA with 0.01% v/v Tween 20 (Sigma-Aldrich

Company LTD, Gillingham, UK) in 0.01 M PBS, pH 7.4. This

was followed by an overnight incubation in primary antibodies

against NeuN (1:100, IgG monoclonal raised in mice; MAB377,

Chemicon Europe Ltd., Chandlers Ford, UK) and against

GSK3bps9 (1:75, IgG polyclonal raised in rabbit; ab30619,

Abcam, Cambridge, UK) diluted in 0.1% w/v BSA with 0.25%

v/v Triton x100 (Sigma-Aldrich Company LTD, Gillingham,

UK) in 0.1 M tris buffer saline (TBS, pH 7.6). After this the tissue

was washed in 0.1 M TBS, pH 7.6 and incubated in the secondary

antibody for NeuN (1:200 Biotinylated donkey IgG anti-mouse;

715-001-003, Jackson ImmunoResearch Europe Ltd, Newmarket,

UK) diluted in 0.1% w/v BSA in 0.1 M TBS, pH 7.6 followed by

a 0.1 M TBS, pH 7.6 wash and then incubated in an avidin DH

and biotinylated horseradish peroxidise macromolecular complex

solution (ABC solution; 2% v/v avidin and 2% v/v biotinylated

enzyme in 0.01% v/v Tween 20 in 0.01 M PBS; Vector Elite ABC

kit; Vector Laboratories LTD, Peterborough, UK) to localise and

amplify the signal. After another wash with 0.1 M TBS, pH 7.6 an

incubation in a Vector SG substrate kit, a grey-coloured

chromagen (3% v/v SG chromagen and 3% v/v hydrogen

peroxide in 0.1 M TBS, pH 7.6; Vector SG substrate kit for

peroxidase, Vector Laboratories LTD, Peterborough, UK) was

then used to visualise the NeuN peroxidase reaction. Following a

wash in 0.1 M TBS, pH 7.6, the tissue was incubated in 20% v/v

avidin D and 0.1% w/v BSA in 0.1 M TBS, pH 7.6, washed in

0.1 M TBS, pH 7.6 and then incubated in 20% biotin and 0.1%

w/v BSA in 0.1 M TBS, pH 7.6 to block any remaining avidin-

biotin binding steps (Avidin/Biotin blocking kit, Vector Labora-

tories, Peterborough, UK). The secondary antibody for GSK3bps9

(1:200 biotinylated donkey IgG anti-rabbit; 711-001-003, Jackson

ImmunoResearch Europe Ltd, Newmarket, UK) diluted in 0.1%

w/v BSA in 0.1 M TBS, pH 7.6 was then used. Again this step

was followed by washes and incubation in the ABC solution. The

tissue was then washed in 0.1 M TBS, pH 7.6 and treated with

0.22% w/v 3,39-diaminobenzidine (DAB; Fluka Chemie GmbH,

Buchs, Switzerland) and 0.0001% v/v hydrogen peroxide in

distilled water to visualise the peroxidase reaction. Following final

washes with 0.1 M PB, pH 7.4 sections were then mounted on

gelatin-coated glass slides, dehydrated through an ascending series

of alcohols (30% to 100%), passed through xylene and glass cover

slips were applied to the slides using Pertex. Controls for the

immunohistochemical reactions were performed alongside the

experiments.

Cell Number and Shape
The pyramidal cells in the immunohistochemically-enhanced

sections were visualised using a Nikon eclipse e80i microscope

(Nikon UK LTD, Kingston-upon-Thames, UK) with an ultrafine

0.1 mm resolution motorised LEP x, y stage and motorised z axis

at a magnification of x400 (Nikon Plan Fluor 40x/0.75 and optical

lens CFI 10x/22) and the live image was relayed by a high

resolution MicroFireTM 599808 digital camera (Optronics, Goleta,

USA). Contours were drawn at low magnification (x40; Nikon

Plan Fluor 4x/0.13 and optical lens CFI 10x/22) around the CA1

stratum pyramidale (SP) as defined by West et al. (1991) [46]. The

stereologically unbiased method, optical fractionator, within the

StereoInvestigator� version 7 software (MBF biosciences, Magde-

burg, Germany) was used to count the pyramidal cells in these

regions. The criteria for counting a ‘particle’, in this case the

nucleus of a pyramidal cell, was a dark grey stained (NeuN-SG

staining) nucleus with a faint outline of the entire pyramidal-

shaped cell body, which was resident in the SP. If the particle was

also to be marked positive for GSK3bps9 staining it had to meet

the pyramidal cell criteria and also have a brown cytoplasm

(GSK3bps9-DAB staining, figure 1). For a particle that fit the

criteria to be ultimately counted it had to lie within a randomly

placed counting frame such that it’s nuclear profile did not touch

the red (forbidden) lines, however it may cross the green lines. A

preliminary study for each cell count was performed with differing

sizes of counting frame and grid to identify the ideal parameters

for each test allowing the coefficient of error to be equal to or
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below 0.05 [47,48]. The total number of cells counted (an average

of 400 cells were counted per animal) was divided by the height

sampling fraction (a height dissector of 20 mm divided by the

mounted section thickness of 20 mm to 30 mm, which was

measured during counting), the area sampling fraction (counting

frame area of 1600 mm2 divided by the area of the sampling grid,

which was 20000 mm2 for the total number of pyramidal cells in

the CA1 SP and CA3 SP and 3600 mm2 for the number of

pyramidal cells containing inactive GSK3b in the CA1 SP) and

the section sampling fraction (1/10 as 1 in every 10 sections were

used to perform the cell count).

The maximum and minimum diameters of CA1 pyramidal cell

bodies were also calculated using Neurolucida� version 7 and

Neuroexplorer� (MBF biosciences, Magdeburg, Germany). Three

sections (anterior, medial and posterior dorsal hippocampal

sections) previously used for the cell counts were inspected using

the Nikon eclipse e80i microscope and the structures of interest

were visualised at a magnification of 400X (Nikon Plan Fluor 40x/

0.75 and optical lens CFI 10x/22). The structures were traced and

the minimum and maximum diameters of the two types of

structure were calculated. A preliminary ‘rolling average’ test was

performed to establish the minimum number of structures traced

that would give the lowest standard error of the mean (SEM)

possible. The first point at which both average diameters

(maximum and minimum) and their SEM became almost

constant, even when the number measured was increasing, was

taken as the ideal minimum. Twenty cell bodies per section were

required for the CA1 pyramidal cell body measurements.

Statistical Analysis
Statistical analysis was performed on all data using SPSS 16.0

for Windows (SPSS Inc., Chicago, USA). A one-sample t-test was

performed on the average social recognition memory test results

against the 0.5 ‘no recognition memory’ ratio. A one-way

ANOVA followed by a post-hoc Tukey’s test was used to assess

any significant differences between groups for all other results. The

level of statistical significance was taken as P,0.05.

Results

Neither FGL nor Ab25–35 had an effect on the average body

weight during the course of s.c. treatments (data not shown); the

data correlate well with that of Cambon et al. (2004) [31], Borcel

et al. (2008) [25] and Secher et al. (2006) [32]. These three studies

found that FGL had no effect on body weight in rat pups using

intranasal administration [32], and adult rats using i.c.v. [31] or

s.c. administration [25,32].

Social Recognition Memory
The average social recognition ratio (SRR) for rats treated with

Ab25–35 only was not significantly different from the 0.5 ratio

whilst the SRR of the Ab25–35+FGL, vehicle+FGL and the control

(vehicle+vehicle) groups were significantly lower than 0.5 and the

Ab25–35 alone group (figure 2; P.0.05, n = 4). This indicates that

the Ab25–35 only group was unable to recognize the juvenile rat

during the second encounter, whilst the other groups did recognize

the juvenile. This suggests that Ab25–35 causes impaired short-term

memory; however, when given FGL memory is rescued.

Hippocampal Volume
For the right hemisphere, there were no significant differences

between the average volumes, measured for any of the groups, of

the dorsal and ventral hippocampi, or the CA1, CA2, and the

dentate gyrus (P.0.05, n = 4). There was a trend towards a

reduction in volume of the right hippocampus, particularly in the

CA1 and its subregions, in the groups given Ab25–35 and

surprisingly also when animals were treated with FGL alone.

The volume of the dorsal CA3 region of the right hippocampus in

control animals was significantly greater by 30% than in all the

other groups (figure 3; P,0.05, n = 4) but this was not found in the

ventral hippocampus. In the left hippocampus, the volumes were

not significantly different to the right hippocampal volumes

(P.0.05, n = 4). This shows that the i.c.v. injection and the

systemic treatment had an equal bilateral effect on the volume of

the hippocampi, and so the latter part of the study was performed

on the right dorsal hippocampus only.

CA1 Pyramidal Cell Morphology
To investigate whether FGL could prevent Ab-induced

pyramidal cell loss in the CA1, a stereologically unbiased method,

the optical fractionator [46] was used on 1-in-10 coronal

immunocytochemically stained sections (using a NeuN antibody

in conjunction with Vector SG substrate kit) throughout the right

hippocampus to obtain pyramidal cell densities and absolute

numbers in the CA1 SP (Figure 1). The average pyramidal cell

density in the dorsal CA1 of Ab25–35 alone rats was significantly

lower than that of the Ab25–35+FGL group (14% lower, figure 4a;

P,0.05, n = 4). This was reflected in a significantly greater

absolute number of pyramidal cells with Ab25–35+FGL rats (by

Figure 1. Immunopositive staining of CA1 pyramidal cell nuclei (NeuN) and inactive GSK3b (cytoplasm). To visualize pyramidal cells for
cell counting an antibody against NeuN, a nuclear marker was used along with SG, a dark grey stain. Inactive GSK3b (GSK3bps9) in the cytoplasm of
pyramidal cells in the CA1 was visualised using an antibody against GSK3bps9 along with DAB, a brown stain. A double immunopositive staining was
performed to count the number of CA1 pyramidal cells that contained inactive GSK3b in the cytoplasm using antibodies against NeuN and GSK3bps9
with SG and DAB respectively. Scale Bar = 40 mm.
doi:10.1371/journal.pone.0071479.g001
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22%) than Ab25–35 alone rats (Figure 4b). The density of

pyramidal cells in the CA1 of control rats was not significantly

different to any of the other groups but the absolute number was

significantly greater by 20 to 40% (P,0.05, n = 4). However,

unexpectedly, animals given FGL alone had a significantly lower

average density and absolute number of CA1 pyramidal cells

Figure 2. Average social recognition ratio on day 24. An unfamiliar juvenile rat was introduced into the cage of the test rat and 30 minutes
later the juvenile was placed back in the cage. Both investigation times were recorded and the social recognition ratio was calculated. A social
recognition ratio of 0.5 indicates no memory of the juvenile. Using a one sample t-test, it was found that animals treated with Ab25–35 followed by
FGL, FGL alone or vehicles (control) had significantly lower ratios than 0.5 (P,0.01), whilst animals given only Ab25–35 did not. A one-way ANOVA was
also performed on the individual social recognition ratios and animals given Ab25–35 alone had significantly greater social recognition ratios than that
of any other group (*P,0.05). The mean ratio for each group is signified by a black diamond (6 SEM, n = 4), whilst the open circles indicate individual
ratios in that given group.
doi:10.1371/journal.pone.0071479.g002

Figure 3. Volume estimations of the right dorsal CA3. Using a one-way ANOVA and Tukey’s post-hoc test, the volume of the dorsal CA3 in the
control group was significantly larger than all the other groups (**P,0.01). Mean 6 SEM, n = 4.
doi:10.1371/journal.pone.0071479.g003

FGL Alleviates Amyloid-Beta Induced CA1 Cell Loss
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compared to the Ab25–35+FGL group and control animals

(P,0.05, n = 4; Figure 4). These findings suggest that FGL

alleviated Ab-induced loss and density of CA1 pyramidal cells.

However, FGL alone induced a significant loss of CA1 pyramidal

cells.

In the CA3, there were no significant differences between any of

the groups for either density of CA3 pyramidal cells or absolute

number (P.0.05, n = 4). However, when qualitative observations

were performed, ‘damaged’ pyramidal cells identified by the

concaved shape and dense toluidine blue staining of the soma were

found, particularly in the region that closely borders the lateral

ventricle (Figure 5). The damaged cells were particularly prevalent

in the groups treated with Ab25–35 or FGL alone. The group given

FGL following Ab25–35, although still having a noticeable amount

of damaged cells in the CA3 region, appeared to have a much

reduced number of those cells compared to those groups.

Damaged neurons were rarely seen in the CA1. This suggests

that both Ab25–35 and FGL had an effect on CA1 and CA3

pyramidal cells in the dorsal hippocampus.

To determine changes in shape and size of the cell somata of the

dorsal CA1 pyramidal cells, 20 cells per section were traced at the

maximum ‘in focus’ diameter. There were no significant

differences between any of the groups regarding the maximum

and minimum diameter. A ratio of the maximum and minimum

diameter can represent the shape of the structure. A ratio of 1.0

signifies a spherical structure and a ratio less than 1.0 indicates the

object has a prolate spheroid shape [49]. The ratio did not

significantly differ between groups. The ratio ranged between 0.67

to 0.69 (P,0.05, n = 4) suggesting that the cells are still pyramidal

in shape.

Inactive GSK3b-containing CA1 Pyramidal Cells
The proportion of pyramidal cells containing inactive GSK3b

was calculated to determine the effects of Ab25–35 and FGL on the

activation state of GSK3b, since both have been linked to this

kinase. Prior to analysis several sections through the hippocampi of

the animals were immunolablled for GSK3b (all forms), all

pyramidal cells in the CA1 contained GSK3b regardless of

treatment (data not shown). The percentage of inactive GSK3b-

containing CA1 pyramidal cells was calculated using immunocy-

tochemistry (figure 1) and the optical fractionator method. All

FGL treated animals had an increased percentage of inactive

GSK3b-containing CA1 pyramidal cells in the right dorsal

hippocampus, with a significantly greater increase seen in those

animals also treated with Ab25–35, compared with the control

animals and animals given Ab25–35 alone (figure 6; P,0.05, n = 4),

suggesting that FGL acts on GSK3b and has inactivated Ab-

induced increases in GSK3b levels.

Discussion

Klementiev et al. (2007) performed preliminary work using

three s.c. injections of 8.0 mg/kg FGL on this Ab25–35 model and

the authors suggested that FGL could be a potential treatment in

AD [21]. The current study aimed to further progress the work

using seven s.c. injections of 10.8 mg/kg FGL on the i.c.v. injected

Ab25–35 young adult rat, specifically in the right dorsal

hippocampus. Although average hippocampal volume did not

decrease significantly with Ab25–35 administration there was cell

loss and memory impairment 4 weeks later. FGL was found to

alleviate Ab25–35- short-term memory impairment, and an in-

depth, detailed morphometric analysis using unbiased stereological

techniques also showed alleviation of CA1 pyramidal cell loss.

However, FGL administered to healthy rats caused detrimental

effects, including neuronal damage and loss. FGL may conceivably

exert its effects via the FGFR-Akt-GSK3b pathway.

FGL Rescued Ab25–35-induced Social Recognition
Memory Impairment

Social recognition memory impairment is a key early stage

diagnostic symptom of AD. At day 24 the average recognition

ratio of rats given Ab25–35 alone was not significantly lower than

Figure 4. The density and total number of CA1 pyramidal cells in the right dorsal hippocampus. Immunocytochemistry (NeuN antibody
in conjunction with DAB) and the optical fractionator method were used to establish cell density within the CA1. Cell density (a) was multiplied by the
volume of the dorsal CA1 SP to establish total number (b). The data was analysed using a one-way ANOVA and Tukey’s post-hoc test. The Ab25–

35+FGL group had a significantly greater density (a) and total number (b) of pyramidal cells in the CA1 SP than compared with the Ab25–35 alone and
the FGL alone groups, whilst the control group had significantly more pyramidal cells than all of the other groups, regardless of the groups cell
density. (*P,0.05, **P,0.01). Mean 6 SEM, n = 4.
doi:10.1371/journal.pone.0071479.g004
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the ‘no recognition’ ratio of 0.5. This implies that the animals in

this group were unable to recognize the juvenile rat during the

second introduction suggesting that Ab25–35 impaired short-term

recognition memory. This finding is similar to that of Klementiev

et al. (2007) who, using the same AD model, found that the rat’s

recognition ratio was not significantly lower than 0.5 as early as 2

weeks after the administration of Ab25–35 and this was

maintained until the end of the study at 7 weeks [21]. Other

studies using Ab25–35 in vivo have shown that this fragment not

only impairs hippocampal-dependent short-term memory but also

spatial, working and long-term memory [36,40,41,50]. When rats

were given systemic treatment with FGLL (s.c. 10.8 mg/kg) after

i.c.v. injection of Ab25–35 they had a similar ratio to that of the

control group, which was significantly lower than 0.5, and that of

the Ab25–35 alone group. This suggests that these animals were

able to recognize the juvenile rat on the second introduction,

similar to the control animals but in contrast with the animals

given Ab25–35 alone. This is also in agreement with the findings

of Klementiev et al. (2007), who report a lower recognition ratio

after three different routes of administration – suboccipital

intracisternal 1.2 mg/ml, intranasal 8 mg/ml or s.c. 8 mg/kg

injections – of FGLL on days 7, 10 and 13 of a 4 week study

(day 0 - i.c.v. injection of Ab25–35) [21]. Taken together these

results suggest that, after a range of different administration routes,

treatment durations and concentrations, FGL is able to prevent

early Ab25–35-induced short-term hippocampal memory deficits.

FGL has been shown to be effective at preventing memory

impairment in other conditions and diseases also [25,51].

When FGL was administered to rats without Ab25–35, the

animals were able to recognize the juvenile animal quickly during

the second exposure, and hence had a lower recognition ratio than

0.5 similar to the control group. This suggests that their memory

was not improved with FGL, contrasting with the work of Secher

et al. (2006) [32]. Secher et al. (2006), using the same memory test,

found that two s.c. injections of 8 mg/kg FGL given to healthy rats

one hour and 73 hours before the behavioural test, improved both

short- and long-term social memory [32]. These contrasting results

may be due to the differences in the treatment course, amount of

FGL administered or the time when FGL was administered in

relation to the time of the test. Regarding the latter, in the current

study FGL was administered 2 days before the behavioural test

and then a day after the test, whilst Secher et al. (2006)

administered FGL one hour before the test [32]. Unlike the

current study, FGL was present in the brain during memory

consolidation. FGL may be reinforcing synapses, because in vitro

studies have shown that FGL is able to causes a short-term

facilitation of transmitter release, a long-term increase of synaptic

efficacy, and enhance pre-synaptic function and synapse formation

in the hippocampus [28,31].

FGL Alleviated CA1 Cell Loss and CA3 Cell Damage
caused by Ab25–35

Administration of Ab25–35 resulted in a trend towards a

reduction in the volume of the dorsal hippocampus, particularly

in the CA1 and a significant decrease in the volume of the CA3

region. This could be due to the animals being sacrificed only 4

weeks after the Ab25–35 injection, because Klementiev et al. (2007)

found that i.c.v. injection of Ab25–35 causes a significant decrease

in total hippocampal volume at week 8, but no volume changes at

week 4 [21]. This contrasts with human AD studies, where

hippocampal volume has been found to be reduced even in the

early stages of familial AD [52] and may be correlated with spatial

Figure 5. ’Damaged’ pyramidal cells in the right CA3. a) A section of the CA3 from a rat given Ab25–35 alone, showing a large number of
damaged pyramidal cells (arrow indicates a group of damaged pyramidal cells). b) An enlarged image of the box in a. The arrows indicate ‘damaged’
pyramidal cells with densely toluidine blue stained, concaved cell bodies. ‘n’ is an example of a ‘healthy’ neuron. Scale bar a = 50 mm and b = 20 mm.
doi:10.1371/journal.pone.0071479.g005
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memory impairments [15]. Stoub et al. (2006) report a decrease in

hippocampal volume using MRI which was correlated to reduced

declarative memory in amnesic mild cognitive impairment patients

[53]. These patients are at high risk of developing AD, which

suggests the atrophy contributes to declarative memory decline

before AD has been diagnosed. These conflicting data may be

attributed to species differences - rats versus humans. Rodent

memory may be more susceptible to ultrastructural changes than

human memory [54]. This is particularly evident in the present

study as cell death occurred without any marked volume change

suggesting that hippocampal volume may not be a reliable marker

of disease progression in Ab-treated rodents. The memory deficits

seen in the Ab25–35-treated rats may be due to the substantial loss

of CA1 pyramidal cells. This was greater than previously reported

by Klementiev et al. (2007), who observed only a 20% reduction

at 4 weeks in the same AD model [21]. A 40% reduction was

reported by those authors at 8 weeks correlating to hippocampal

volume decreases. However, the authors did not segregate the

pyramidal cell counts into CA1, CA2 and CA3, whereas in the

current study there are differences in absolute pyramidal cell

number between hippocampal subregions; the CA1 showed cell

loss, whereas the CA3 did not. A range of human AD studies

found a marked cell loss in the CA1 (40–60% decrease; [16,19,55–

57]), and of interest is that Hyman et al. (1984) and West et al.

(1994) found no loss in other subfields of the hippocampus of AD

patients [16,57]. This degree of cell loss is similar to that seen in

the rat model used in the present study; however, it is important to

note that the human CA1 pyramidal cell layer is approximately six

times thicker than the cell layer in the rat [58], consequently a

much greater number of CA1 pyramidal cells are lost in human

AD cases.

When FGL was given to Ab-treated rats the density of CA1

pyramidal cells was similar to that seen in the control animals and

the total number of neurons was reduced by 20%; not by 40% as

seen in Ab25–35 alone treated rats. This suggests that FGL was able

to partially prevent Ab25–35-induced pyramidal cell death in the

CA1. This is similar to findings by Neiiendam et al. (2004) in vitro

[24] who found that 50 mg/ml of FGL (24 hour incubation) was

able to prevent primary rat hippocampal neuron death after

20 mM Ab25–35 incubation [24].

When FGL was administered alone it caused a large reduction

in both the density and the absolute number of CA1 pyramidal

cells in the hippocampus. This was also seen by Ojo et al. (2013) in

4 month old healthy rats given 10 systemic doses of 8 mg/kg FGL

(s.c.) [59], but is in contrast with work by Popov et al. (2008), who

found no volume changes in the dorsal hippocampus of aged (24

months old) rats treated with 8 mg/kg FGL (s.c.) [27]. The

differences may relate to the use of aged animals in the study by

Popov et al. (2008) [27] whilst in the current study and in the study

by Ojo et al. (2013) [59] only young adult rats were used. Aging

has detrimental effects, to a lesser extent than AD; for example,

increased glial cell number and a decrease in absolute number of

pyramidal cells [26,54]. It might be speculated that in the study by

Popov et al. (2008) [27] FGL is working to provide protection

from the effects of aging. In the current study, the reduction in

hippocampal volume but maintenance of memory in rats treated

with FGL alone is similar to that seen in the active Ab vaccine

study, AN1792, which caused improved cognition and decreased

amyloid plaque-load but decreased brain volume in human AD

cases [52]. The yearly rate of volume loss in the hippocampus was

greater in those patients given the vaccine compared with patients

given a placebo. Fox et al. (2005) suggest that this could be due to

Figure 6. Percentage of CA1 pyramidal cells in the right dorsal hippocampus containing inactive GSK3b. Double immunocytochemistry
and the optical fractionator method were used to establish the pyramidal cell density in the CA1 and also the density of pyramidal cells containing
inactive GSK3b. The absolute numbers of both densities were calculated and the percentage of all the CA1 pyramidal cells that contained inactive
GSK3b was established. The data was analysed using a one-way ANOVA and Tukey’s post-hoc test. Ab25–35+FGL rats had a significantly higher
percentage of pyramidal neurons in the CA1 that contained inactive GSK3b compared with Ab25–35 alone rats. (*P,0.05). Mean 6 SEM, n = 4.
doi:10.1371/journal.pone.0071479.g006
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the vaccine accelerating neuronal loss, clearing of Ab, reduction in

water content or decreased glial volume and number [52]. The

right dorsal CA3 volume was reduced by all treatments; Ab25–35

alone, FGL alone and administration of both Ab25–35 and FGL,

which may be a result of up to a 5-fold increase in number of

damaged pyramidal cells in the dorsal CA3 of these animals (cell

damage in Ab+Veh.in Veh+FGL.in Ab+FGL animals). The

Ab25–35 findings are similar to those of Arancibia et al. (2008), who

found that i.c.v. injection of Ab25–35 caused damaged pyramidal

cells in the dorsal hippocampus as early as 4 weeks after Ab25–35

injection [34]. The FGL alone findings are similar to the cell

damage and loss, and volume decreases seen in the study by Ojo

et al. (2013) [59]. This suggests that both Ab25–35 and FGL, when

given separately, cause CA3 pyramidal cell damage but when

combined are less detrimental.

Together these results lend support to the idea that the effects of

both FGL and Ab25–35 are not CA1 specific as they both have

effects on the CA3; however, they exert a greater effect on the

CA1 than the CA3 as only cell damage occurs in the CA3 whilst

complete cell loss occurs in the CA1 when both are given alone.

The Ab25–35 results are in agreement with Stepanichev et al.

(2006), who noted that i.c.v. administration of Ab25–35 has the

greatest effect on the CA1 of the hippocampus [36], and with West

et al. (2000), who found that the CA1 is the most vulnerable region

of the hippocampus to neuronal loss (up to 58% loss) in AD

patients [19].

FGL Treatment Increases the Proportion of CA1
Pyramidal Cells that Contain Inactive GSK3b

FGL is thought to work via the FGFR-AkT pathway [24]

leading to the inactivation of GSK3b [21]. Active GSK3b has

been shown to cause a range of AD pathologies. In human AD

studies upregulation of the GSK3 gene has been seen in the

hippocampus [60]. Ab25–35 is known to increase levels of active

GSK3b in hippocampal neurons [38,61]. In the current study,

there were more CA1 pyramidal neurons containing inactive

GSK3b in the animals given FGL. This suggests that FGL

inhibited GSK3b activity. The current findings also show that the

most significant amount of inactive GSK3b containing CA1

pyramidal cells were seen in those animals given FGL after Ab25–

35 administration. This could be a result of Ab25–35-induced

upregulation of GSK3b expression in the neurons, and hence FGL

is able to inactivate a greater amount of GSK3b.

GSK3b is a regulator of apoptosis [62]. For the current study,

the loss of neurons by Ab25–35 alone could be a result of

disregulation of GSK3b with Ab25–35 promoting apoptosis as Hu

et al. (2009) found that when Ab oligomers were given to rats,

there was an increased level of caspase 3 and TUNEL (a DNA

fragmentation marker) staining in the CA1, suggesting that

apoptosis had occurred [63]. FGL is thought to act as a GSK3b
inhibitor opposing the effects of Ab25–35, and hence regulating the

kinase and prevent apoptosis. Rockenstein et al. (2007) have

shown that administrating lithium (a GSK3b inhibitor) to human

APP transgenic mice can alleviate memory deficits, protect

dendritic structures, and reduced tau and APP phosphorylation

in the hippocampus of those mice [64]. This pathway seems to be

the most obvious link between FGL and Ab, and how FGL can be

a neuroprotective agent; however, it is important to establish the

exact pathway of interaction via biochemical analysis.

The effect of FGL on GSK3b may also explain the detrimental

effects seen in the healthy young adult rat hippocampus. Hu et al.

(2009) reported very similar findings with a GSK3 inhibitor,

SB216763 (SB), using in vitro and in vivo AD models [63]. SB was

found to protect primary rat hippocampal neurons in vitro from Ab

oligomer toxicity; however, administration of a high concentration

of SB alone caused toxicity. In vivo Ab oligomers administered to

rats were shown to cause increased activity of GSK3b, in the CA1,

whilst SB effectively reduced but did not abolish GSK3 activity

[63], correlating with the partial prevention mentioned in the

present study. Similar to the current study, Hu et al. (2009) also

report damaged neurons and dystrophic neurites in the CA1, CA3

and DG with Ab treatment, which was prevented by SB; whilst SB

alone caused damage to the hippocampal neurons [63].

The effects seen with FGL and SB could be due to their ability

to inactivate GSK3b. Active GSK3b promotes mitochondria-

mediated apoptosis (‘intrinsic’ apoptosis), whilst inactive GSK3b
promotes death domain-containing receptor-mediated apoptosis

(‘extrinsic’ apoptosis; as reviewed by [62]). In both forms of

apoptosis GSK3b is thought to be upstream to the caspase

signalling [62]. GSK3b upregulates the expression of transcription

and translation factors, and proteins that are important in the

apoptotic pathway and downregulates anti-apoptotic proteins,

lowering the threshold for apoptosis. In a healthy cell, regulation of

GSK3b inhibits either form of apoptosis from occurring [62].

GSK3b knockout mice die due to liver damage caused by

hepatocyte apoptosis, whilst overexpression of GSK3b alone

induces apoptosis of the pheochromocytoma-derived PC12 cell

line [65].

For the current study, the loss of neurons caused by

administration of FGL alone could be a result of disregulation of

GSK3b leading to extrinsic apoptosis. For example, Song et al.

(2004) were the first to show that lithium and other GSK inhibitors

are able to potentiate extrinsic apoptosis in Jurkat cells and rat

hippocampal neurons via the inhibition of GSK3 [66]. The loss of

neurons may not occur in animals treated with Ab25–35 and FGL

because the opposing effects of Ab25–35 and FGL on GSK3b may

regulate the kinase and prevent apoptosis. For example, overex-

pression of GSK3b in the mouse forebrain (Tet/GSK3b mice)

caused increased tau phosphorylation, neuronal apoptosis, reactive

astrocytes and learning deficits. The pathologies were reversed and

the levels of GSK3b were reduced after 6 weeks of the GSK

inhibitor, doxycycline or silencing of the gene [67]. Gomez-Sintes

et al. (2007) also found that dominant-negative (DN) GSK3

expressing mice (Tet/DN-GSK-3) had impaired motor coordina-

tion and increased levels of neuronal apoptosis, which were

reversible if the DN-GSK3 expression was shut down [68]. Both

Gomez-Sintes et al. (2007) and Rockenstein et al. (2007) have

shown that DN-GSK3 expression or administration of lithium

(respectively) to human APP transgenic mice can alleviate memory

deficits, protect dendritic structures and reduced tau and APP

phosphorylation in the hippocampus of those mice [64,68]. The

current hypothesis can also be supported by Hu et al. (2009), who

found that when Ab or SB were given alone that apoptosis had

occurred in the CA1. However, when Ab and SB were

administered together apoptosis was inhibited as there was little

or no staining for caspase 3 or TUNEL [63].

This study has demonstrated that i.c.v. injection of Ab25–35 is

detrimental to the CA1 and CA3 pyramidal cells, similar to that in

human AD brains, potentially leading to short-term memory

impairment. The administration of an NCAM-derived peptide,

FGL, alleviated this pathology and memory impairment. Howev-

er, FGL administered to healthy animals can be detrimental to the

hippocampus. The effects of Ab25–35 and FGL may be linked via

GSK3b, allowing FGL to be beneficial in pathological conditions

but detrimental to the healthy hippocampus.

FGL Alleviates Amyloid-Beta Induced CA1 Cell Loss
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