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Cysteinyl leukotrienes (CysLTs) are potent lipid mediators widely known for their actions in asthma and in allergic rhinitis.
Accumulating data highlights their involvement in a broader range of inflammation-associated diseases such as cancer, atopic
dermatitis, rheumatoid arthritis, and cardiovascular diseases. The reported elevated levels of CysLTs in acute and chronic brain
lesions, the association between the genetic polymorphisms in the LTs biosynthesis pathways and the risk of cerebral
pathological events, and the evidence from animal models link also CysLTs and brain diseases. This review will give an overview
of how far research has gone into the evaluation of the role of CysLTs in the most prevalent neurodegenerative disorders
(ischemia, Alzheimer’s and Parkinson’s diseases, multiple sclerosis/experimental autoimmune encephalomyelitis, and epilepsy)
in order to understand the underlying mechanism by which they might be central in the disease progression.

1. Introduction

Growing evidence indicates that cysteinyl leukotrienes
(CysLTs), a group of highly active lipid mediators, synthe-
tized from arachidonic acid via the 5-lipoxygenase (5-LOX)
pathway, play a pivotal role in both physiological and patho-
logical conditions.

Cysteinyl leukotrienes—LTC4, LTD4, and LTE4—exhi-
bit several biological activities in nanomolar concentrations
through at least two specific G protein-coupled receptor
(GPCR) subtypes named CysLTR-1 and CysLTR-2 which
show 38% homology [1]. These endogenous mediators show
different affinity toward their receptors [2]: LTD4 indeed is
the most potent ligand for CysLTR-1 followed by LTC4
and LTE4 [3], whereas LTC4 and LTD4 equally bound
CysLTR-2, while LTE4 shows only low affinity to this
receptor [1]. However, the biological effects of CysLTs do
not seem to be mediated only by CysLTR-1 and CysLTR-2.
Indeed, these receptors are phylogenetically related to
purinergic P2Y class of GPCRs [4] and evidence reported in
the literature suggests the existence of additional receptors
responding to CysLTs [5], such as GPR17 [6], GPR99 [7],
PPARγ [8], P2Y6 [9], and P2Y12 [10].

In the last decade, several lines of evidence link CysLTs,
central in the pathophysiology of respiratory diseases, such
as asthma and allergic diseases [11–14], to other inflamma-
tory conditions including cancer and cardiovascular,
gastrointestinal, skin, and immune disorders [15, 16].
Among them, a role of CysLTs and their receptors has been
emerging in central nervous system (CNS) diseases, such as
cerebral ischemia [15, 17, 18], intracerebral hemorrhage [19],
brain trauma [20, 21], epilepsy [22], multiple sclerosis [23],
Alzheimer’s disease [24], and brain tumor [25]. This review
will summarize the state of present research about the involve-
ment of CysLT pathway (Figure 1) and the effects of its
pharmacological modulation (Table 1) on CNS disorders.

2. Cerebral Localization of CysLT Receptors

In healthy brain, the expression of the CysLTRs is weak, but
it was reported to increase during several pathological
conditions [15, 17, 20]. CysLTR-1 [26], whose expression is
normally lower than the CysLTR-2 one [1, 3], is localized
in microvascular endothelial cells [21], in glial cells, and in
several types of neuronal cells [15, 27, 28].
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In human brain, the CysLTR-2 is expressed in many
regions, such as hypothalamus, thalamus, putamen, pituitary,
and medulla [1] by vascular smooth muscle cells [20] and by
astrocytes [18]. After brain trauma and in brain tumors, it
was also observed in neurons and in glial-appearing cells [20].

Glial cells, namely astrocytes and microglia, are key
players in inflammation typically associated with neurode-
generative diseases, and their functions are regulated in a
CysLTR subtype dependent manner [18, 28, 29]. Through
CysLTRs localized on glial cells, CysLTs may mediate not
only crucial reparative responses in the acute phase [30] but
also detrimental effects in the chronic phase [31] of brain
damage. Moderately activated microglial cells play a neuro-
protective role due to their ability to remove dead cells, to
release trophic factors, and to contribute to angiogenesis,
neurogenesis, and axonal remodelling [32, 33], promoting
reorganization of neuronal circuits and improving neurolog-
ical recovery [34]. However, when overactivated, microglia
show important adverse effects by releasing detrimental fac-
tors [35, 36] such as cytokines and nitric oxide (NO) [37]
and by activating inflammation-related kinases and tran-
scription factors [38]. Similarly, astrocytes are known to exert
a protective function during brain injury [39, 40], but astro-
gliosis may contribute to neuronal injury [41–44].

Data indicate that in microglia, both CysLTs and
CysLTRs participate in the inflammatory response [45, 46];
nevertheless, the impact of CysLTR-1 and CysLTR-2 in the
process is controversial. A number of in vitro evidence indi-
cate a relevant role of CysLTR-1 in microglial activation. It
was reported that rotenone—used in generating animal
models of Parkinson’s disease (PD)—increased CysLTR-1
expression in mouse microglial BV2 cell line [47, 48] and that

treatment with the CysLTR-1 antagonist montelukast pre-
vented phagocytosis and cytokine release [48]. Moreover,
the activation of mouse microglial BV2 cells seems to be
greatly mediated by CysLTR-1 than CysLTR-2 [28]. On the
other hand, another study showed that, in primarily cultured
microglia, the CysLTR-2 resulted the main regulator of
microglia activation. Indeed, the CysLTR-2 antagonist
HAMI 3379 inhibited phagocytosis and cytokine release
induced by oxygen-glucose deprivation/reperfusion (OGD/
R) and by LTD4, whereas montelukast was effective only
against OGD/R [46].

These conflicting results suggest that the responses
mediated by CysLTR-1 and CysLTR-2 may change across
experimental conditions; nevertheless, the role of CysLTR-2
in the regulation of microglial activation and phagocytosis
is supported by in vivo evidences. Indeed, the CysLTR-1
antagonist pranlukast did not reduce the accumulation of
microglia in the ischemic cerebral cortex [49], while HAMI
3379 significantly attenuated the number of microglia in
the ischemic core and in the boundary zone [50].

Unlike in microglia, the function of each CysLTR subtype
in astrocytes is already clear. A number of evidence support
the major role of CysLTR-1 in regulating astrocyte activation,
suggesting its involvement in astrocytosis and in glial scar
formation. In vitro, astrocyte proliferation, induced by low
concentrations of LTD4 or by mild OGD, is indeed mediated
by CysLTR-1, but not by CysLTR-2 [29]. The CysLTR-1 also
participates in astrocyte migration induced by transforming
growth factor-β1 (TGF-β1) and LTD4 [51]. In fact, this event
was attenuated by administration of the CysLTR-1
antagonist montelukast, but not by the CysLTR-2 specific
antagonist Bay CysLT2 [51].

2.1. Brain Ischemia. A strong indication for the involvement
of the leukotriene-synthesizing pathway in the occurrence
and evolution of ischemic brain diseases comes from genetic
studies. In humans, a genetic variant of the gene ALOX5AP,
encoding 5-lipoxygenase activating protein (FLAP), is
associated with two times greater risk of stroke by increasing
leukotriene production and inflammation [52–56]. The −444
A/C polymorphism on the LTC4 synthase gene also predicts
an increased risk for ischemic cerebrovascular disease [57,
58]; conversely, the −1072G/A polymorphism of the same
gene results in decreased risk of ischemic cerebrovascular
disease [57]. Nevertheless, to date, the meaning of these
polymorphisms in the brain ischemia has not been fully
understood; thus, a comprehensive analysis of these gene
polymorphisms is required.

Data from in vivo and in vitro studies show that the pro-
duction of CysLTs increased in the brain of rodents that
underwent a cerebral ischemic insult [38] and in primary cul-
ture of neurons [59] and astrocytes [29] subjected to OGD. In
rat that underwent middle cerebral artery occlusion
(MCAO), the brain levels of CysLTs reached the peak within
3 hours and remained high for at least 24 hours [38]. Conse-
quently, also the expression of CysLTR-1 and CysLTR-2 was
upregulated in injured neurons during the acute phase (about
24 hours) and in activated microglia and proliferating astro-
cytes [15, 17, 18, 60, 61] during the late phases (3–28 days)
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Figure 1: CysLTs in neurodegenerative diseases. The circle shows
the changes of the CysLT pathway components grouped for the
different neurodegenerative diseases and observed in human
patients and in in vitro/in vivo models.
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Table 1: The neuroprotective effects of drugs acting on CysLT pathway in CNS disorders.

Brain ischemia

Model Drug class Molecule Effect Reference

Transient MCAO in
gerbils

5-LOX inhibitor AA-861 ↓ neuronal death [70, 71]

Transient MCAO
in rats

5-LOX inhibitor Minocycline
↓ ischemic injuries, IgG exudation, and neutrophils

and macrophage/microglia accumulation
[83]

Permanent MCAO in
rats

FLAP inhibitor MK-886 ↓ acute infarct size [72]

Permanent MCAO in
rats

5-LOX inhibitor Zileuton
↓ edema, infarct volume, neurological deficits, MPO

activity, lipid peroxidation levels, inflammatory reaction,
and apoptosis

[73–75]

OGD in rats
astrocytes

FLAP inhibitor MK-886 ↓ astrocyte proliferation and death [29]

OGD in rats
astrocytes

5-LOX inhibitor Zileuton ↓ astrocyte proliferation and death [29]

OGD in rats
astrocytes

5-LOX inhibitor Caffeic acid ↓ astrocyte proliferation and death [29]

Transient MCAO in
rats and mice

CysLTR-1
antagonist

Pranlukast

↓ neurological deficits, infarct volume, BBB disruption,
neuron loss in the ischemic core, astrocyte proliferation in
the boundary zone, and ischemia-induced glial scar for-

mation
↑ motor-sensory recovery

[15, 65,
68, 78]

Permanent MCAO in
rats and mice

CysLTR-1
antagonist

Pranlukast
↓ neurological deficits, infarct volume, edema,

BBB disruption, neuron degeneration, and MPO-positive
neutrophil accumulation

[49]

Transient MCAO in
rats and mice

CysLTR-1
antagonist

Montelukast
↓ infarct size, brain atrophy, neuron loss, behavioural
dysfunction, oxidative stress, inflammation, release

of glutamate, apoptosis, and lactate dehydrogenase activity
[80, 81]

Permanent MCAO in
rats and mice

CysLTR-1
antagonist

Montelukast
↓ infarct volume, brain edema, neuron density,

and neurological deficits
[6, 79]

Neonatal hypoxic-
ischemic brain
damage

CysLTR-1
antagonist

Montelukast
↓ ischemic cerebral and nerve damage

↑ behavior recovery of chronic ischemic brain damage
[82]

OGD in rats
astrocytes

CysLTR-1
antagonist

Montelukast ↓ astrocyte proliferation [29]

Transient MCAO in
rats

CysLTR-2
antagonist

HAMI 3379
↓ neurological deficits, lesion volume, edema,

and neuronal degeneration and loss
[50, 69]

OGD in PC12 cell
CysLTR-1/

CysLTR-2 dual
antagonist

Bay-u9773 ↓ apoptosis [62]

OGD in rats
astrocytes

CysLTR-2
antagonist

Bay CysLT2 ↓ astrocyte death [29]

OGD in rats
astrocytes

CysLTR-1/
CysLTR-2 dual
antagonist

Bay-u9773 ↓ astrocyte proliferation and death [29]

Alzheimer’s disease

Model Drug class Molecule Effect Reference

Tg2576 mice FLAP inhibitor MK-591
↓ Aβ peptide (Aβ) deposition, γ-secretase complex,
neuroinflammation, and microglia and astrocytes

activation
[120]

N2A-APPswe cells FLAP inhibitor MK-591 ↓ Aβ peptide (Aβ) deposition, γ-secretase complex [120]

Tg2576 mice 5-LOX inhibitor Zileuton ↓ Aβ peptide (Aβ) deposition, γ-secretase complex [121]

N2A-APPswe cells 5-LOX inhibitor Zileuton ↓ Aβ peptide (Aβ) deposition, γ-secretase complex [121]
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Table 1: Continued.

3xTg mice FLAP inhibitor MK-591
↓ Aβ peptide (Aβ) deposition, behavioural deficits,
neuroinflammation, and microglia and astrocytes

activation
[127]

Tg2576 mice FLAP inhibitor MK-591 ↓ brain tau phosphorylation [128]

Rat hippocampal
neurons treated with
Aβ1–42

5-LOX inhibitors
NDGA,
AA-861

Prevention of neuronal injury and accumulation of ROS [129]

Microinfusion of
Aβ1–42

CysLTR-1
antagonist

Montelukast
Improvement of memory impairment via inhibiting

neuroinflammation and apoptosis
[125]

Mouse cortical neu-
rons treated with
Aβ1–42

CysLTR-1
antagonist

Pranlukast Reverse Aβ1–42-induced cognitive deficit and AD features [130]

Microinfusion of
Aβ1–42

CysLTR-1
antagonist

Pranlukast ↓ apoptosis [130]

Mouse neurons
treated with Aβ1–42

CysLTR-1
antagonist

Montelukast
↓ proinflammatory factors and the apoptosis-related

proteins
[131]

Microinfusion of
Aβ1–42

CysLTR-1
antagonist

Pranlukast
Improvement of memory impairment via inhibiting

neuroinflammation and apoptosis
[132]

Parkinson’s disease

Model Drug class Molecule Effect Reference

MPTP-treated mice FLAP inhibitor MK-866
↓ toxicity of dopaminergic neurons; ↑ [3H]-dopamine

up-take
[137]

MPP+ treated SH-
SY5Y cell line

FLAP inhibitor MK-866
↓ toxicity of dopaminergic neurons

↑ [3H]-dopamine uptake and cell survival
[137]

LPS-treated mice
5-LOX/COX
inhibitor

Phenidone
↓ oxidative stress, microglial activation, and demise of the

nigral dopaminergic neurons
[139]

LPS-treated mice 5-LOX inhibitor Caffeic acid
↓ dopaminergic neurodegeneration and microglia

activation
[139]

Multiple sclerosis/experimental autoimmune encephalomyelitis

Model Drug class Molecule Effect Reference

PLP-induced EAE
mice

5-LOX inhibitor Zileuton
Delay of the onset and reduction of cumulative EAE

severity
[152]

MOG-induced EAE
mice

5-LOX inhibitor Zileuton
Delay of the onset and reduction of cumulative EAE

severity
[153]

Cuprizone-treated
mice

FLAP inhibitor MK-886 ↓ axonal damage, motor deficits, and neuroinflammation [149]

MOG-induced EAE
mice

CysLTR-1
antagonist

Zafirlukast
↓ CNS infiltration of inflammatory cells and symptoms of

EAE
[148]

MOG-induced EAE
mice

CysLTR-1
antagonist

Montelukast
↓ demyelination, leukocyte infiltration, secretion of IL-17,
permeability of the BBB, chemotaxis of T cells, and severity

of EAE
[148]

MOG-induced EAE
mice

Dual inhibitor of
LOX/COX
pathway

Flavocoxid
↓ CNS infiltration of inflammatory cells, infiltration and
differentiation of Th1+ and Th17+ cells, and symptoms of

EAE
[154]

Epilepsy

Model Drug class Molecule Effect Reference

Kainic acid rat model
5-LOX/COX
inhibitor

Phenidone
↓ seizure activity, neurotoxic signs, neuronal loss,

lipid peroxidation, and protein oxidation
[160,
166]

Kainic acid rat model
5-LOX/COX
inhibitor

BW755C ↓ severity of seizures and neurotoxicity [167]

Pilocarpine rat model 5-LOX inhibitor Zileuton ↓ spike–wave discharges [168]

PTZ-mice model
CysLTR-1
antagonist

Montelukast
↓ recurrent seizures, frequency of daily seizures,
BBB disruption, leukocyte migration, and mean

[162,
163]
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(see Figure 2). Taken together, these findings suggest that
CysLTs could mediate the acute ischemic neuronal injury
and the subsequent secondary injury mainly by promoting
microgliosis and astrocytosis.

Although the role of CysLTs in brain ischemia is
supported by several evidences, the mechanisms through
they mediate neuronal injury are not fully clarified. Indeed,
in vitro culture of neuron-like PC12 cells transfected with
CysLTR-1 and CysLTR-2 showed distinct sensitivities to
ischemic injury, which resulted prominent in CysLTR-2-
transfected cells [62], but neither CysLTR-1 nor CysLTR-2
were able to directly induce neuronal injury [46, 63]. More-
over, OGD/R-induced ischemic injury was not attenuated
by the selective CysLTR-2 antagonist HAMI 3379 and by
CysLTRs RNA interference in primary neurons [46]. Con-
flicting results were obtained by using the CysLTR-1 antago-
nist montelukast: this drug had no effect on neuronal
viability [63] and an only moderate effect on the neuronal
morphologic changes after OGD [64], while in another study
improved viability in OGD/R neurons [46].

Overall, these data suggest that the direct effect of
CysLTs on neurons causes only a mild type of injury;
nevertheless, CysLTs could indirectly mediate a more
severe neuronal injury in the presence of complex inter-
cellular interactions. Indeed, in neuron-microglial cocul-
tures, LTD4 was shown to induce neuronal injury [46].
Conditioned medium from microglia pretreated with
OGD/R and LTD4 also induced neuronal injury that
was inhibited by HAMI 3379 and CysLTR-2 short hair-
pin RNA (shRNA), more potently than montelukast.

These findings demonstrated the main role of microglial
CysLTR-2 in the induction of neuronal death compared
to CysLTR-1 [46].

On the contrary, the role of CysLTR-1 and CysLTR-2 in
astrocyte-mediated neuronal injury is still unclear. In vitro,
CysLTR-1 mediates astrocyte proliferation after mild
ischemia, whereas CysLTR-2 mediates astrocyte death after
more severe ischemia [29]. However, in neuron-astrocyte
cocultures, subjected to OGD/R and LTD4 exposure,
CysLTR-1 and CysLTR-2 antagonists were unable to
completely prevent astrocyte-mediated neuronal necrosis
[46]. Astrocyte reactivity seems instead to be mainly
mediated by CysLTR-1 rather than CysLTR-2. Indeed,
CysLTR-1 was involved in glial scar formation during the
chronic phase after focal cerebral ischemia [15, 65], and
CysLTR-1 antagonist, but not CysLTR-2, was able to
reduce the astrocyte response in the subacute phase after
brain ischemia [50].

Together with microglia and astrocytes, also endothelial
cells seem to contribute in CysLTR-mediated brain injury.
The CysLTR-1 is highly expressed in microvascular endothe-
lia at the ischemic boundary zone in rat [15] and in brain
tissue after trauma in human [21]. Furthermore, CysLTs
induced the disruption of blood-brain barrier (BBB) and
the subsequent development of cerebral edema, whose
progression was attenuated by CysLTR-1 and CysLTR-2
antagonists [66–69]. These data suggest that CysLTR antago-
nists may be critical in modulating the function of cerebral
microvascular endothelia and in preserving the integrity of
BBB against cerebral insults.

Table 1: Continued.

amplitude of EEG recordings during seizures.
↑ increased the latency to generalized seizures

PTZ-mice model
γ-Glutamyl

transpeptidase
inhibitor

1,2,3,4,
Tetrahydroisoquinoline

↓ kindled seizures and frequency of daily seizures [162]

Pilocarpine mice
model

CysLTR-1
antagonist

Montelukast
↓ kindled seizures and frequency of

daily seizures
[162]

Pilocarpine mice
model

γ-Glutamyl
transpeptidase

inhibitor

1,2,3,4,
Tetrahydroisoquinoline

↓ recurrent seizures and frequency of daily seizures [162]

Electrically kindled
seizure mice

CysLTR-1
antagonist

Montelukast ↓ recurrent seizures and frequency of daily seizures [162]

Electrically kindled
seizure mice

γ-Glutamyl
transpeptidase

inhibitor

1,2,3,4,
Tetrahydroisoquinoline

↓ recurrent seizures and frequency of daily seizures [162]

PTZ-mice model
CysLTR-1
antagonist

Pranlukast
↓ seizure susceptibility and mean

amplitude of
ictal EEG recordings

[163]

PTZ-mice model
CysLTR-1/

CysLTR-2 dual
antagonist

Bay- u9773
↑ increased the latency to generalized seizures

↓ mean amplitude of EEG recordings during seizures
[163]

Patients with intrac-
table partial seizures

CysLTR-1
antagonist

Pranlukast

↓ seizure frequencies, leakage of
proinflammatory

cytokines into CNS, and extravasation
of leucocytes,

normalizing serum MMP-9

[22]
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Overall, these findings lend support to the hypothesis
that a pharmacological modulation of CysLT pathway can
open new terrain for therapeutic approaches targeted at
attenuating local inflammation in order to modulate its
impact in cerebral ischemia.

2.1.1. Inhibitors of FLAP/5-LOX. The first in vivo experimen-
tal evidence of neuroprotection through postischemic
modulation of LT levels was obtained by using AA-861, a
selective inhibitor of 5-LOX, in a model of transient ische-
mia in gerbils [70, 71]. This effect was confirmed in a
model of permanent MCAO by the use of MK-886 and
zileuton, selective inhibitors of FLAP and 5-LOX, respec-
tively. MK-886 decreased the acute infarct size [72],
whereas zileuton attenuated neurological dysfunction and
cerebral infarction, probably inhibiting inflammatory

reaction, neuronal apoptosis, and BBB disruption [73–
75]. Nevertheless, despite these promising results, the asso-
ciation between LTs and brain ischemia is not fully dem-
onstrated. In fact, conflicting results were obtained by
using models of FLAP or 5-LOX knockout mice since
one study reported an improvement of stroke damage in
FLAP knockout mice [76] whereas another one showed
no difference in the infarct size between 5-LOX knockout
and wild-type MCAO mice [77].

2.1.2. CysLTR-1 Antagonists. Despite the evidence that
CysLTR-2 is the main CysLTR subtype in the normal brain,
the lack of selective CysLTR-2 antagonists limited, for long
time, the clear understanding of the role of CysLTR-2 in
cerebral injury. Hence, the first line of data, from experi-
ments carried out with CysLTR antagonists, were limited to

CysLTR-1 Day 0 Day 1 Day 3 Day 14

Penumbra

Ischemia

Ischemic core

(a)

Day 0
Ischemia

Penumbra

Ischemic core

Day 1 Day 3 Day 7 Day 14CysLTR-2

Astrocyte

Neuron

Endothelium

Microaglia

(b)

Figure 2: Spatio-temporal expression of the CysLT1 and CysLT2 receptors after focal cerebral ischemia in rodents. (a) In the control brain,
CysLT1 receptor is weakly expressed (time 0) [15, 61]. Following middle cerebral artery occlusion (MCAo), its expression, at the ischemic
core level, is biphasic: at day 1 postischemia, the receptor is mainly expressed in neurons (red wave) [15, 60, 61] and, to a lesser extent, in
astrocytes (orange) [15]; between 7 and 14 days postischemia, it increases in microglia (blue) [15]. In the boundary zone, that is, the
“penumbra,” the receptor’s expression is mainly expressed in neurons (red wave) at 3 days [60] and then it increases over time in most
hypertrophic astrocytes (yellow) [15] and microvascular endothelial cells (brown) [15], reaching a peak after 14 days. (b) In the healthy
brain, the CysLT2 receptor is primarily expressed in GFAP+ astrocytes around the lateral ventricles and in the cortex [18]. In the ischemic
core, one day postischemia, the expression of CysLT2 receptor shows a rapid and transient peak in neurons (red) [18, 60] and then
gradually disappeared over 3 days. In the hypertrophic microglia (blue), it slowly increases over time and reaches a peak after 14 days
[18]. In the penumbra (boundary zone), following its induction at day 0, the receptor’s expression is mainly expressed in neurons (red
wave) at 3 days [60] and then it increases over time in astrocytes [18]. After one week, its expression also increases in the microglia [18].
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CysLTR-1. Pranlukast inhibited acute, subacute, and chronic
ischemic injury in the brains of mice and rats after focal cere-
bral ischemia [15, 49, 65, 78]. Moreover, the postischemic
treatment with pranlukast exerted a long-term protective
effect in MCAOmice, attenuating the lesion volume, increas-
ing the neuron density, inhibiting the ischemia-induced glial
scar formation, and finally improving the neurological defi-
cits and the motor-sensory recovery [65]. Montelukast atten-
uated infarct volume, brain atrophy, neuron loss, and
behavioural dysfunction after focal cerebral ischemia in both
mice and rats [6, 79, 80]. It also exerted prophylactic effects in
global cerebral ischemia/reperfusion injury, decreasing
infarct size, oxidative stress, inflammation, release of gluta-
mate, apoptosis, and lactate dehydrogenase activity [81]. In
neonatal hypoxic-ischemic rats, montelukast showed neuro-
protective effects, likely inhibiting apoptosis through the
increase of TERT, the catalytic center of the telomerase com-
plex, and Bcl-2 [82].

In summary, two possible mechanisms could be respon-
sible in mediating the effect of CysLTR-1 antagonists on cere-
bral ischemia: (i) the reduction of BBB disruption and
inflammation in the acute/subacute phases [15, 68, 83] and
(ii) the attenuation of astrocyte proliferation and related glial
scar formation in the chronic phase [29, 65].

2.1.3. CysLTR-2 Antagonists. Recently, Bay CysLT2 and
HAMI 3379 have been reported to selectively antagonize
CysLTR-2 [84, 85]. The intracerebral ventricular (i.c.v.)
injection of HAMI 3379 showed to protect against acute
brain injury inMCAO rats. This treatment attenuated neuro-
logical deficits and reduced lesion volume, edema, and neu-
ronal degeneration [69]. HAMI 3379 was also effective
when intraperitoneally administered within 1 hour after
ischemia in MCAO rats [50]. In the acute phase, HAMI
3379 attenuated neuronal loss, improved neurological score,
and reduced cytokine levels in serum and cerebrospinal fluid,
and in the late phase, it strongly decreased the microglia/
macrophage-associated postischemic inflammation, without
affecting astrogliosis. The effect of the CysLTR-2 antagonists
on acute ischemic brain injury could be explained by at least
four possible mechanisms: (i) a direct protective action on
neurons [62]; (ii) protection to astrocytes, since it was
reported that in severe ischemic injury, the activated
CysLTR-2 could induce astrocyte death [29]; (iii) prevention
of the development of cytotoxic edema [69], effect that in
astrocytes is mediated by upregulating the water channel
protein AQP4, which is induced by LTD4 [86] and by
ischemia-like injury [87]; and (iv) attenuation of microglial
activation [50]. Potential interactions between CysLTR-1
and CysLTR-2 need also to be considered. Indeed, it was
reported that CysLTR-2 could limit the formation of
CysLTR-1 homodimers and control its cellular surface
expression [88, 89].

2.1.4. The CysLTR-Independent Effects. Despite the evidence
of a direct involvement of CysLTRs in brain ischemia, we
cannot rule out that the neuroprotective effects could be par-
tially ascribed to CysLTR-independent mechanisms. Indeed,
it is reported how part of the effects of CysLTs are mediated

by GPR17. This receptor is phylogenetically related to
CysLTRs [6, 90, 91], activated by endogenous cysteinyl
leukotrienes (LTD4 and LTC4) [6, 92] and inhibited by the
CysLTR-1 antagonist montelukast [6, 90]. The GPR17
colocalizes and dimerizes with CysLTR-1 and negatively reg-
ulates CysLTR-1-mediated effects [93, 94]. It was also upreg-
ulated in damaged tissues [6], and the knockout of GPR17
reduced neuronal injury after ischemia [90, 95]. Moreover,
in differentiated PC12 cells, the knockdown of GPR17 abol-
ished LTD4-induced effect on cell viability [96].

Restricting tomontelukast, its neuroprotectiveCysLTR-1-
independent effects could be also due to its ability to inhibit
phosphodiesterases (PDEs) [97]. Indeed, the decreased activ-
ity of PDEs may be beneficial to ischemic neuronal injury,
since the resultant accumulation of cAMP protects neu-
rons from ischemic brain injury [98, 99] and inhibitors
of PDEs have protective effects on neurons [100, 101]. In
addition, montelukast was shown to inhibit P2Y receptors
[9, 102, 103] and oxidative stress [104–106], which is the
major cause of the ischemic injury [107–109]. Taken
together, these data add new evidences for the neuropro-
tective effects of CysLTR-1 antagonists and highlight the
need for further studies that will define the possibility to
use CysLTR-1 antagonists for treatment of stroke patients.
Up to now, there is only a recent cohort study that
showed a reduced risk for stroke associated with montelu-
kast use in patients with a prior stroke [110].

2.2. Alzheimer’s Disease. Alzheimer’s disease (AD) is the
most common aging-associated neurodegenerative condition
resulting in progressive loss of memory and cognition and
affecting worldwide over 35 million of individuals [111]. It
is pathologically characterized by extracellular deposit of β-
amyloid (Aβ) plaques and intracellular neurofibrillary tan-
gles (NFTs) of tau protein [112, 113]. Altered inflammatory
reactions and dysregulation of inflammatory cytokines as
well as immune cell (i.e., microglia and astrocytes) activation
are also strongly associated with AD pathology and cognitive
dysfunction [114, 115].

Postmortem studies have shown that 5-LOX expression
is upregulated in human brain of AD patients [116, 117].
Experiments on animal models have provided evidence on
the relevant role of 5-LOX in the development of AD. In
detail, the overexpression of this enzyme resulted in a
worsening of amyloidosis in Tg2576 mice [118] and in an
exacerbation of memory deficits, amyloid plaques, and tau
tangles in triple transgenic mice (3xTg-AD) [119]. Of note,
these 5-LOX-induced effects seem to be mediated by an
increase of γ-secretase complex [119]. The direct involvement
of 5-LOX in the γ-secretase pathway is confirmed by findings
of both genetic and pharmacological inhibition of 5-LOX that
reduced the activity ofγ-secretase [117, 120, 121].The increase
of γ- andβ-secretase occurs also in the presence of leukotriene
metabolites of 5-LOX, such as 5-HPETE, LTC4, and LTD4
[117, 122]. Furthermore, in vivo and in vitro studies showed
that LTD4-induced upregulation of CysLTR-1 is correlated
with increased Aβ and amyloid precursor protein (APP) and
with cognitive dysfunctions in mice [122–124]. In parallel,
the microinfusion of Aβ1–42, a more neurotoxic Aβ species,
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resulted in significant increase in CysLT1-R expression in the
hippocampus and cortex [125].

Genetic ablation of 5-LOX clearly reduced Aβ brain
deposition in Tg2576 mice and in dexamethasone-induced
Aβmice [117, 126], while pharmacological studies using spe-
cific FLAP and 5-LOX inhibitors, MK-591 and zileuton, sup-
ported the genetic knockout findings showing in vivo
ameliorative effect on AD phenotypes [120, 121, 127, 128].

The inhibition of 5-LOX also exerts beneficial effects on
AD pathology-induced oxidative and inflammatory insult.
In cultured rat hippocampal neurons, the pharmacological
5-LOX pathway inhibition resulted in reduced Aβ-induced
reactive oxygen species generation [129]. Tg2576 mice
receiving MK-591 showed a reduction in brain levels of IL-
1β and in the immunoreactivity for CD45, a marker of
microgliosis, and GFAP, a marker of astrogliosis [120].

Data indicate that pathological AD symptoms are attenu-
ated through administration of selective CysLTR-1 antago-
nists such as pranlukast and montelukast. In primary
culture of mouse neurons, Aβ1–42 markedly increased
CysLTR-1 expression, which was associated with cytotoxic-
ity, inflammatory, and apoptotic responses. Incubation with
pranlukast and montelukast reversed the upregulation of
Aβ1–42-induced CysLTR-1 and NF-kB p65 and activated
caspase-3 expression and the downregulation of Bcl-2
[130,131]. In bilateral i.c.v. Aβ1–42-injected mice, pranlukast
and montelukast reversed the Aβ1–42-induced cognitive def-
icits associated to inflammatory and apoptotic responses, as
evidenced by decreased NF-kB p65, TNF-α, IL-1β, and
caspase-3 in the hippocampus and cortex [125, 132]. More-
over, in other studies, montelukast restores learning and
memory function in old rats, in which cognition is compro-
mised and the hippocampus concentrations of 5-LOX tran-
scripts and of leukotrienes were increased [27, 133].
Although the inhibition of CysLTR-1 could explain the
maintained BBB integrity and the reduced age-associated
neuroinflammation, in particular microglial reactivity, the
authors suggest that montelukast promotes hippocampal
neurogenesis, in particular progenitor cell proliferation, most
likely through blocking GPR17 [27].

2.3. Parkinson’s Disease. Parkinson’s disease (PD) is a
common neurodegenerative disease, characterized by the
depletion of striatal dopamine due to degeneration of
dopaminergic neurons in the substantia nigra of the brain
and manifested by the movement disorders in elderly pop-
ulations. Brain inflammation and oxidative stress were
reported to play important roles in the pathogenesis of
PD [134–136].

Recent evidences suggest an involvement of 5-LOX in
nigrostriatal dopaminergic injury. Indeed, 5-LOX upregula-
tion was shown in MPTP-induced animal model of PD
[137] and the overactivation of the 5-LOX pathway may lead
to neurodegeneration by lipid peroxidation [138]. On the
contrary, the inhibition of 5-LOX attenuates LPS-induced
oxidative stress and dopaminergic neurodegeneration [139].
Furthermore, MK-886 treatment antagonized the MPP+-
induced toxicity of dopaminergic neurons in SH-SY5Y cell
line, a common cellular model for PD, and in midbrain

neuron-glia cocultures [137]. Of note, LTB4, but not LTD4
or 5-HETE, enhanced the MPP+-induced cytotoxicity in the
rat midbrain culture. MK-866 protects also neurons against
MPTP-induced neurotoxicity in mice [137].

A recent study reported that CysLTR-1, CysLTR-2, and
GPR17 are localized in dopaminergic neurons of healthy
mouse brain [140]. In MPTP-treated mice, the number of
CysLTR-1+, CysLTR-2+, and GPR17+ dopaminergic neurons
was significantly reduced, suggesting an involvement of these
receptors in this animal model of PD.

2.4. Multiple Sclerosis/Experimental Autoimmune
Encephalomyelitis.Multiple sclerosis (MS) is a chronic inflam-
matory neurological disease of the CNS, characterized by
recurrent andprogressive autoimmunity-mediated demyelin-
ation, and resulting in severe infiltrationofCD4+Tcells, devel-
opment of sclerosis, oligodendrocyte damage, and, ultimately,
axonal loss [141, 142]. Brain atrophy, one of themajor features
of thedisease, occurs in the advanced stage of thedisease [143].

The role of arachidonic acid cascade in the demyelination
of the CNS was suggested by studies utilizing animal models
of experimental autoimmune encephalomyelitis (EAE) [144,
145]. Microarray analysis studies indicated that the mRNA of
5-LOX is upregulated in brain lesions of patients with pri-
mary progressive and with relapsing-remitting MS (RRMS)
[146] and in the peripheral blood cells of patients with RRMS
during the relapse and the remission phases [147]. These
results are corroborated by data obtained with immunohisto-
chemistry analysis showing the presence, in the active and
chronic inactive inflammatory lesions, of macrophages
strongly positive for 5-LOX staining [146]. Gene and protein
expressions of 5-LOX are also increased in CNS of experi-
mental autoimmune encephalomyelitis (EAE) [146, 148]
and cuprizone-treated mice [149], the widely used animal
models utilized to mimic demyelination and MS.

Notably, the concentration of 5-LOX-derived LTB4, but
not of CysLTs (LTC4, LTD4, and LTE4), was significantly
increased in CSF of patients with clinically active MS [150].
Contrary, previous studies reported higher levels of LTC4
in the CSF of MS patients likely due to the less accurate ana-
lytical techniques utilized [150, 151]. In EAEmice, the CysLT
levels in both serum and CSF were significantly increased
after disease onset, whereas did not change significantly in
the brain and spinal cord, although the trends of increase
could be observed [148]. Moreover, LTD4 showed a dose-
dependent chemotactic activity on splenocytes, in particular
those of CD4+ cells, from EAE mice [148].

The CysLTR-1 and CysLTR-2 expression was found to be
upregulated in the brain after disease onset in EAE mice
[148]. CysLTR-1 started to increase from the onset of the
disease and kept increasing throughout the whole process
also in spinal cord.

There are several evidences that 5-LOX pathway block-
ade could ameliorate the pathological development of MS.
In EAE mice, the blockade of the cytosolic phospholipase
A2α and of its downstream enzyme 5-LOX was found to
ameliorate the disease pathogenesis during the effector
phase of EAE [152] and to delay the onset and reduce
cumulative severity of the pathology [153]. Although
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MK-886 did not attenuate demyelination in cuprizone-
treated mice, the pharmacological inhibition of 5-LOX
improved axonal damage and motor deficits related to
MS pathology [149].

CysLTR-1 antagonists montelukast and zafirlukast were
shown to ameliorate clinical symptoms in EAE mice [148].
In detail, montelukast reduced the demyelination and leuko-
cyte infiltration in the spinal cord sections, the secretion of
IL-17 from myelin oligodendrocyte glycoprotein-specific T
cells, the permeability of the BBB, and the chemotaxis of T
cells. Interestingly, montelukast was still able to reduce the
severity of EAE when given after the onset of the disease,
suggesting, in addition to the preventive effect, also a
possible therapeutic benefit of this drug. Relevantly, the
infiltration of Th1+ and Th17+ cells in the inflamed
area of the brain was reduced by the dual inhibitor
of LOX/COX pathway flavocoxid and by montelukast
in EAE mice [148, 154].

Finally, since GPR17 was found to be reexpressed or
upregulated in demyelinating lesions in EAE and human
MS plaques [155], GPR17 and purinergic signalling has been
strongly suggested as targets for new reparative approaches
in MS [155–157].

2.5. Epilepsy. Accumulating clinical and experimental evi-
dence suggests that inflammatory mediators play a relevant
role in the pathophysiology of epilepsy [158, 159]. Neverthe-
less, only few studies have investigated the role for LOX-
derived arachidonic acid metabolites in epilepsy [160–162].
Leukotriene levels were found to increase in a time-
dependent manner in the brain during kainate-induced sei-
zures in rats [160], and LTD4 i.c.v. injection facilitated pentyl-
enetetrazol- (PTZ-) induced seizures and increased BBB
permeability inmice [163]. This effect could be relevant, since
magnetic resonance imaging studies in patients with posttrau-
matic epilepsy demonstrated that the site of increased BBB
permeability colocalized with the presumed epileptic focus
[164] and animal studies found a positive correlation between
the extent of BBB opening and the number of seizures [165].

Pharmacological inhibition of LOX using dual inhibitors
of LOX/COXpathway phenidone [160, 166], which decreased
the production of CysLTs, or BW755C [167] attenuated the
seizure activity. Similarly, zileuton was shown to decrease
spike-wave discharges in pilocarpine epileptic rats [168],
strongly suggesting that leukotrienes play a role in epilepsy.

In line, montelukast and 1,2,3,4, tetrahydroisoquinoline,
a LTD4 synthetic pathway inhibitor, suppressed the develop-
ment of kindled seizures, as well as pilocarpine-induced
spontaneous recurrent seizures in mice [162]. Bay-u9973, a
nonselective CysLT receptor antagonist, montelukast, and
pranlukast increased the latency to generalized seizures and
decreased the mean amplitude of electroencephalogram
(EEG) recordings during seizures in PTZ-injected mice
[163]. Furthermore, montelukast prevented the PTZ-
induced BBB disruption and leukocyte infiltration.

Clinical evidence highlights the efficacy of pranlukast in
patients with intractable partial epilepsy. In fact, pranlukast
reduced seizure frequencies probably normalizing MMP-9
in serum, reducing leakage of proinflammatory cytokines

into CNS, and inhibiting extravasation of leucocytes from
brain capillaries [22].

3. Conclusion

The interest in the field of LT research was traditionally
focused on their effects on asthma and allergic disorders.
Over the years, accumulating data have highlighted the
involvement of these inflammatory mediators—and in par-
ticular of the CysLTs and their receptors—in a broader range
of inflammation-associated diseases. Among them, the pres-
ence of elevated levels of CysLTs in CNS lesions, the evidence
that polymorphisms within the LT biosynthesis pathways are
associated with an increased risk of cerebral pathological
events and the accumulating data obtained in animal studies,
also suggested a role for CysLTs in cerebrovascular diseases.

Robust data sustain the role of this pathway in brain
ischemia; nevertheless, to elucidate the involvement of the
CysLT pathway in the other neurodegenerative disorders,
further efforts, in experimental and clinical investigation,
are needed. The antileukotriene drugs had been approved
for the treatment of asthma more than 20 years ago, and
promising evidence indicate their beneficial effects in the
treatment of neurodegenerative disease. They show a limited
toxicity and a good therapeutic-to-toxic ratio; nevertheless,
before hypothesizing a translation to clinic, further studies
are needed to underlie their molecular mechanism(s) and
demonstrate the potential clinical benefits in the treatment
of CNS disease. Moreover, remains to explore how other
receptors able to bind the CysLTs, such as GPR17, could
influence the development of CNS disease and to define their
eventual therapeutic value.
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