
Taibah University

Journal of Taibah University Medical Sciences (2024) 19(2), 270e286
Journal of Taibah University Medical Sciences

www.sciencedirect.com
Original Article
Activity prediction, structure-based drug design, molecular docking,

and pharmacokinetic studies of 1,4-dihydropyridines derivatives as a-
amylase inhibitors

Khalifa S. Aminu, M.Sc. a,b,*, Adamu Uzairu, PhD a, Stephen E. Abechi, PhD a,
Gideon A. Shallangwa, PhD a and Abdullahi B. Umar, PhD a

aDepartment of Chemistry, Ahmadu Bello University, Zaria, Nigeria
bDepartment of Pure and Industrial Chemistry, Bayero University, Kano, Nigeria
Received 11 July 2023; revised 16 October 2023; accepted 13 December 2023; Available online 22 December 2023
*

Be

Pee

165

(ht
صخلملا

عيمجيفنادلبلاىلعاريبكايداصتقاائبعيركسلاضرملكشي:ثحبلافادهأ
تامدخكلذيفامب،يركسلاضرمةرادإبةطبترملافيلاكتلانإ.ملاعلاءاحنأ
ردقيو.ةريبك،ةيجاتنلإارئاسخوةبقارملاتادعموةيودلأاوةيحصلاةياعرلا
ضرمبةقلعتملاةيملاعلاةيحصلاةياعرلاتاقفننأيركسلليلودلاداحتلاا
كانه،كلذلو.ايونستارلاودلانمتارايلملاتائمزواجتتهتافعاضمويركسلا

لوصولاعمتجمللنكميو،ةلوقعمراعسأبو،ةياغللةلاعفةيودأريوطتلةسامةجاح
.ةلوهسباهيلإ

-1،4تاقتشملةيلكيهلاتلايدعتلاةيلاحلاةساردلافشكتست:ثحبلاةقيرط
رثكأةيودأريوطتفدهبزيليمأافللألةددحمتاطبثمديدحتلنيديريبورديهيد
ةمزلملاوةيؤبنتلاةردقلامييقتمتو،يركسلاضرملاهيلإلوصولانكميوةيلاعف
ةيئاودلاةيكرحلاويئاودلاهباشتلاتاساردءارجإمتامك.ةممصملاتابكرملل
.ةلدعملاتابكرملل

نمىوتسمىلعأترهظأىلولأاةلداعملانأىلإةساردلاجئاتنتراشأ:جئاتنلا
رهظأ،كلذىلعةولاع.ةيجراخلاوةيلخادلامييقتلاريياعمعماهقفاوتببسبةقدلا
لاًعافتلكيهلاىلعمئاقلاءاودلاميمصتمادختسابةيوقلاةسمخلااهرئاظنميمصت
تاساردلاتراشأ،كلذىلإةفاضلإاب.زوبراكلأاوبلاقلابهتنراقمدنعايباجيإ
ميمصتلاتابكرملةيئاودلاةيكرحلاوةيودلأابةهيبشلاصئاصخلالوحةلماشلا
.ةيباجيلإاةيئاودلااهحملامومفلاقيرطنعاهتملاسىلإ
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Abstract

Objectives: Diabetes places a substantial economic

burden on countries worldwide. The costs associated with

diabetes management, including healthcare services,

medications, monitoring equipment, and productivity

losses, are substantial. The International Diabetes

Federation has estimated that global healthcare expen-

ditures associated with diabetes and its complications

exceed hundreds of billions of dollars annually. There-

fore, a critical need exists to develop drugs that are highly

effective, affordable, and easily accessible to society.

Methods: This study explored the structural modification

of 1,4-DHP derivatives to identify specific a-amylase in-

hibitors, with the aim of developing more effective and

accessible drugs for diabetes. We evaluated the activity

and binding ability of the designed compounds. In

addition, we performed drug-likeness and pharmacoki-

netic studies on the modified compounds.

Results: Equation (1) had the highest accuracy, on the

basis of internal and external assessment parameters,

including R2
int ¼ 0.852, R2

adj ¼ 0.803, Q2
cv ¼ 0.731, and

R2
ext ¼ 0.884. Moreover, the five potent analogs identi-

fied through structure-based drug design demonstrated a
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more favorable interaction than observed for the tem-

plate or acarbose. Additionally, comprehensive studies

on the drug-like properties and pharmacokinetics of the

designed compounds supported their oral safety and

favorable pharmacokinetic profiles.

Conclusions: The designed analogs show promise for

developing new hypoglycemic agents. Their positive at-

tributes and performance suggest that they may poten-

tially serve as candidates for further research in

improving treatments for high blood sugar-associated

conditions.

Keywords: a-Amylase; Diabetes; Dihydropyridines; Drug-

likeness; Molecular docking; Pharmacokinetics

� 2023 The Authors. Published by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Despite strong intervention measures, type 2 diabetes
mellitus (T2DM) remains prevalent worldwide. The use of

hypoglycemic agents in combination with substantial lifestyle
changes is central to diseasemanagement.1Becausediabetes is
an endocrine and metabolic disorder characterized by

diminished insulin secretion and/or activity, patients with
chronic conditions may experience serious health challenges
including neuropathy, retinopathy, and cardiovascular

complications.2 Although many drugs are available for
disease management, they have pronounced adverse effects;
consequently, scientific communities must search for new

drug candidates with low or absent adverse effects.3

For decades, the key strategies used to control diabetes
focused on controlling dietary carbohydrate digestion. Starch
is an importantmolecule serving as a primary source of energy

for most (if not all) animal species.4 The digestion of starch
depends largely on four key a-glucosidases: salivary and
pancreatic a-amylases, maltase-glucoamylase, and sucrase-

isomaltase. The synergistic activities of these enzymes
ultimately lead to the generation of glucose for absorption.5

Therefore, studies focusing on these enzymes could greatly

aid in controlling postprandial blood glucose levels and
hence decrease the risk of complications in patients with
T2DM.

Recently, amylases, membrane-bound enzymes, have
gained considerable interest in the control of diabetesmellitus
and other relatedmetabolic diseases. The enzyme is produced
by the salivary glands and aids in the initial digestion of

starch molecules into breakdown products such as maltose.6

Among amylase types, a-, b-, and g-amylases are crucial in
the breakdown of carbohydrates. The a-amylases catalyze

the cleavage of a-1,4 glycosidic linkages in amylose, thus
yielding products such as dextrin and glucose units, and
ultimately leading to hyperglycemia and the development of

T2DM.7 A recent review has described the promising
effects of a-amylase inhibitors on the treatment of T2DM.8

In our continued efforts to search for novel antidiabetic
agents, we explored the potential of 1,4-dihydropyridine
(1,4-DHP) derivatives against human a-amylases. Dihy-
dropyridines are a class of heterocyclic nitrogen containing

compounds with a wide spectrum of biological activities.9

Specifically, the 1,4-DHP nucleus is an important scaffold
found in many drugs. Yousuf et al.22 have recently indicated

the strong in vitro inhibitory activities of several 1,4-DHP
derivatives against a-amylase. Their findings have paved
the way to further investigations of the scaffold to discover

novel anti-diabetic agents.
In the present study, structural modification of 1,4-DHP

derivatives was performed alongside molecular docking
studies to identify specific inhibitors of a-amylase. In addi-

tion, quantitative structureeactivity relationship (QSAR)
and pharmacokinetic analyses of the modified compounds
were performed. The findings may provide insights for re-

searchers working in this field.

Materials and Methods

Creation of datasets, structure design, and optimization

Twenty-six compounds derived from 1,4-DHPs were
selected from the work of Yousuf et al.22 These compounds
were evaluated for their inhibitory concentrations (IC50)
toward a-amylase, and the obtained values were expressed

in micromolar (mM) concentrations. The IC50 values were
standardized by conversion to pIC50 with Equation (1):2

pIC50 ¼ � log
�
IC50 � 10�6

�
(1)

Next, the reported compounds were visually represented
in 2D with ChemDraw version 12.0 software and automat-

ically transformed into 3D structures with Spartan version 14
software.10 The optimization of the compounds was
performed on the basis of density functional theory with

the Bee-3-Lee Yang Par method and 6-311G* as the basis
set. This approach was aimed at alleviating constraints and
determining the most stable geometry for the reported
compounds.11 Finally, the optimized compounds were saved

in a structure data file format (sdf).

Docking studies on the derivatives of 1,4-DHP

Docking studies were conducted on all derivatives of 1,4-

DHPs to investigate the interactions between the active
pocket of a-amylase and the derivatives. This analysis was
aimed at gaining insight into the interaction patterns, to

guide the design of highly active compounds with improved
efficacy.12

Evaluation of descriptors, pretreatment of data, and division

of datasets

To obtain descriptors for each compound, we imported
the optimized 3D structures of the reported compounds into

the Pharmaceutical Data Exploration Laboratory descriptor
tool kit, and performed calculations. Additionally, data pre-
treatment software version 1.2 was used to pre-process the
calculated descriptors, and manual pre-treatment was per-

formed to remove undesirable descriptors.13 The dataset was
then divided into a training (internal) set and a test (external)

http://creativecommons.org/licenses/by-nc-nd/4.0/
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set with the KennardeStone algorithm method, as
implemented in Data Division software.14 The training set

consisted of 21 compounds, whereas the test set comprised
five compounds.

Construction of models, validation, and statistical evaluation
of the selected model

The QSAR model was created in Material Studio version

8.0 software. First, a set of compounds, denoted the training
set, was imported into the software.15 The genetic function
approximation (GFA) method was used for model
generation. In GFA, the pIC50 values (a measure of the

biological activity) were considered dependent variables, and
the molecular descriptors (properties of the compounds)
served as independent variables. Model performance was

assessed with Friedman’s lack of fit scoring.16 Several
parameters were specified for the GFA approach. The
equation length, which determines the complexity of the

equations used in the model, was set to 5, including both the
initial and maximum equation length. The mutation
probability, a measure of the likelihood of changes

occurring in the equations during optimization, was set to
0.1. The population and maximum generation parameters,
which control the size and duration of the optimization
process, were both set to 1000. The top four equations with

the highest correlation were selected.2 GFA is known for its
ability to select descriptors that are highly correlated with
activity and produce better models than stepwise regression

methods.
After generation of the models, we evaluated their per-

formance with three metrics: the square correlation coeffi-

cient of the training set (R2
int), adjusted square correlation

coefficient (R2
adj), and cross-validation coefficient (Q2

cv).
These metrics were used to assess the models’ goodness of fit

to the training data and their reliability in predicting the
activity of new compounds.11

To validate the QSAR model externally, we used a sepa-
rate set of compounds called the test set. The correlation

coefficient (R2
ext) of the test set was calculated with Equation

(2), and the model with the highest correlation was chosen. In
an external regression equation, a value of R2 closer to 1

indicates a better fit, meaning that the model can
accurately predict the activity of compounds that it has not
previously encountered.3

R2
ext ¼ 1�

P ðYexp � YpredÞ2
P ðYexp � YtrainÞ2

(2)

where R2
ext is the external correlation coefficient, Yexp is the

experimental activity, Ypred is the predicted activity, and

Ytrain is the average internal compound.
The chosen model was evaluated on the basis of two key

factors: the mean effect (MX) and the variance inflation

factor (VIF). The mean effect of each descriptor in the
selected model was used to assess the effect and contributions
of the descriptor with Equation (3). Additionally, the
combined effects of these descriptors, along with their

respective mean effect values, provided insights into their
influence on the activities of the investigated compounds.12
Mxj ¼
Pj

Pi¼r
j¼1Eij

Pq Pn (3)

j Pj i Eij

whereMxj is themean effect of descriptor j in amodel, Pj is the

coefficient of descriptor j in that model, Eij is the value of the
descriptor in the data matrix for each molecule in the model
building set, q is the number of descriptors in themodel, and r
is the number of molecules in the model building set.

Moreover, the VIF provides a measure of the inter-
correlation among the descriptors used in the construction
of the model.10 The VIF values were calculated with the

following equation:

VIF ¼ 1

1� S2
(4)

where VIF is the variance inflation factor, and S2 is the

correlation coefficient of the selected model.

Applicability studies

The selected model was evaluated with a Williams plot, a

graphical representation of standardized residuals plotted
against leverage values.17 This plot was used to identify any
unusual or outlier molecules within the specified datasets. To

conduct this assessment, we calculated the leverage values
with the following equations:

Wi ¼ Yi

�
XT X

��K
xTi (5)

W* ¼ 3ðCþ 1Þ=T (6)

In equation (5), Wi represents the leverage of a data point,
Yi denotes the descriptor variables for that point, X
represents the design matrix, and the superscript T denotes

matrix transpose. The leverage values indicate the influence
of individual data points on the model’s predictions.

In equation (6), W* represents the warning leverage, C

represents the number of descriptors, and T represents the
number of data points. The warning leverage is a threshold
value used to identify potential influential observations.

Structural modification of 1,4-DHP for the design of new
therapeutic drugs

Structure-based drug design is a method using three-
dimensional arrangement of target proteins to create and

improve novel medications.19 The process involves
identifying the target, determining the structure of the
protein, analyzing its binding sites, conducting virtual

screens to identify potential drug candidates, optimizing
these candidates through chemical modifications, and
evaluating their biological activity.19 In this study,

compounds were chosen as templates for drug design on
the basis of high binding scores. This selection was made to
identify compounds with strong ability to bind the target
protein, while minimizing any negative effects or unwanted

interactions. By using these compounds as a reference or
starting point, our goal was to design and develop more
potent and selective drugs for the management of diabetes.
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Drug similarity and pharmacokinetic properties of the
designed compounds

The evaluation of the drug similarity and pharmacoki-
netic properties of designed compounds is critical to ensure
their bioavailability and safety in humans.20 This evaluation
is typically performed through in silico analyses, which

involve in silico predictions and assessments. To assess the
properties of the designed compounds, we used an online
certified free web tool, SWISSADME (http://www.

swissadme.che/index.php), specifically designed for
predicting and evaluating the drug-likeness and pharmaco-
kinetic properties of small compounds.18 Several rules and

criteria were applied to determine how well the designed
compounds conformed to drug-likeness and pharmacoki-
netic guidelines. The compounds’ adherence to the Lipinski

rule, Veber rule, Egan rule, and Muegge rule was assessed.
These rules evaluate factors such as molecular weight, lip-
ophilicity, and the presence of specific functional groups.
Additionally, a bioavailability score was calculated to further

evaluate the drug-likeness of the compounds; this score in-
dicates how likely a compound is to be absorbed and
distributed within the body.

Furthermore, the compounds were tested for their ab-
sorption, permeability, substrate potential, and potential to
inhibit cytochrome P450 (CYP) enzymes. These tests help

determine the compounds’ pharmacokinetic profiles,
including their ability to be absorbed by the body, their
transport across biological barriers, and their potential in-
teractions with enzymes involved in drug metabolism.21

List of abbreviations

QSAR: quantitative structure activity relationship; GFA:

genetic function approximation.

Results

The derivatives’ experimental activities were expressed in
logarithmic form. The discrepancies between the experi-
mental and predicted activities, referred to as the residuals,

are shown in Table 1. The predicted pIC50 values for the
internal set compounds were generally close to the
experimental pIC50 values, and the MolDock scores for the

internal set compounds ranged from �128.3 to �159.1.
Additionally, the predicted pIC50 values for the external set
compounds were close to the experimental pIC50 values,

with MolDock scores ranging from �134.1 to �158.2
(Table 1).

The findings from the four equations in Table 2 revealed

that the first equation yielded the highest internal assessment
(R2

int) score, 0.852, whereas the fourth equation had the
lowest score, 0.838. In terms of adjusted R2 (R2

adj), the
first equation performed best, with a value of 0.803,

whereas the fourth equation had the lowest adjusted R2

score, 0.784. The second equation achieved the highest
cross-validated Q2 (Q2

cv) value, 0.745, whereas the third

equation had the lowest Q2
cv score, 0.723 (Table 2). The

external assessment (R2
ext) indicated that the first equation

outperformed the others, with an R2
ext score of 0.884,
whereas the fourth equation had the lowest R2
ext value,

0.814 (Table 2).

The R2
int value of 0.852 provided insight into the pro-

portion of the total variation in the biological activity that
could be explained by the equation, by indicating the selected

equation’s goodness of fit to the internal datasets. A higher
R2

int score suggests greater goodness of fit. The R
2
adj value of

0.803 increased a more reliable estimate of the equation

performance and helped prevent overfitting. A higher R2
adj

score indicates a better equation performance. The Q2
cv

value of 0.731 suggested that the equation demonstrated
good predictive ability for new compounds. Cross-validated

Q2 is used to evaluate the equation’s ability to predict the
activity of new compounds. A higher Q2

cv score indicates
stronger predictive ability. The R2

ext value of 0.884 revealed

substantial variation in the external set data and suggested
excellent predictive performance of the equation on external
data. Therefore, the equation successfully captured the

variability in the external set compounds.
Overall, given the highest internal and external assess-

ment scores, the first equation appeared to be the most
favorable.

Figure 1 illustrates the correlation between the
experimental and predicted activities of both the internal
and external datasets. The R2 value of the plot was close to

1, thereby demonstrating the reliability of the chosen
equation. This finding was further supported by the plot of
residuals against the experimental activities of the internal

and external datasets in Figure 2. The standardized
residuals were scattered around 0, thus indicating that the
equation was free from any systematic errors.

Consequently, Equation (1) accurately predicted the
activities of the compounds.

The equation indicated ATS4i, GATS4c, VR3_Dzp,
VR3_Dzs, and piPC9 as important descriptors (Table 3). The

VIF values of these descriptors ranged from 2.70 to 8.58, and
the mean effect values ranged from �0.30 to 1.45 (Table 3).
Additionally, the P-values of the descriptors were all below

0.05. The results indicated that the selected equation was
valid and reliable (Table 3).

The Y-permutation test in Table 4 was used to determine

whether the equation’s predictions might have been due to
chance. The activity matrix was randomly shuffled. To
accept the QSAR equation as robust and reliable, the R2

and Q2 values were required to be low for multiple trials,
and the coefficient of determination for Y-permutation was
required to exceed 0.5. The R2 and Q2 values were 0.176
and �0.323, respectively, and the cRp2 was 0.705 (Table 4).

Figure 3 displays the Williams plot, which is used to
identify compounds that deviate from the expected
behavior in a specific equation. The plot compares the

standardized residuals (a measure of the difference between
observed and predicted values) against the leverage values
(a measure of the extent to which an individual compound

influences the equation). In this study, a cut-off leverage
value of 0.86 was chosen to define compounds significantly
affecting the equation’s performance. Compounds with
leverage values above this threshold were considered influ-

ential, because they greatly affected the equation’s pre-
dictions. According to the plot, compounds 23, 25, and 26
from the test set had leverage values above the cut-off, thus

http://www.swissadme.che/index.php
http://www.swissadme.che/index.php


Table 1: The structures, experimental pIC50, predicted pIC50, residuals, and scores of the derivatives.

R Experimental pIC50 Predicted pIC50 Residual MolDock score

Internal set compounds

1 5.001 5.018 �0.016 �128.3

2 5.366 5.380 �0.014 �135.3

3 5.208 5.230 �0.022 �136.7

4 5.214 5.247 �0.033 �132.1

5 5.130 5.111 0.019 �144.2

6 5.186 5.161 0.026 �139.7
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Table 1 (continued )

R Experimental pIC50 Predicted pIC50 Residual MolDock score

7

5.161 5.190 �0.030 �130.4

8 5.292 5.295 �0.003 �139.2

9 5.333 5.214 0.118 �130.2

10 5.045 5.049 �0.004 �131.3

11 5.387 5.355 0.032 �137.6

12 5.228 5.292 �0.064 �123.4

13 5.309 5.273 0.036 �124.7

(continued on next page)
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Table 1 (continued )

R Experimental pIC50 Predicted pIC50 Residual MolDock score

14 5.136 5.171 �0.035 �135.0

15
5.200 5.245 �0.045 �131.6

16 5.283 5.255 0.029 �135.0

17 5.214 5.243 �0.029 �135.7

18 5.366 5.351 0.015 �147.0

19 5.221 5.220 0.001 �149.8

20 5.180 5.158 0.022 �137.3

Studies of 1,4-dihydropyridines derivatives276



Table 1 (continued )

R Experimental pIC50 Predicted pIC50 Residual MolDock score

21 5.173 5.173 0.000 �136.7

External set compounds

22 5.492 5.447 0.045 �142.1

23 5.400 5.307 0.093 �134.1

24 5.398 5.478 �0.080 �139.0

25

5.387 5.442 �0.054 �136.1

(continued on next page)
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Table 1 (continued )

R Experimental pIC50 Predicted pIC50 Residual MolDock score

26 5.386 5.435 �0.049 �135.2

Acarbose 5.697 e e �136.1

Studies of 1,4-dihydropyridines derivatives278
indicating their potential influence on the equation. Addi-
tionally, compound 9 from the training set was identified as
an outlier, because its standardized residual was outside the

acceptable range of �3.

Structure-based drug design and activity relationship studies

Structure-based drug design uses the three-dimensional
structure of a target molecule to create a drug that binds
the molecule. This method of drug design is based on the

concept in which the structure of a molecule can be used to
predict its function, and that by understanding the structure
of a target molecule, a drug can be designed to interact with

the target in a specific manner. In this study, compound 19
was used as a template for the design of new novel candidate
(Figure 4).

The results of the study in Figure 5 showed that the

addition of (eOCH3) and (eNO2) significantly enhanced
the binding affinity of the compounds. For instance, the
addition of nitro groups at the ortho positions increased
Figure 1: Plot of experimental and predicted act
the score to �154.05. When a methoxy group was added at
the ortho and meta positions, the score increased
to �154.33, a value higher than those for the template and

acarbose. This finding was probably due to stabilization
through the resonance effect, which induced greater
interaction between the designed compounds and the

enzyme active site. Moreover, the calculated predicted
activities of the designed compounds were higher than
those of the template, thus demonstrating the potential for

with electron-withdrawing and electron-donating groups to
improve the antidiabetic activities of the compounds.

Molecular docking studies of the designed compounds

Molecular docking studies were conducted to gain insight
into the nature of binding interactions and the amino acid
residues contributing to the biological activity of the com-

pounds. In this study, docking was performed on the five most
active designed compounds at the binding pocketof the enzyme
(PDB ID: 3TOP). The results are summarized in Table 5.
ivities for the internal and external datasets.



Table 2: Internal and external assessment of the four equations generated.

Equation Internal Assessment External Assessment

1 Y ¼ 4.131 � 10�5*ATS4i � 2.123*GATS4c

þ 0.0736*VR3_Dzp þ 0.062*VR3_Dzs

� 0.823*piPC9 þ 9.075

R2
int ¼ 0.852

R2
adj ¼ 0.803

Q2
cv ¼ 0.731

R2
ext ¼ 0.884

2 Y ¼ 4.882 � 10�5*ATS3i � 2.181*GATS4c

þ 0.069*VR3_Dzp þ 0.065* VR3_Dzs

� 0.739*piPC9 þ 8.742

R2
int ¼ 0.850

R2
adj ¼ 0.800

Q2
cv ¼ 0.745

R2
ext ¼ 0.877

3 Y ¼ �1.793 � 10�5*ATS7m � 0.310*AATS1s

� 2.023*GATS4c þ 0.080*VR3_Dzp

þ 0.058*VR3_Dzs þ 5.578

R2
int ¼ 0.844

R2
adj ¼ 0.792

Q2
cv ¼ 0.723

R2
ext ¼ 0.833

4 Y ¼ �9.457 � 10�5*ATS1m � 0.323*AATS1s

� 2.032*GATS4c þ 0.081*VR3_Dzp

þ 0.062*VR3_Dzs þ 5.877

R2
int ¼ 0.838

R2
adj ¼ 0.784

Q2
cv ¼ 0.722

R2
ext ¼ 0.814

Figure 2: Plot of residuals and experimental activities for the internal and external datasets.
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Compound 1 interacted with specific active residues of a-
amylase. These interactions involved the formation of a
hydrogen bond with His305, as well as carbonehydrogen
bonds with His201, Asp300, and Glu233. In addition, a pie
pi-T-shaped interaction occurred between compound 1 and
His201, where the electron clouds of aromatic rings over-
lapped. Furthermore, compound 1 exhibited piealkyl in-

teractions with Trp59, Tyr62, His299, Leu162, and Ala198.
These interactions collectively contributed to a MolDock
score of �154.05, which represents the binding potential of

compound 1. Figure 6 provides a visual representation of
Table 3: Definitions, class, VIF, Mx, and P-values of the descriptors

Descriptor Definition

ATS4i BrotoeMoreau autocorrelation, lag 4, weighted by first

GATS4c Geary autocorrelation, lag 4, weighted by charges

VR3_Dzp Logarithmic Randic-like eigenvector-based index from B

polarizabilities

VR3_Dzs Logarithmic Randic-like eigenvector-based index from B

by I-state

piPC9 Conventional bond order ID number of order 9(ln(1 þ
compound 1’s arrangement within a-amylase, in both 2D
and 3D formats.

Compound 2 interacted with specific residues in the active
site of a-amylase. These interactions included hydrogen

bonds with Thr163, Tyr62, His101, and Asp300, as well as
carbonehydrogen bonds with His299 and Asp300. Addi-
tionally, a piesigma interaction occurred with Trp59 and

His305, and a piepi stacking interaction occurred among
Tyr62, Trp58, and Trp59. Furthermore, piealkyl in-
teractions were observed with Trp59. Collectively, these in-

teractions contributed to a score of �150.18, indicating the
selected for Equation (1).

Class VIF MX P-value

ionization potential 2D 6.18 �0.30 3.73E-03

2D 3.40 0.50 5.18E-08

arysz matrix, weighted by 2D 2.70 �0.36 1.52E-08

arysz matrix, weighted 2D 2.29 �0.29 2.26E-08

x)) 2D 8.58 1.45 5.90E-04



Table 4: Y-permutation studies.

Model R R2 Q2

Original 0.888 0.789 0.662

Random 1 0.289 0.084 �0.335

Random 2 0.354 0.126 �0.523

Random 3 0.305 0.093 �0.350

Random 4 0.319 0.102 �0.253

Random 5 0.386 0.149 �0.366

Random 6 0.263 0.069 �0.478

Random 7 0.375 0.140 �0.495

Random 8 0.416 0.173 �0.339

Random 9 0.614 0.377 �0.262

Random 100.672 0.452 0.167

Random model parameters

Average R ¼ 0.399

Average R2 ¼ 0.176

Average Q2 ¼ �0.323

cRp2 ¼ 0.705
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binding affinity of compound 2. Figure 7 provides a visual
representation of compound 2 within the active site of a-
amylase, depicted in both 2D and 3D diagrams.

Compound 3, which had the highest MolDock
score, �154.33, demonstrated strong interactions within the
active site of a-amylase. These interactions included con-

ventional hydrogen bonds with Thr163, His305, Glu233,
Asp300, Asp197, and His299. Additionally, a piesigma
interaction with Trp59 and a piepi stacking interaction

with Tyr62 were observed. Notably, alkyl interactions were
observed with Ala106 and Val107, and a piealkyl interaction
occurred with Leu165. These interactions collectively

contributed to the high MolDock score of compound 3,
which indicated its favorable binding affinity. Figure 8
depicts the interactions of compound 3 within the active

site of a-amylase, in both 2D and 3D representations.
Figure 3: Plot of standardized resid
Compound 4, with a score of �150.06, exhibited in-
teractions within the active site of the enzyme. These in-

teractions involved a carbonehydrogen bond with Tyr151
and His201, as well as a pi-donor hydrogen bond with Trp59.
Additionally, alkyl interactions were observed with Leu165,

and piealkyl interactions occurred with Tyr62, His305, and
Leu162. These interactions collectively contributed to the
overall score of compound 4, thus suggesting its binding

potential. Figure 9 depicts the interactions of compound 4
within the active site of the enzyme, in both 2D and 3D
representations.

Compound 5 interacted with a-amylase through con-

ventional hydrogen bonds with Thr163, and carbone
hydrogen bonds with His101, Glu233, Asp300, Asp197, and
His299. Additionally, a piepi stacking interaction with

Tyr62 and piealkyl interactions with Trp59 and Leu165
were observed. These interactions collectively contributed to
a MolDock score of �151.14, which indicated the binding

strength of compound 5. Figure 10 depicts the interactions of
compound 5 in the active site of the a-amylase enzyme, in
both 2D and 3D.

Drug similarity and pharmacokinetic properties of the
designed compounds

Drug similarity studies were conducted with four sets of

rules: the rule of five, Veber rule, Egan rule, andMuegge rule
(Table 6). These rules were used to assess the drug-likeness of
the compounds and predict their bioavailability. None of the

compounds violated more than two of these rules, thus
suggesting favorable drug-like properties and likelihood of
being orally safe (Table 6).

Furthermore, the pharmacokinetic studies provided in-
sights into the absorption and distribution potential of the
compounds (Table 6). The compounds, except for

compounds 4 and 5, exhibited high absorption potential
uals against the leverage values.



Figure 4: Template compound for the design, with a score

of �149.8 and predicted activity of 5.220.
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and thus should be effectively absorbed through the
gastrointestinal tract. However, the compounds were found
to be unable to cross the bloodebrain barrier (BBB) and

therefore do not appear to have substantial brain penetration
properties. Most compounds (except compound 4) were
identified as substrates of P-glycoprotein (P-gp), a trans-

porter protein involved in the efflux of drugs. Being a P-gp
substrate affects the distribution and elimination of a com-
pound. Moreover, the compounds were found to be in-
hibitors of several CYP enzymes, namely 2C19, 2C9, and

3A4. CYP enzymes play crucial roles in drug metabolism
(Table 6).
Figure 5: The designed compounds, with M
Figure 11 presents the bioavailability of the designed
compounds. The colored region in the figure indicates the

range of physicochemical properties considered appropriate
for achieving oral bioavailability. Notably, all designed
compounds except compound 4 were within this region,

thus indicating that they have the necessary characteristics
to be effectively absorbed when taken orally; i.e., they are
likely to be orally bioavailable.

Discussion

The antidiabetic medications currently available on the

market often have substantial adverse effects, thus limiting
their use and posing challenges for patients.2 Therefore,
alternative drugs must be developed that not only improve

therapeutic outcomes, but also are more convenient and
accessible for patients. Yousuf et al. have highlighted the
need for further exploration of 1,4-DHP derivatives

through in silico investigations, with the ultimate goal of
discovering new antidiabetic drugs that inhibit a-amylase.

Of the four equations created with GFA, which allows for
multiple equations to be generated and provides flexibility in

selection,12 Equation (1) was optimal. This equation was
chosen because of its favorable characteristics, including its
high internal and external assessment scores, its ability to

explain a substantial portion of the variation in biological
activity, its reliable performance estimation, its strong
performance when applied to external test set data, and its

excellent predictive ability for the derivatives under study.
olDock scores and predicted activity.
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Therefore, it was considered the most suitable equation
among the alternatives, yielding the most credible

predictions of the activities of the newly designed
compounds.

Additionally, a comprehensive statistical analysis was

performed on the chosen equation. The VIF, mean effect
values, P-values, and Y-permutation test were performed
on the selected equation. The statistical analysis strongly

suggested that the selected equation was valid, reliable, and
capable of accurately predicting the activities of the de-
rivatives. The absence of multicollinearity among the de-
scriptors, the significant effects of the descriptors on the

equation, the statistical significance of the descriptors, and
the non-random nature of the equation’s relationship with
activity all contributed to the overall confidence in the

equation’s performance and its utility in predicting the
activities of the derivatives under investigation.

A plot of standardized residual values against leverages

was subsequently generated to examine the effects of indi-
vidual compounds on the performance of the equation.16

This plot helps identify compounds that significantly
influence the equation, because of their leverage values or

their standardized residuals.16 Compounds 23, 25, and 26
influenced the equation’s performance. These compounds
exhibited leverage values above the threshold value.

Compound 9 was identified as an outlier: it may have
structural incompatibility with the target’s binding site,
lacking the necessary features to effectively interact with

the target, thus causing it to deviate from the expected
behavior. Therefore, this compound cannot be considered
a template for designing new drugs.

Compound 19 was chosen as a template for the design
of new compounds. The selection of this compound was
based on its high MolDock score, indicating its favorable
binding affinity to the target active site. In designing new

compounds, we made modifications by adding eOCH3

and eNO2 groups at the X and Y positions on the tem-
plate. This addition of these groups enhanced the binding

affinity of the newly designed compounds. The observed
improved binding affinity was attributed to the stability
achieved through resonance. The presence of the eOCH3

and eNO2 groups in the specific positions created a reso-
nance effect, thereby enhancing the overall stability of the
molecule and facilitating stronger interactions at the tar-

get’s active site. Additionally, the newly designed com-
pounds exhibited enhanced predictive capability
surpassing that of the template compound. The results of
these studies indicated that the designed compounds

exhibited stronger binding affinity, as evidenced by higher
MolDock scores, than the template compound and
acarbose.

Moreover, the designed compounds exhibited favorable
drug profile characteristics. Their adherence to multiple
drug-likeness rules suggested their potential to be safe and

suitable for oral administration. These rules serve as guide-
lines to assess the likelihood of a compound’s being a suc-
cessful drug candidate.

Furthermore, the designed compounds had high ab-

sorption potential, thus suggesting that they can be effi-
ciently absorbed into the bloodstream after oral
administration. This factor is important, because it de-

termines the bioavailability and effectiveness of a drug.



Figure 6: The 2D and 3D diagrams of compound 1 within the active site of a-amylase.

Figure 7: The 2D and 3D diagrams of compound 2 within the active site of a-amylase.

Figure 8: The 2D and 3D diagrams of compound 3 within the active site of a-amylase.
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Figure 9: The 2D and 3D diagrams of compound 4 within the active site of a-amylase.

Figure 10: The 2D and 3D diagrams of compound 5 within the active site of a-amylase.
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Additionally, the compounds demonstrated limited brain
permeability, and consequently low likelihood of pene-

trating the BBB, thereby decreasing their likelihood of
affecting the central nervous system. This aspect may ad-
vantageously decrease potential adverse effects associated

with the central nervous system.
Table 6: The drug-like and pharmacokinetic studies of the designed

S/

N

Drug-likeness properties Pharm

Rule

of 5

Veber

rule

Egan

rule

Muegge

rule

Bioavailability

score

GI

absorp

1 1 0 0 1 0.55 High

2 0 0 0 0 0.55 High

3 1 0 0 1 0.55 High

4 2 1 1 2 0.17 Low

5 1 0 0 1 0.55 Low
Moreover, the finding that the compounds are P-gp sub-
strates further supports their potential as viable drug candi-

dates. P-gp is a protein that transports substances including
drugs in cells.23 Compounds that are P-gp substrates are likely
to be effectively transported and distributed within the body,

thus improving their overall efficacy.
compounds.

acokinetic properties

tion

BBB

permeation

P-gp

substrate

CYP Inhibitors

1A2 2C19 2C9 2D6 3A4

No Yes No Yes Yes No Yes

No Yes No Yes Yes No Yes

No Yes No Yes Yes Yes Yes

No No No No Yes No Yes

No Yes No Yes Yes No Yes



Figure 11: Bioavailability of the designed compounds.
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Conclusions

Our results indicated that Equation (1), derived from the
GFA, had the highest accuracy, on the basis of both internal

and external assessment parameters, including R2
int ¼ 0.852,

R2
adj ¼ 0.803, Q2

cv ¼ 0.731, and R2
ext ¼ 0.884. Moreover,

compound 19 was chosen as a template because of its

favorable MolDock score of �149.8. By introducing
structural modifications, we created five potent analogs based
on this template. Notably, these designed compounds
demonstrated favorable interactions within the active site of

a-amylase, with scores surpassing those of both the template
compound and acarbose. Additionally, comprehensive
studies on the drug-like properties and pharmacokinetics

supported the designed compounds’ oral safety and favorable
pharmacokinetics profiles. Consequently, our findings suggest
that the designed compounds have potential for further

exploration in the quest for new anti-diabetic agents.
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