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Extracellular vesicles, phospholipid bilayer-membrane vesicles of cellular origin, are
emerging as nanocarriers of biological information between cells. Extracellular vesicles
transport virtually all biologically active macromolecules (e.g., nucleotides, lipids, and
proteins), thus eliciting phenotypic changes in recipient cells. However, we only
partially understand the cellular mechanisms driving the encounter of a soluble ligand
transported in the lumen of extracellular vesicles with its cytosolic receptor: a step
required to evoke a biologically relevant response. In this context, we review herein
current evidence supporting the role of two well-described cellular transport pathways:
the endocytic pathway as the main entry route for extracellular vesicles and the
autophagic pathway driving lysosomal degradation of cytosolic proteins. The interplay
between these pathways may result in the target engagement between an extracellular
vesicle cargo protein and its cytosolic target within the acidic compartments of the cell.
This mechanism of cell-to-cell communication may well own possible implications in the
pathogenesis of neurodegenerative disorders.

Keywords: aggregation, autophagy, cargo, cell-to-cell communication, endocytosis, extracellular vesicles,
lysosome, neurodegeneration

INTRODUCTION

In multicellular organisms, cell-to-cell communication is a cardinal process that coordinates and
synchronizes cellular activities, ensuring the correct function of tissues, organs, and ultimately
the whole system. A broad variety of mechanisms has evolved to accomplish the transmission
of information between neighboring or distant cells. Among these, lipid bilayer-membrane

Abbreviations: AD, Alzheimer disease; AEP, asparagine endopeptidase; ALS, amyotrophic lateral sclerosis; AP2, adaptor
protein 2; ATG, autophagy-related; CAME, caveolin-mediated endocytosis; CLME, clathrin-mediated endocytosis; CMA,
chaperone-mediated autophagy; CQ, chloroquine; EIPA, 5-(N-ethyl-N-isopropyl)amirolide; ESCRT, endosomal sorting
complex required for transport; EVs, extracellular vesicles; FTLD, frontotemporal lobar degeneration; GBA, beta-
glucocerebrosidase; GSK3beta, glycogen synthase kinase 3 beta; HD, Huntington disease; HSC70, chaperone protein heat
shock cognate 70; ILVs, intraluminal vesicles; LAMP2A, lysosomes-associated membrane protein type 2A; LC3, microtubule-
associated protein light chain 3; LIR, LC3-interacting region; MCL, mantle cell lymphoma; MHC-II, major histocompatibility
complex II; mTOR, mammalian target of rapamycin; MVBs, multivesicular bodies; NFTs, neurofibrillary tangles; NHE,
Na+/H+ exchanger; TGFbeta1, transforming growth factor beta1; PD, Parkinson disease; PS, phosphatidylserine; RGD, Arg-
Gly-Asp; RVG, rabies virus glycoprotein; TSE, transmissible spongiform encephalopathies; UBA, ubiquitin-associated; UPS,
ubiquitin-proteasome system.
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nanovesicles released from cells act as vectors for short- and
long-distance transport of biological messages. First described in
the early 1980s as secreted exosomes derived from endosomes
(Harding et al., 1983; Pan and Johnstone, 1983; Pan, 1985), their
function was first proposed as an alternative degradative path
through which cells expel dispensable intracellular molecules.
The subsequent advances in isolation and characterization
procedures depicted a more complex and heterogeneous
population of secreted nanovesicles, for which the generic
term “extracellular vesicles” (EVs) was coined (György et al.,
2011). The first concept on their function was challenged by
the observation that EVs secreted from B cells induce T-cell
proliferation by activating major histocompatibility complex
II (MHC-II) receptors carried on their surface (Raposo
et al., 1996). More recently, a strong support for a relevant
role of macromolecules transported by EVs in cell-to-cell
communication is reflected by the demonstration that nucleic
acids synthetized and encapsulated in EVs by the donor cells are
active in recipient cells (Valadi et al., 2007). It is now established
that EVs are required for multiple cellular processes in health and
disease by contributing to immunomodulation, inflammation,
cancer, and neurodegeneration (Mathieu et al., 2019). EVs even
find applications as nanocarriers for therapeutic agents (Luan
et al., 2017; Yang et al., 2018).

At least three main criteria can be defined for EVs to be
accounted as functional vectors in cell-to-cell communication:
secretion by the donor cell after selective macromolecule
encapsulation, transport of the cargo to the target cell, and release
of the transported messenger in the recipient cell for interaction
with its effector. To date, the efforts in the field were primarily
directed to understand the biogenesis and the mechanisms for
the packaging of macromolecules in EVs (Raposo and Stoorvogel,
2013; Colombo et al., 2014; van Niel et al., 2018; Mathieu et al.,
2019). EVs comprise small EVs (with a diameter of 30–150 nm)
or large EVs (>150 nm) that mostly depend on their origin from
endosomes or the cell surface, respectively (Colombo et al., 2014).
Exosomes, a class of small EVs, are born as intraluminal vesicles
(ILVs) by inward membrane budding during the maturation of
multivesicular bodies (MVBs), a process that is regulated by
the endosomal sorting complex required for transport (ESCRT)
(Colombo et al., 2014; Cocucci and Meldolesi, 2015; Mathieu
et al., 2019). The ESCRT-0 and ESCRT-I subcomplexes sort
cargo molecules in membrane microdomains, and the ESCRT-
II and ESCRT-III subcomplexes drive membrane budding
and fission. ILVs are also generated by ESCRT-independent
mechanisms. This can occur by the hydrolysis of sphingomyelin
to ceramide and the creation of membrane microdomains;
further metabolism of ceramide to sphingosine 1-phosphate
activates its receptor that sorts the cargo of ILVs (Colombo
et al., 2014). In addition, members of the tetraspanin family,
which are efficiently sorted to the endosomal pathway, appears
involved in the sorting of EV cargo (van Niel et al., 2011). The
fusion of MVBs at the cell surface results in exosome secretion.
Large EVs, in particular microvesicles, predominantly originates
from the outward budding of the plasma membrane (van Niel
et al., 2011). Cargo packaging entails that macromolecules are
first targeted to the respective production site. Then, with a

process requiring molecular clustering and budding, they end
up in EVs following membrane fission. The proteins involved
in the biogenesis of EVs eventually become themselves cargo
molecules and can be utilized as markers characterizing the origin
of EVs (Colombo et al., 2014; Mathieu et al., 2019). On the other
hand, although the delivery of cargo macromolecules to recipient
cells is a critical step required for absolving the biological
activities associated to EVs, the mechanisms involved in this
process remain largely elusive. Macromolecules transported on
the exterior of EV may directly interact with surface membrane
receptors, as it may be the case for MHC-II receptors. For a
luminal EV cargo, it is plausible to assume that the cytosol is the
main site for intracellular target engagement. However, current
evidence suggests that this is a possible but rather rare event
(Ridder et al., 2014; Zomer et al., 2015; Sterzenbach et al., 2017).
Inadequate detection sensitivity is a plausible technical limitation.
In fact, circumstantial evidence indicates that a measurable
biological effect is counterbalanced by the difficulty to detect
a cargo molecule in the cytosol of the recipient cell (Zomer
et al., 2015; Steenbeek et al., 2018; Pedrioli et al., 2020). Lack
of sensitivity may result because recipient cells represent only a
minor subpopulation able to decipher an EV message. In such a
case, EVs specifically targeting a specialized cell pool present in an
organ may reduce EV cargo release to a rare event that still holds
a significant biological relevance (Ridder et al., 2014; Zomer et al.,
2015). At the same time, a sporadic but continuous transport
over years of pathological protein forms between cells may well
contribute to a slow progression and propagation of disease
as in the case of neurodegenerative disorders. That being said,
an infrequent cytosolic EV cargo release does not exhaustively
explain the large body of evidence, suggesting a cardinal role
of EVs in cell-to-cell exchange of macromolecules. Nevertheless,
given the broad heterogeneity of luminal cargos, there is the need
to assess whether alternative intracellular locations may account
for the release and the target engagement of biologically active
EV cargo macromolecules.

LOOKING FOR THE TARGET CELL

The rising interest around EVs in recent years is linked to
the increasing evidence of phenotypic changes in recipient
cells apt to translate a message transported by these vesicles
(Valadi et al., 2007; Ridder et al., 2014; Zomer et al., 2015;
van Niel et al., 2018; Mathieu et al., 2019; Wang et al.,
2019; O’Brien et al., 2020). The molecular process exploited
by EVs to target recipient cells remains a matter of debate,
possibly because different mechanisms may coexist. Human
carcinoma cells were shown to non-selectively respond to EVs
originating from different cell types (Horibe et al., 2018). The
composition and modifications of external components may
affect the overall charge of the EV surface, thus reducing the
natural electrostatic repulsion of membranes (Williams et al.,
2019). This process may become more relevant once EVs are
internalized into the acid environment of endocytic organelles
(Winchester, 2005). Besides a randomly determined event, a
combination of EV and cell origin, EV subtype, and cell type
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and state may confer specificity to the recognition of EVs by
the recipient cell, a mechanism defined as tropism of EVs
(Kooijmans et al., 2016). EVs derived from B cells in mantle
cell lymphoma (MCL) are readily and preferentially taken up
by other MCL cells (Hazan-Halevy et al., 2015). In the nervous
system, EVs secreted from oligodendrocytes have a specific
tropism for microglia cells (Fitzner et al., 2011). In both cases,
preferential EV internalization may occur because of active
intake mechanisms characterizing these cell types. EV docking
at the plasma membrane may be facilitated by cell membrane
adhesion receptors recognizing macromolecules exposed on the
surface of EVs. Tetraspanins, in particular CD9 and CD81,
which are highly enriched in the lipid membranes of EVs,
appear as possible candidates (Morelli et al., 2004). Additional
proteins exposed on the EV surface participate in ligand-binding
mechanisms. On dendritic cell–derived EVs, the beta-2 integrin
family of proteins (CD18/CD11 a, b), the intercellular adhesion
molecule-1 and -2 (ICAM-1/-2), and the serum milk fat globule-
EGF factor 8 facilitate the interaction with recipient cells (Théry
et al., 1999, 2001; Nolte-‘T Hoen et al., 2009; Genschmer et al.,
2019). Glycans as well may contribute to the EV and cell
recognition process (Williams et al., 2018, 2019; Dusoswa et al.,
2019). Glioblastoma-derived EVs are decorated with glycans
recognized by sialic acid–binding immunoglobulin-like lectin
receptors, an essential and specific step for their capture by
dendritic cells (Dusoswa et al., 2019). To add complexity to the
system, the heterogeneous size and composition of EVs may
influence their recognition and uptake by recipient cells.

As all cell types secrete EVs, the extracellular milieu is rich in
a large variety of EVs. A productive message possibly covering
a distant radius of action requires that the target cell developed
a precise instrument of docking and internalization of freely
circulating EVs. The elucidation of the fate of EVs once docked on
the cell surface is of critical importance in the context of disease.
Understanding the molecular and cellular mechanisms involved
in a pathogenic cell-to-cell communication mediated by EVs may
offer new approaches for the development of specific treatments.

“EATING AND DRINKING” EVs

The variability in EV uptake routes may depend on the
combination of multiple factors contributed by macromolecules
present on the surface of both EVs and recipient cells
(Mulcahy et al., 2014). Most experimental evidence suggests that
endocytosis is the major uptake path (Koumangoye et al., 2011;
Nanbo et al., 2013; Mulcahy et al., 2014; Heusermann et al.,
2016; Nakase et al., 2016; Durak-Kozica et al., 2018; Yao et al.,
2018). EVs are internalized by dendritic cells and fuse with
membranes of the endocytic pathways releasing their content
into the cytosol (Montecalvo et al., 2012). However, once taken up
by recipient cells, EVs can also be either recycled and released in
the extracellular space or targeted to lysosomes for degradation.
For instance, upon internalization by interconnected neurons,
fusion events between exogenous and endogenous EVs were
found to potentially increase the radius of action of EVs
and the consequent pathogenicity in the context of Alzheimer
disease (AD) (Polanco et al., 2018). In contrast, microglia take
up oligodendrocyte-derived EVs through a macropinocytotic

mechanism on their route to lysosomes for degradation (Fitzner
et al., 2011), consistent with their role in cleaning the extracellular
space from cell debris.

The term “endocytosis” was coined by Christian de Duve
in the 1960s to describe a cellular process in which the
invagination of the limiting plasma membrane leads to the
intracellular formation of vesicles encapsulating extracellular
material (Fürthauer and Smythe, 2014). Various functions are
now assigned to endocytosis, a key homeostatic mechanism
that regulates major cellular processes such as provision of
educts for biochemical synthesis of macromolecules, receptor
down-regulation, intracellular signaling, antigen presentation
(Miaczynska et al., 2004; Miaczynska and Stenmark, 2008;
Ellinger and Pietschmann, 2016), or as the main route for EV
internalization (Koumangoye et al., 2011; Nanbo et al., 2013;
Mulcahy et al., 2014; Heusermann et al., 2016; Nakase et al., 2016;
Durak-Kozica et al., 2018; Yao et al., 2018). Indeed, EV uptake
through this route is rapid, with EVs identified inside cells within
few minutes after their application to the culture medium (Feng
et al., 2010). EV uptake requires an active process as shown by
its absence in cells kept at 4◦C or fixed with paraformaldehyde
(Fitzner et al., 2011; Pan et al., 2012) and is therefore modulated
by the same mechanisms regulating endocytosis (Joseph and
Liu, 2020). Alternatively, it may occur by bulk flow, similarly,
to the fluid phase-uptake marker dextran (Tian et al., 2014a;
Nakase et al., 2016). Once internalized, EVs locate with various
markers of the endocytic pathway. For instance, EVs derived
from Epstein–Barr virus–infected B cells and tracked through
a fluorescent lipophilic dye localize, at increasing time points,
with RAB5, RAB7, and CD63-positive endocytic organelles of
recipient epithelial cells (Nanbo et al., 2013). EVs are observed
to enter human primary fibroblasts via filopodia and travel along
the endocytic pathway and end their route, after scanning the
endoplasmic reticulum, in lysosomes (Heusermann et al., 2016).
Consistent with this, EVs appear to exploit the endocytic pathway
to travel from the periphery, rich in early endosomes, toward the
perinuclear area, rich in late endosomes and lysosomes, or they
are sorted and recycled by secretion at the plasma membrane
(Mercer et al., 2010; Durak-Kozica et al., 2018), as described for
protein receptors (Gonda et al., 2019). Indeed, EVs (and viral
particles) are found within lysosomes of recipient cells as soon as
1 h after application (Koumangoye et al., 2011; Zhou et al., 2011;
Yao et al., 2018). This close proximity with the nucleus is hijacked
for the delivery of viral genomic material to “the control center
of the cell” and may hint to a possible shared delivery mechanism
also used by EVs (Mercer et al., 2010). Endocytosis is a broad term
that includes a range of internalization pathways that include
cell eating (“phagocytosis”) and cell drinking (“pinocytosis”)
processes, both involved in EV internalization (Feng et al., 2010;
Tian et al., 2014a; Ellinger and Pietschmann, 2016; Holder et al.,
2016; Chiba et al., 2018; Horibe et al., 2018; Ogese et al., 2019;
Verweij et al., 2019; Figure 1).

Phagocytosis
Phagocytosis is the main internalization path shared by
professional phagocytic cells, which embrace neutrophils,
macrophages, and dendritic cells (Savina and Amigorena, 2007;
Richards and Endres, 2014). Phagocytosis is tightly regulated,
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FIGURE 1 | Cellular pathways exploited for the delivery of EV cargo. EVs reaching recipient cells can interact with cell surface receptor or fuse with the limiting
membrane and deliver the soluble cargo directly to the cytosol. Alternatively, EVs are internalized through macropinocytosis, micropinocytic processes such as
clathrin-mediated endocytosis, and caveolin-mediated endocytosis or phagocytosis. Internalized EVs transit through endosomal compartments when directed to
lysosomes. Within endo-lysosomal organelles, ligands present on the EV surface can induce an intracellular signaling cascade through a ligand–receptor
mechanism. Moreover, cytosolic delivery of EV cargo may occur by fusion with the membrane of these organelles. The action of acidic hydrolases may liberate the
EV cargo for degradation, interaction with other endo-lysosomal components, or recycling to the extracellular milieu by back fusion with the cell membrane. Symbols
used are specified in the legend on the bottom of the scheme.

and it requires ligand–receptor–mediated recognition followed
by the active ingestion of large extracellular particles (>0.5 µm)
into intracellular organelles called phagosomes. These latter are
then directed to fuse with lysosomes to generate phagolysosome
(Stuart and Ezekowitz, 2005; Kuhn et al., 2014; Kettler et al.,
2016; Rosales and Uribe-Querol, 2017). Given the nature of this
process, it is understood that phagocytes preferentially internalize
large EVs, such as apoptotic bodies and ectosomes. Of particular
interest is the highly selective uptake of apoptotic bodies by
dendritic cells, a route that is mediated through the receptors for
phosphatidylserine (PS), which is enriched on the surface of these
large cell debris (Rubartelli et al., 1997; Hoffmann et al., 2001;
Gasser et al., 2003). Nevertheless, also particles less than 100 nm
in size are observed to be taken up by phagocytes (Kuhn et al.,
2014; Kettler et al., 2016). This is supported by the observation
that dendritic cells internalize exosomes through a process
that is inhibited by latrunculin-A (Ogese et al., 2019), a potent
inhibitor of phagocytosis (de Oliveira and Mantovani, 1988)
acting by depolarizing actin filaments (Fujiwara and Zweifel,
2018). Likewise, exosomes derived from leukemia cell lines are
taken up by a process sensitive to genetic inhibition of a key
regulator of phagocytosis (DNM2), and once internalized, they
localize with phagolysosome markers (Feng et al., 2010). Despite
sufficient evidence for phagocytosis as an endocytic process

involved in EV uptake, the exact mechanisms of small-size EVs
phagocytosis, e.g., the receptor involved, remain to be elucidated.
Moreover, given the nature of phagocytic cells, internalized EVs
end up in organelles rich in digestive enzymes (Feng et al., 2010),
thus representing a mean for their elimination, rather than a
process involved in cell-to-cell communication.

Pinocytosis
Pinocytosis describes a process in which inward budding of
the plasma membrane serves to internalize small amounts of
extracellular fluid and dissolved particles eventually forming
intracellular pinocytic vesicles. Pinocytosis is subdivided in
micropinocytosis (<0.1 µm) and macropinocytosis (∼0.2–
5.0 µm) according to the size (and fate) of pinocytic vesicles
and the molecular mechanism involved (Steinman, 1983;
Kruth et al., 2005).

Micropinocytosis
Most receptor-bound ligands are internalized via
micropinocytosis providing an efficient means for
uptake of specific macromolecules (Sallusto, 1995;
Banchereau and Steinman, 1998; Swanson, 2008; Mercer and
Helenius, 2009; Bloomfield and Kay, 2016). The internalization
of transferrin upon binding to the transferrin receptor is the
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best studied example of receptor-mediated endocytosis (Sullivan
et al., 1976; Harding et al., 1983). Coupling transferrin with
a fluorescent tag, a routine in monitoring micropinocytosis,
showed different localization of EVs with transferrin, depending
on incubation time and recipient cell type (Tian et al., 2014a;
Yao et al., 2018). Micropinocytosis forms clathrin-, caveolin-,
or non–clathrin/non–caveolin–coated plasma membrane pits
(Steinman, 1983; Kruth et al., 2005; Kaksonen and Roux, 2018).
Then, invaginated membranes pinch off to create organelles that
mature and fuse with endosomes. This delivers their contents for
recycling after fusion with the plasma membrane or for further
transport to lysosomes (Mellman, 1996; Kirchhausen, 2000;
Kaksonen and Roux, 2018).

EV size, EV origin, and recipient cell type may all play a
role in deciding whether micropinocytosis entails the use of
clathrin or caveolin or neither. EVs localize with markers of
clathrin-mediated endocytosis (CLME) by a process sensitive
to inhibitors of key effectors of this pathway. The compound
pitstop 2 is a potent, but not selective, inhibitor of clathrin-
dependent endocytosis that binds to the amino terminus of
clathrin and blocks its association with amphiphysin (von Kleist
et al., 2011; Dutta et al., 2012; Willox et al., 2014). CLME
inhibition by pitstop 2 decreases EV uptake in human trophoblast
cells (Holder et al., 2016) and colorectal carcinoma cells (Horibe
et al., 2018). The cationic amphiphilic drug chlorpromazine
inhibits the formation of clathrin-coated pits at the plasma
membrane (Wang et al., 1993) and reduces the uptake of
EVs in several in vitro cell culture models (Feng et al., 2010;
Escrevente et al., 2011; Tian et al., 2014a; Yao et al., 2018). EV
internalization is also decreased in the presence of pyrimidyn-7
and dynasore (Macia et al., 2006; McGeachie et al., 2013; Chiba
et al., 2018; Verweij et al., 2019), two non-selective inhibitors
of the GTPase activity of dynamin, a large GTPase involved
in late stages of clathrin-coated pits formation (Sever et al.,
2000; Hill et al., 2001). The genetic shRNA knockdown of
clathrin adaptor protein 2 (AP2) and that of dynamin inhibit
the assembly of clathrin-coated pits and result in an appreciable
reduction of EV uptake (Tian et al., 2014a). While CLME is
the best documented micropinocytic process for EV uptake, the
involvement of caveolin-mediated endocytosis (CAME) becomes
increasingly evident. Because of the small size of the caveolae,
it is plausible to assume that CAME tends to internalize EVs
with a small 60–80 nm diameter (Wang et al., 2009; Parton and
Collins, 2016). The endogenous expression of caveolin-1, the
main structural protein of caveolae, fluctuates between cancer
cell lines and correlates with the degree of EV uptake (Horibe
et al., 2018). In support to this, specific shRNA knockdown
of caveolin-1 impairs EV internalization (Nanbo et al., 2013).
Sterol-binding compounds that disrupt lipid rafts and caveolae
structures, such as filipin, genistein, and nystatin, inhibit CAME-
mediated EV uptake in various cell types (Svensson et al., 2013;
Tian et al., 2014a; Lin et al., 2018; Yao et al., 2018; Harischandra
et al., 2019). As dynamin also participates to the formation
of caveolae at the plasma membrane (Oh et al., 1998), studies
assessing the role of this protein through the use of genetic
and pharmacological inhibitors do not discern the possible
involvement of CLMA and CAME.

Taken together, the evidence that micropinocytosis is
implicated in the internalization of small-size EVs is well
documented. However, some of the molecular mechanisms
involved in this process need more investigation, in particular the
selective tropisms toward subclasses of small-size EVs.

Macropinocytosis
Macropinocytosis, on the other hand, overcomes the size
limitation in EV internalization of micropinocytic processes.
Macropinocytosis is characterized by the formation of actin-rich
plasma membrane extensions, named ruffles (Swanson and
Watts, 1995; Kerr and Teasdale, 2009). These pockets-like
membrane structures fuse back with the plasma membrane
and pinch off to form non-coated organelles, referred to
as macropinosomes, which encapsulate a large volume
of extracellular material (Kerr and Teasdale, 2009). The
relatively large size of macropinosomes allows the uptake of
a greater load of EVs and a broader range of EV sizes when
compared to micropinosomes. As for most endocytic organelles,
macropinosomes mature, shrink, and move toward the center
of the cell where they eventually fuse with lysosomes. Although
rarely, these organelles can recycle back to the plasma membrane
and release their content in the extracellular space (Swanson
and Watts, 1995). Macropinocytosis is an efficient, although
non-selective, mechanism for internalizing EVs (Swanson and
Watts, 1995). To demonstrate the participation of this pathway
in the EV uptake, various inhibitors targeting the machinery
generating macropinosomes were employed (Swanson and
Watts, 1995; Swanson, 2008; Kerr and Teasdale, 2009; Lim
and Gleeson, 2011). Macropinocytosis is dependent on the
Na+/H+ exchanger (NHE) activity (Swanson and Watts, 1995;
Koivusalo et al., 2010). EIPA (5-(N-ethyl-N-isopropyl)amirolide)
is an inhibitor of NHE that impairs micropinocytosis and EV
uptake (Tian et al., 2014a; Costa Verdera et al., 2017). Other
non-selective compounds are applied to study macropinocytosis.
Wortmannin and LY294002 (Feng et al., 2010; Tian et al., 2014a;
Costa Verdera et al., 2017), potent inhibitors of phosphoinositide
3-kinases, impair intracellular membrane traffic and endocytosis
(Araki et al., 1996). Latrunculin-A and cytochalasin-D destabilize
actin filaments (Lamaze et al., 1997; Yarmola et al., 2000;
Veltman et al., 2016) and inhibit ruffles formation (Montecalvo
et al., 2012; Svensson et al., 2013; Emam et al., 2018). As
macropinocytosis shares with phagocytosis similar molecular
mechanisms, the use of inhibitors is not sufficient to infer on
the specific involvement of either processes. Colocalization of
EVs with fluorescently tagged dextran, a fluid-phase marker of
endocytosis, is consistent with this view (Kerr and Teasdale,
2009; Fitzner et al., 2011; Tian et al., 2014a; Costa Verdera
et al., 2017; Canton, 2018). Moreover, macropinocytosis
does not specifically target molecules in the extracellular
environment, indicating that EV uptake may be dictated
just by their proximity to the cell membrane. Nevertheless,
macropinocytosis is regulated by specific mechanisms (Bryant
et al., 2007; Ha et al., 2016; Colin et al., 2019); stimulation, e.g.,
of the epidermal growth factor receptor, enhances EV uptake
(Nakase et al., 2015; Colin et al., 2019). Notably, also EVs
appear to induce macropinocytosis (Costa Verdera et al., 2017).
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Similar to phagocytosis, macropinocytosis channels EVs to
lysosomes (Fitzner et al., 2011; Yao et al., 2018), possibly
indicating a clearance mechanism, rather than a route for
transcellular signaling.

DELIVERING AN EV CARGO:
MEMBRANE FUSION

Cells exploit EVs to communicate biological information over
short and long distances, implying that the message transported
by EVs must engage with its natural target. This may occur at
the cell surface excluding an internalization process (Shelke et al.,
2019), e.g., when B-lymphocyte EVs activate T-cell receptors on
the surface of lymphocytes (Raposo et al., 1996). In contrast,
for a cargo such as RNAs transported in the EV lumen, the
target enabling a biological response is likely to be located in
the nuclear-cytosolic compartment where the machineries for,
e.g., mRNA translation or for microRNA regulation are expected
(Valadi et al., 2007; Zomer et al., 2015). However, there is a lack of
knowledge on the cell biology and biochemistry allowing the EV
cargo to bypass the robust barriers imposed by the phospholipid
bilayers, limiting both EVs and recipient cells. Not surprisingly,
the direct fusion of EVs with the membranes of recipient cells
is proposed as a relatively simple process for cell entry (Parolini
et al., 2009; Zomer et al., 2015; Prada and Meldolesi, 2016; Van
Dongen et al., 2016). Given the large body of evidence for an
EV uptake by endocytosis before cargo delivery, it is conceivable
that endocytic organelles may act as the location where EVs fuse
with cell membrane, in a process known as “endosomal escape.”
In this sense, recent studies offer a reasonable mechanism of
membrane fusion facilitated by the acidic environment and by the
degradative activity of lysosomal hydrolases (Parolini et al., 2009;
Montecalvo et al., 2012; Joshi et al., 2020). This is reminiscent
of the process used by several virus to deliver genomic material
to the host cell (Burkard et al., 2014). Indeed, low pH and
acidic hydrolases may induce conformational changes in viral
fusion proteins that facilitate the merge with the cell membranes
(Burkard et al., 2014; Staring et al., 2018). This is the case for
the rabies virus glycoprotein (RVG), which binds to the nicotinic
acetylcholine receptor expressed by cells of the nervous system
(Lentz et al., 1982; Gaudin et al., 1993; Lafon, 2005).

Interestingly, liposomes and other types of synthetic EVs are
developed as vectors for the delivery of membrane-impermeable
drugs, whereby multiple solutions were designed to improve
endosomal escape. The engineering of EVs bearing a short
peptide derived from RVG efficiently delivers functional BACE1
siRNA to neuronal cells in the mouse brain (Alvarez-Erviti
et al., 2011). Similarly, the integrin-recognition motif Arg-
Gly-Asp (RGD), present on viral envelopes, mediates host
cell infection (Hussein et al., 2015) by driving viral particle
internalization and endosomal escape (Shayakhmetov et al.,
2005). Incorporation of LAMP2 fused to RGD in the membrane
shield of EVs results in an efficient EV delivery of the
chemotherapeutic doxorubicin to integrin-positive breast cancer
cells (Tian et al., 2014b). Lipids participate as well in membrane
fusion events (Mathieu et al., 2019). For instance, PS on

the EV surface may interact with the PS-ligand annexin-V
enriched in membranes of early and late endocytic organelles of
macrophages (Diakonova et al., 1997). In an opposite manner,
PS on the luminal side of endocytic membranes (Matsudaira
et al., 2017) binds to annexin-V present on the surface of
apoptotic bodies (Igami et al., 2020). Cholesterol is a key
component of membrane organization and fusion events (Yang
et al., 2016). Indeed, the incorporation of cholesterol in EV
membranes is tightly regulated, and the endocytic process
largely depends on cholesterol (Mulcahy et al., 2014; Pfrieger
and Vitale, 2018; Mathieu et al., 2019; Skotland et al., 2020).
A recent report describes that treatment with U18666A, a
ligand of Niemann–Pick C1 protein, causes endo-lysosomal
accumulation of low-density lipoprotein–bound cholesterol and
hampers EVs fusion with recipient cell membranes (Joshi
et al., 2020). In a more provocative way, the description of an
unconventional delivery of EV content directly into the nucleus
of recipient cells mediated by late endosomes in contact with the
nuclear envelope unveils a beforehand unexplored EV delivery
mechanism (Rappa et al., 2017).

Independently of the mechanisms involved, the fusion of
EVs with cell membranes is expected to result in the liberation
of EV luminal cargos within the cytosol of the recipient cell.
Several studies have exploited the extremely sensitive CRE-based
recombination technique to infer on EV-mediated trans-cytosol
transport of biologically active macromolecules. Strikingly, these
studies reveal that cytosolic entry of an EV cargo occurs at
a sporadic rate (Ridder et al., 2014, 2015; Zomer et al., 2015;
Sterzenbach et al., 2017; Steenbeek et al., 2018; Ilahibaks et al.,
2019), an observation in contradiction with the large body of
evidence showing an efficient EV uptake through endocytosis.

THE ENDO-LYSOSOMAL SYSTEM, A
CROSSROAD FOR EXOGENOUS AND
ENDOGENOUS BIOMOLECULES?

The molecular mechanisms governing EV cargo loading dictate
not only the specific cargo signature of an EV and thus
the specific effect it will elicit in recipient cells, but also
the preferential route of delivery (van Niel et al., 2018).
Among all the identified biomolecules transported within
the EV lumen (Colombo et al., 2014), nucleic acids and
proteins have been shown to elicit a response in recipient
cells (Valadi et al., 2007; Skog et al., 2008; Zomer et al.,
2015). The target machinery able to translate a nucleic
acid–encoded message is expected within the cytosol or the
nucleus of recipient cells, with delivery requiring membrane
fusion events. A different prospect applies for a protein
cargo, as various surface and intracellular targets are apt
for engagement, thus widening the possible location for the
delivery of the message. Additional intracellular locations
besides the cell surface and the cytosol, discussed above, are
plausible. Recent studies imply an EV-mediated signaling in
the endo-lysosomal compartment. Human mast cell–derived
EVs promote phenotypic changes in recipient mesenchymal
stem cells through transforming growth factor beta1 (TGFbeta1)
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signaling (Shelke et al., 2019). The role of endosomes in this
signaling is demonstrated by requirement of an acidic pH for
the activation of TGFB1 (Annes et al., 2003; Shelke et al.,
2019). EVs loaded with the enzyme beta-glucocerebrosidase
(GBA) cause increased lysosomal GBA activity in recipient
cells to a similar extent when GBA was engineered in the
lumen or on the surface of EVs (Do et al., 2019a). These data
indicate that macromolecules transported through EVs could
remain functionally active in organelles of the endo-lysosomal
pathway. Endo-lysosome organelles represent a subcellular
compartment where degradative pathways able to transfer
exogenous and endogenous proteins converge (Lawrence and
Zoncu, 2019). In other words, the endo-lysosomal compartment
represents a crossroad where extracellular molecules delivered
through “cell-eating” and “cell-drinking” endocytic pathway may
meet intracellular molecules transported by the “self-eating”
autophagic machinery (Mizushima and Komatsu, 2011).

SELF-EATING

Protein homeostasis is maintained in mammalian cells by
multiple systems (Li et al., 2012). The ubiquitin (Ub)–proteasome
system (UPS) is a selective proteolytic machinery, in which
(usually) short-living poly-ubiquitinated proteins are unfolded
and degraded by the proteasome (Mizushima and Komatsu,
2011). The term autophagy originates from the Greek words
αùτóς (auto = self) and ϕαγεîν (phagy = eating), hence
describing a self-eating process (Wesselborg and Stork, 2015).
The autophagic machinery is complex in terms of both
distinct mechanisms and substrate heterogeneity; this latter
spanning from (usually) long-living proteins, protein aggregates,
nucleic acids, and cellular organelles (Mizushima and Komatsu,
2011; Fujiwara et al., 2017). Moreover, besides its degradative
function, autophagy is a truly dynamic process that serves
also as a recycling system providing the cell with the material
required to maintain its energetic homeostasis (Mizushima and
Komatsu, 2011). The broad term “autophagy” encompasses
three main processes: macroautophagy, microautophagy, and
chaperone-mediated autophagy (CMA) (He and Klionsky, 2009;
Tooze and Yoshimori, 2010; Feng et al., 2014; Dikic and
Elazar, 2018). Macroautophagy sequesters and encapsulates
cytoplasmic components including whole organelles or organelle
portions within an intermediate double-phospholipid-bilayer
organelle named “autophagosome” (Xie and Klionsky, 2007;
Tooze and Yoshimori, 2010; Lawrence and Zoncu, 2019). This
latter travels along microtubules toward the perinuclear region
where it fuses either directly with lysosomes or with late
endosomes as an intermediate step (Xie and Klionsky, 2007;
Tooze and Yoshimori, 2010; Mizushima and Komatsu, 2011;
Nakamura and Yoshimori, 2017). In contrast, microautophagy
sequesters small components of the cytoplasm (Mijaljica et al.,
2011). Non-selective microautophagy is specific toward small
cytosolic substrates, e.g., soluble proteins, and is characterized
by the formation of tubular invaginations of the lysosomal
membranes (Mijaljica et al., 2011; Li et al., 2012). These
membrane invaginations pinch off, forming intralysosomal

vesicles, which then release their cargo in the hydrolase-
rich environment of lysosomes (Sahu et al., 2011). Inward
membrane budding is also at the basis of ILV biogenesis
in MVBs, a process that may be suitable for eliminating
cytosolic components by secretion. On the other hand, selective
microautophagy is specific toward large substrates or organelles
(e.g., mitochondria, nucleus, and peroxisomes). These are
engulfed through the projected, arm-like protrusion of lysosomal
membranes; internalized within the lumen of lysosomes; and
then gradually digested (Mijaljica et al., 2011; Mizushima
and Komatsu, 2011; Li et al., 2012). Unlike the other two
types of autophagy, in CMA the combined action of the
chaperone protein heat shock cognate 70 (HSC70) and the
lysosomes-associated membrane protein type 2A (LAMP2A)
results in the specific recognition of protein substrates carrying
a KFERQ-like pentapeptide and in their active translocation
across lysosomal membranes (Mizushima et al., 2008; Orenstein
and Cuervo, 2010; Mizushima and Komatsu, 2011; Mizushima,
2018; Figure 2).

Autophagy is thus a diversified system that continuously
delivers a large variety of intracellular substrates to the endo-
lysosomal compartments. In this way, it is a process that, at
any given time, expands the array of macromolecules available
to meet extracellular material internalized through endocytosis,
with possible implications in health and disease. Notably, EV
cargos such as mRNAs and miRNAs may directly regulate the
autophagic processes once released within recipient cells (Song
et al., 2016; Cai et al., 2017; Kulkarni et al., 2018). This encounter,
within an acidic compartment dedicated to degradation, may
gain relevance in cellular states where lysosomal activity is
compromised, and substrates may accumulate.

AUTOPHAGY–LYSOSOME
DYSFUNCTION IN
NEURODEGENERATIVE DISEASES

Neurodegenerative disorders, such as AD, Parkinson disease
(PD), Huntington disease (HD), amyotrophic lateral sclerosis
(ALS), and transmissible spongiform encephalopathies (TSEs),
are etiologically and clinically distinct. Crucially, they all share
as pathological hallmark the deposition of protein aggregates
into ubiquitinated intraneuronal inclusions (Brundin et al.,
2010; Ciechanover and Kwon, 2015). Each disorder-specific
protein aggregate is formed by distinct proteins, which acquire
a beta-sheet–enriched conformation and eventually form soluble
multimeric structures and insoluble protein inclusions. Beta-
amyloid and tau are linked to AD (Terry, 1963; Masters et al.,
1985; Grundke-Iqbal et al., 1986; Goate et al., 1991; Haass and
Selkoe, 1993), alpha-synuclein to PD (Polymeropoulos et al.,
1997; Uversky, 2007), huntingtin to HD (Davies et al., 1997;
DiFiglia et al., 1997), TDP43 to ALS, and frontotemporal lobar
degeneration (FTLD) (Arai et al., 2006; Neumann et al., 2006)
and prion to TSE (Aguzzi, 2007). A recognized risk factor
for this family of disorders is aging, as well as the gradual
impairment of the cellular degradative systems (Kovács et al.,
2007; Piras et al., 2016; Malik et al., 2019). Postmitotic neurons
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FIGURE 2 | Autophagic processes contributing to cellular proteostasis. Protease-resistant protein complexes and aggregates are delivered to lysosomal degradation
by macroautophagy. This process is mediated by scaffold autophagy receptors able to bind to ubiquitinated proteins and the cleaved and
phosphatidylethanolamine-conjugated LC3 present on the forming autophagosome. The complex is then encapsulated within the lumen of the double-lipid by-layer
autophagy organelle, which expands and fuses with lysosome membranes for acidic hydrolases degradation. In chaperon-mediated autophagy (CMA), cytosolic
proteins bearing a KFERQ-like domain recognized by the unfolding chaperon HSC70 are escorted to LAMP2A on the surface of lysosomal membranes. Two
consecutive recruitments of LAMP2A molecules form a module that translocates the CMA substrate to the hydrolase-rich lumen of lysosomes. Symbols used are
specified in the legend on the bottom of the scheme.

of the central nervous system are particularly vulnerable to
the impairment of the autophagy–lysosome pathway. This age-
dependent progressive deficiency observed in the aging brain
correlates with the increasing accumulation of potentially toxic
protein forms in the neurodegenerating brain (Wong and
Cuervo, 2010; Lamark and Johansen, 2012; Ciechanover and
Kwon, 2015; Metaxakis et al., 2018). This is further supported by
animal models of late-onset neurodegenerative disorders, which
display a progressive accumulation of autophagic organelles
and protein aggregates (Spencer et al., 2009; Decressac et al.,
2013; Valionyte et al., 2020). Furthermore, nanoscale analysis
performed on postmortem brain tissue slice of patients
affected by AD and PD showed that beta-amyloid and
alpha-synuclein inclusions were enriched in lipid membranes
and organelles structurally resembling lysosomes and in part
immune-reactive for lysosomal markers (Nixon et al., 2005;
Hassiotis et al., 2018; Shahmoradian et al., 2019). Similar
observations were made with the identification of intralysosomal
prion inclusions in neurons of sporadic Creutzfeldt–Jakob
disease brains (Kovács et al., 2007). Actually, most studies
demonstrated that cytosolic protein inclusions are substrates
of selective macroautophagy and that molecular interventions
aimed to stimulate macroautophagy reduce intraneuronal
protein deposition with concomitant decrease in cell toxicity
and amelioration in behavioral phenotypes in animal models

(Tanaka et al., 2004; Spencer et al., 2009; Caccamo et al., 2010;
Spilman et al., 2010; Yang et al., 2011; Steele et al., 2013;
Savolainen et al., 2014; Yoon et al., 2017; Djajadikerta et al.,
2019). Intuitively, a defect in a key clearance mechanism of
the cell is expected to directly contribute to the build-up of
aberrant proteins predestined to be eliminated. On the other
hand, cellular inclusions and lysosomal overload may contribute
to a vicious cycle of events curbing lysosomal dysfunction
and protein deposition. Nevertheless, the discussion whether
defective activity of the autophagy–lysosome pathway is a “cause”
or an “effect” of intracellular protein inclusions merits more
attention (Figure 3).

The “Cause”
Compelling genetic and pharmacological experimental evidence
supports that impairment of the autophagy–lysosome pathway
exacerbates the accumulation of potentially toxic protein
oligomers and causes neurodegeneration. To reinforce this
argument, an approach often used is to abolish or reduce
the transcription of genes belonging to the core machinery
of autophagy. The autophagy-related 5 (ATG5) gene encodes
for a protein that conjugates with ATG12 and ATG16 to
form a complex involved in the extension of autophagosome
membranes (Tanida, 2011). Mice lacking Atg5 expression
specifically in neurons are characterized by the progressive
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FIGURE 3 | Lysosomal dysfunction in neurodegeneration. Controlled degradation of proteins via lysosomal hydrolases is a key cellular homeostatic event. Aging,
unknown factors, mutations in neurodegeneration-associated genes and in autophagy–lysosome genes, and the accumulation of cytosolic protein inclusions are
negative regulators of lysosomal function. In a vicious circle, defective lysosomal function contributes to aging, accumulation of toxic gene products, and disease.
Impaired lysosomal function may occur at the level of acidic hydrolase activity or by altered fusion and maturation of autophagy–lysosome organelles.

neuronal accumulation of cytoplasmic, Ub-positive inclusion
bodies and by the concomitant progressive deficit in motor
and behavioral functions (Hara et al., 2006). ATG7 is an
E1-like activating enzyme whose primarily function is to
participate in the conjugation of ATG12 and in the lipidation
of the microtubule-associated protein light chain 3 (LC3), two
essential steps in the formation of functional autophagosomes
(Xiong, 2015). The study of Atg7 knockout mice provides
additional evidence for the contribution of autophagy in the
formation of protein inclusions with aberrant intraneuronal
accumulation of beta-amyloid and cognitive dysfunction in a
mouse model of AD (Nilsson et al., 2013). Beclin-1, another
regulator of macroautophagy, appears altered in aged brains
and in patients affected by AD and HD. Decreased beclin-
1 in mice models of AD- and HD-related amyloidosis causes
impaired macroautophagy, increased inclusion bodies, and
general neuronal deficits, aspects reversed through ectopic
beclin-1 expression (Shibata et al., 2006; Pickford et al., 2008;
Lucin et al., 2013).

To date, there is only a single report of a human pathogenic
mutation among all the core ATG genes. The homozygous
E122D mutation in ATG5 was found in two siblings affected
by a childhood form of ataxia, characterized by progressive loss
of Purkinje cells, cerebellar hypotrophy, and clinical symptoms
affecting muscle coordination (Kim et al., 2016). At the cellular
level, the single point mutation leads to impaired autophagy
flux caused by defective conjugation of ATG5 with ATG12
(Kim et al., 2016).

Selective macroautophagy depends on Ub-binding scaffold
proteins that recognize cytoplasmic ubiquitinated protein
substrates and deliver them to the autophagy pathway
for degradation (Zientara-Rytter and Subramani, 2019).
Among all, P62/sequestome 1 (encoded by the SQSTM1
gene), NBR1 autophagy receptor (NBR1, neighbor of BRCA1
gene), autophagy-linked FYVE protein ALFY (WDFY3),

and optineurin (OPTN) are found in almost all types of
protein aggregates (Pankiv et al., 2007; Stolz, 2014; Lim and
Yue, 2015). The presence of autophagy receptors within
cytoplasmic inclusions supports the view that protein
aggregates are cleared by a selective macroautophagic
process (aggrephagy) (Øverbye, 2007). Concomitantly, the
presence of autophagy receptors within cytoplasmic inclusions
is also linked to a role of these as facilitators of protein
aggregation (Pankiv et al., 2007; Shen et al., 2015). Most
autophagy receptors are scaffold proteins that carry an Ub-
associated (UBA) domain and an LC3-interacting region
(LIR). The UBA domain binds to mono-ubiquitinated and
poly-ubiquitinated proteins (Shaid et al., 2013; Stolz, 2014;
Deng et al., 2017). On the other hand, the LIR sequence binds
to LC3 conjugated to the inner surface of the phagophore
(LC3-II), thus mediating the encapsulation of the complex
in autophagosomes (Stolz, 2014; Deng et al., 2017; Dikic
and Elazar, 2018), whereby autophagy receptors and LC3-
II become themselves autophagy substrates (Deng et al.,
2017). Genetic variants of the autophagy receptors OPTN
and SQSTM1 are linked to ALS-FTLD (Fecto et al., 2011;
Deng et al., 2017), and more severe disease forms are caused
by mutations in the UBA domain of P62 (Fecto et al., 2011;
Kwok et al., 2014). Furthermore, P62, optineurin, and NBR1
localize within Lewy bodies and neurofibrillary tangles (NFTs)
in postmortem human brain tissue (Osawa et al., 2011;
Odagiri et al., 2012). At the cellular level, P62 binds to poly-
ubiquitinated tau mediating its clearance, and mice with genetic
Sqstm1 inactivation display intraneuronal tau aggregation
(Ramesh Babu et al., 2008).

Inherited mutations of lysosomal hydrolases are linked to
neurodegenerative disorders (Lwin et al., 2004; Osellame et al.,
2013; Ebrahimi-Fakhari et al., 2014; Menzies et al., 2017; Do
et al., 2019b). For instance, homozygous mutation in the GBA
gene encoding for the lysosomal enzyme glucocerebrosidase
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causes Gaucher disease, a lysosomal storage disorder (Mazulli
et al., 2011; Menzies et al., 2017; Do et al., 2019b). Loss
of GBA function triggers the accumulation of its substrate
glucocerebroside within lysosomes leading to dysfunctional
lysosomal degradation and autophagic processes (Mazulli et al.,
2011; Menzies et al., 2017; Do et al., 2019b). Experimental Gba
knockout mouse model of Gaucher disease displays defective
autophagy with P62 accumulation, Ub-positive proteins, and
oligomeric alpha-synuclein (Osellame et al., 2013). Notably,
heterozygous mutation in GBA is the most common genetic
risk factor for PD (Lwin et al., 2004; Menzies et al., 2017;
Do et al., 2019b).

Chemical compounds are also used to mimic autophagy
dysfunction and its consequences. Bafilomycin A1, a
macrolide derived from Streptomyces griseus, specifically
inhibits the vacuolar ATPase that transports protons to the
interior of acidic organelles (Mauvezin and Neufeld, 2015).
Chloroquine (CQ), a drug known for its antimalarial and
anti-inflammatory properties, is a lysosomotropic buffering
agent rapidly penetrating across cell membranes and undergoing
a protonation-based trapping in the acidic environment of
autophagic, endocytic, or lysosomal organelles (Al-Bari, 2015).
The presence of either compound efficiently neutralizes the
luminal pH, inhibits acidic hydrolases, and impairs the fusion
among acidic organelles (Yamamoto et al., 1998; Mauvezin and
Neufeld, 2015; Mauthe et al., 2018). Increased accumulation
of cytosolic aggregates is found when these drugs are applied
to in vitro and in vivo models of neurodegeneration. This
occurs, for instance, in COS-7 cells expressing an aggregation-
prone fragment of mutant huntingtin, where treatment with
bafilomycin A1 results in a more pronounced aggregation
determined by the increase in aggregates size and in the number
of affected cells (Ravikumar et al., 2002). The same treatment
exacerbates the formation of detergent-insoluble alpha-synuclein
species in rat embryonic cortical neurons (Lee et al., 2004).
An increment in seeding events is observed in primary
neurons derived from tau transgenic mice when incubated with
exogenous tau fibrils and CQ (Gibbons et al., 2017). A higher
Ub-positive cytoplasmic TDP43 inclusion load is observed
upon CQ treatment of a mouse model expressing mutated
vasolin-containing protein (Custer et al., 2010; Nalbandian et al.,
2015). In good agreement with these findings, macroautophagy
stimulation is a proven intervention apt to reduce cytosolic
protein aggregates, ultimately reversing behavioral phenotypes in
animal models of neurodegenerative diseases (Ravikumar et al.,
2004; Tanaka et al., 2004; Spencer et al., 2009; Caccamo et al.,
2010; Spilman et al., 2010; Yang et al., 2011; Steele et al., 2013;
Savolainen et al., 2014; Yoon et al., 2017; Djajadikerta et al., 2019).
In a mouse model of beta-amyloid and tau pathology, induction
of autophagy with an inhibitor of the mammalian target of
rapamycin (mTOR) decreases intraneuronal beta-amyloid
accumulation and rescues cognitive deficits (Caccamo et al.,
2010). Similarly, oral administration of the disaccharide trehalose
in a transgenic mouse model for mutant huntingtin effectively
reduces cytosolic inclusions and ameliorates hallmark motor
dysfunctions of HD (Tanaka et al., 2004). The neuroprotective
effect of trehalose may rely on stimulation of autophagic flux

independently from the mTOR signaling pathway (Sarkar et al.,
2007; Lee et al., 2018).

The “Effect”
The increased impairment of the autophagy–lysosome pathway
associated with the progression of neurodegenerative disorders
may hint to intrinsic negative effects caused by accumulating
aberrant protein forms. This outcome may result from a
loss of function; e.g., the scaffold protein huntingtin interacts
with P62 and facilitates the association of ubiquitinated
substrates targeted to autophagy with LC3 (Ochaba et al.,
2014). Mutant huntingtin fails in this role, thus compromising
cytosolic cargo recognition and delivery to selective autophagy
(Martinez-Vicente et al., 2010).

UPS and CMA are the first-line defense in disposing
soluble proteins. However, when proteins aggregate into fibrillar
insoluble forms, as it is the case for neurodegenerative
disorders, they become increasingly resistant to both UPS
and CMA degradation (Ciechanover and Kwon, 2015). The
capacity to “escape” UPS and CMA degradation may well rely
on the resilience of structured, beta-sheet–enriched protein
aggregates to chaperon-mediated “unfolding,” which is required
for funneling the polypeptide into these degradative pathways.
As a result, they may act as negative regulators. CMA-mediated
degradation relies on the presence of the KFERQ-like motif
on its substrates. Accordingly, the VKKDQ sequence on alpha-
synuclein is a recognition and binding domain for the chaperon
HSC70, which mediates its translocation into lysosomes (Fred
Dice, 1990; Cuervo et al., 2004). Fibrillar forms of alpha-
synuclein resist to the unfolding activity of HSC70, and by
binding to LAMP2A, they act as translocation inhibitors further
busting their accumulation and impairing the degradation of
other CMA substrates (Cuervo et al., 2004; Ross and Poirier,
2005). Likewise, at least in vitro, cytosolic protein inclusions
act as clogging blockers in the barrel-shaped structure of the
proteasome (Cuervo et al., 2004; Martinez-Vicente et al., 2008;
Andre and Tabrizi, 2012). However, UPS and CMA impairment
stimulates the specialized activity of aggrephagy as an alternative
degradative machinery (Massey et al., 2006; Pandey et al., 2007;
Lamark and Johansen, 2012).

Interestingly, prion infection disrupts the maturation of endo-
lysosomal organelles by interfering with RAB7 association to
membranes, which eventually prevents lysosomal degradation
of PrPSc in favor of fibril formation (Shim et al., 2016).
The key molecular spark that triggers prion pathogenesis is
the conformational conversion of prion protein PrPC, with
a predominant alpha-helix content, into the highly infectious
beta-sheet–rich PrPSc (Pan et al., 1993). PrPSc forms detergent-
insoluble fibrils also defined as PrPRes to highlight their intrinsic
ability to resist to proteolytic degradation. As the endo-lysosomal
pathway may represent the subcellular site where the conversion
to PrPSc occurs, this has the potential to impair overall lysosomal
degradative function (Caughey et al., 1991). Indeed, increased
number and size of lysosomes and autophagic vacuoles are
well-established neuropathological features of prion-infected
neurons in animal models and in patients (Boellaard et al., 1991;
Sikorska et al., 2004).
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In addition to the effect of cytosolic aberrant protein forms,
also their extracellular counterparts need to be considered when
studying the pathogenesis of diseases. As previously discussed,
non–cell-autonomous proteins exploit the endocytic pathway
to access the inside of cells. In this respect, recombinant and
brain-extracted protein fibrils and seeds enter the cell and traffic
toward lysosomes upon endocytosis (Hu et al., 2009; Domert
et al., 2016; Karpowicz et al., 2017; Evans et al., 2018), whereby
lysosomal function appears required prior to reach the cytosol
for further propagation (Tsujimura et al., 2015; Domert et al.,
2016; Evans et al., 2018; Hoffmann et al., 2019). Intriguingly,
exogenous alpha-synuclein fibrils taken up by endocytosis drive
intracellular seeding within the endo-lysosomal compartment
(Tsujimura et al., 2015). This occurs with the assistance of the
lysosomal protease cathepsin-beta that, when compared other
proteases, specifically triggers its aggregation. Concurrently,
the accumulation of protease resistant alpha-synuclein fibrils
within lysosomes impairs lysosomal function and autophagic flux
(Hoffmann et al., 2019).

Protein Aggregation Within Lysosomes
In the context of this review, it is intriguing to consider
alternative intracellular locations besides the cytosol, which
may serve as seeding hubs in the nucleation process leading
to intraneuronal inclusions as observed in neurodegenerative
disorders. The acidic organelles of the cell may represent the
initial location for the seeding activity of exogenous protein
oligomers and fibrils, which may then gain access to the cytosol
and trigger further aggregation (Figure 4). The endo-lysosomal
pathway of the cell gathers at least four features that ideally
facilitate the mechanism of disease-causing protein aggregation:
(1) the presence of proteases, (2) the co-assistance of other
protein-modifying enzymes such as glycosidases, sulfatases, and
kinases, (3) a low pH, and (4) a relatively small volume and
membrane surface area.

Proteolytic processing of neurodegeneration-associated
proteins has received particular attention as in vitro evidence
suggests increased propensity to aggregate when these are
cleaved at specific amino acid sites. We discussed already above
the evidence that in a cellular model of prion infection, the amino
terminus of PrPRes, or of its precursor, is removed by lysosomal
proteases facilitating its aggregation within lysosomes (Caughey
et al., 1991). It was recently reported that tau is a substrate
of asparagine endopeptidase, a lysosomal cysteine protease
generating tau fragments with a high propensity to aggregate
(Chen et al., 1998) observed also in the brain of human AD or tau
transgenic mice (Zhang et al., 2014). What is more, the release of
beta-amyloid from its precursor is initiated by the activity of the
acidic endoprotease BACE located in endo-lysosomes (Pasternak
et al., 2004). Intriguingly, the discovery within lysosomes of
kinases phosphorylating neurodegenerative-associated proteins
has raised awareness that pathological phosphorylation may
be acquired within these organelles. As an example, the beta-
isoform of glycogen synthase kinase 3 (GSK3beta), the main
phosphorylating enzyme for a tau form enriched in disease-
associated NFTs (Cohen and Goedert, 2004), is found within
acidic organelles of the endo-lysosome pathway (Taelman et al.,

2010; Li et al., 2016). Although experimental evidence that
directly links tau toxicity to lysosomal GSK3beta is missing, this
mechanism is intriguing and cannot be disregarded.

A high load of energy is required for the activity of the proton
pump to maintain the acidic conditions required for the activity
of lysosomal enzymes (Mindell, 2012). A low pH could serve
as a spark triggering protein aggregation as it was shown for
prion conversion (DeMarco and Daggett, 2007; Srivastava and
Lapidus, 2017). Indeed, a protonation-based model approach
demonstrated that the partial unfolding and dissociation of
one alpha-helices of PrPC result in the loss of critical long-
range salt bridges, which favor the conversion to a PrPSc-like
structure (DeMarco and Daggett, 2007). Similar results were
obtained analyzing kinetics of amyloid fibril formation, which is
accelerated in the pH range observed in lysosomes of living cells,
implying a possible contribution of lysosomes in amyloid diseases
(Colon and Kelly, 1992).

The relatively small size of endo-lysosomal organelle
when compared to the cytosol should also be considered
a critical contributor of neurotoxic protein aggregation.
Seeding aggregation of proteins is remarkably dependent
on protein concentration and on the interaction with
membranes (Eisele et al., 2015; Poulson et al., 2020), whereby
a threshold concentration has to be reached in order to
initiate a nucleation-dependent polymerization (Harper
and Lansbury, 1997). Autosomal dominant disease forms
bring clinical evidence of the correlation between protein
concentration and pathogenicity. Examples are a hereditary PD
form characterized by the triplication of the alpha-synuclein
locus and extensive Lewy body formation (Singleton et al.,
2003) or trisomy 21 characterized by an extra copy of the
APP gene and early-onset AD-like amyloidosis (Lott and
Head, 2019). In vitro experiments support the view that
lysosomes may foster the critical concentration and exposure
to membranes required for protein nucleation and further
multimerization. This is the case when extracellular beta-
amyloid monomers were found to be taken up by cells and to
accumulate with seeding nucleation properties within lysosomes
(Hu et al., 2009).

Disease Spreading and EVs
Neurodegenerative diseases are characterized by the spreading
of pathological protein forms following a predictable
spatiotemporal pattern through the brain of affected patients.
This correlates with the symptom progression in a disorder-
specific and unique manner. For instance, in AD, tau NFTs
first occur in the entorhinal region and then spread to the
surrounding hippocampal area and reach the entire neocortex
in later disease stages (Goedert, 2015; Kaufman et al., 2018).
In contrast, beta-amyloid senile plaques are first observed in
the orbitofrontal and basal temporal neocortex and then slowly
progress from anterior to posterior areas to invade the entire
neocortex, the hippocampus, the amygdala, and the basal ganglia
(Goedert, 2015). At the cellular level, nucleation-competent
seeds are transferred from cell-to-cell, possibly exploiting
existing cell communication mechanisms to drive the spreading
of pathology. At the molecular level, the conversion of a native
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FIGURE 4 | Lysosomal contribution to seeded propagation of disease. The endocytic organelles represent a crossroad where exogenous proteins (A) transported by
EVs engage with their cellular cytosolic targets (B) transported by autophagy. The slightly acidic milieu of these organelles may spare proteins from degradation in
favor of a biologically relevant target engagement, or of a pathogenic mechanism of seeded propagation of toxic protein forms. This latter may subsequently lead to
lysosomal membrane rupture, overt cytotoxicity, and the formation of cytosolic protein inclusions as pathological hallmarks of disease. Symbols used are specified in
the legend on the right of the scheme.

(often unfolded) state to a highly ordered fibrillar structure
resembles the template-mediated mechanisms of prions, thus
defined as prion-like paradigm (Soto and Pritzkow, 2018).
In vitro studies support the notion that the dissemination of
pathogenic protein forms through templated amplification
occurs via interconnected neurons (Gribaudo et al., 2019;
Hallinan et al., 2019), which fits well the progressive spreading
through anatomically linked brain regions observed in vivo
(Narasimhan et al., 2017; Henderson et al., 2019; Wegmann
et al., 2019). Noteworthy, some connected brain areas are spared
by this process, hinting to a specific cellular mechanism of
release/uptake of protein seeds. Among the non-exclusive routes
of cell-to-cell seed transport, EVs have gained a significant
recognition as likely transcellular vehicles (Fiandaca et al.,
2015; Thompson et al., 2016; Guix et al., 2018), with the
advantage to ensure protection against degradative activities
and propagation to distant targets. This pathogenic role of EVs
is supported by observations made in animal models of most
neurodegenerative disorders (Vella et al., 2007; Watson et al.,
2019). Not surprisingly, there is the demand to better define
whether a specific mechanism exists for the encapsulation of

nucleation-competent particles into EVs by the (infectious)
donor cell. At the same time, and possibly more importantly, we
need to understand how seeds are internalized by the (healthy)
recipient cell to reach their target. As discussed above, EVs
mainly take advantage of the endocytic pathway to enter the
cell where they may accumulate within lysosomes and liberate
their possibly noxious cargo. Accordingly, a recent in vitro study
from our laboratory brought evidence that it is conceivable that
an EV-transported, proaggregating tau form uses this route of
cell entry to eventually induce cellular tau accumulation within
acidic organelles of the recipient cell. The physical interaction
between exogenous seeds and endogenous wild-type tau at the
crossroad between the endocytic and the autophagic pathways
ultimately triggered the formation of tau epitopes typical of
NFTs, progressive lysosomal impairment, and overt cytotoxicity
(Pedrioli et al., 2020). Thus, despite the dichotomy of degradative
organelles embodying the cellular site where seeded propagation
of pathogenic protein occurs, mounting experimental evidence
points to a role of EVs as transcellular mediators exacerbating
an (age-related) impairment of the lysosomal pathway in the
neurodegenerative state.
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CONCLUSION AND FUTURE
DIRECTIONS

A constantly growing knowledge on the biology of EVs has
expanded the initial, but still valid, interpretation of them as a
kind of garbage bag expelled by the cell, to include now for them
a role as vehicle of precise cell-to-cell communication and as
critical contributor to disease. Technologic advances allowed a
detailed, yet in part incomplete, perception of the complexity of
this variegate population of secreted vesicles. A main objective
of this review is to discuss the cellular mechanisms required
to elicit a biological response in the acceptor cell, while much
is already known in terms of EV biogenesis in the donor cell.
Among them, the list includes the specific tropism toward the
recipient cell, the route evolved for their uptake, and the release
mechanism for the target engagement of a biological active cargo
molecule. Distinct subpopulations of EVs, their cargo signatures,
and the type and state of recipient cells, to name a few, are all
puzzle fragments contributing to the complexity of the picture
currently assembled.

This review has focused on the experimental evidence
pointing to the central role for EV-mediated cellular
communication provided by the endocytic pathway. In an
organism, cells are exposed, at any given time, to EVs
continuously released from a wide range of cell populations,
with distinct biophysical properties and cargo compositions and
originating from close and distant locations. Some questions
relating to the mechanisms regulating the tropism of EVs
remain partially unanswered. In this plethora of EVs floating
on the surrounding of a cell, how is a message delivered
with accurate precision to the desired target cell? Does the
endocytic pathway merely represent a route exploited by EVs
to gain access to the cell, or does it provide the favorable
environment for functional cargo delivery in health and disease?
Will the knowledge on the biology driving viral infection of a
cell facilitate the identification of the mechanisms governing
EV cargo release, or do we need to implement innovative
and highly sensitive research methods for this purpose? The
current techniques suggest that release of an EV cargo in
the cytosol of recipient cells is an existing but rather rare
event. An important question to be addressed will be to define

“rare” in the context of a biologically relevant EV-mediated
cell-to-cell communication.

Finally, we also discussed the existence of a possible
vicious cycle driving a neurodegenerative process (Figure 3).
Aggregation of aberrant proteins may impair autophagic
and lysosomal degradative pathways, which in turn curb
further protein aggregation, and importantly seeded transcellular
propagation possibly mediated by EVs as vectors for direct
delivery of replication-competent particles to acidic organelles
of recipient cells. Even more, EVs could be the trigger for
the initiation of a cascade of adverse events including prion-
like propagation and lysosomal dysfunction. In this context,
autophagy stimulation as a proposed intervention to reduce
intraneuronal protein inclusions may backfire into a completely
opposite direction. If not specifically targeted to the affected
neuron, autophagy stimulation may well favor that an EV cargo
with seeding capabilities could encounter and propagate on the
native protein counterpart within lysosomes of healthy neurons.
The potential dichotomic role of the autophagy–lysosome
pathway in clearing cytosolic inclusions and contributing to
transcellular propagation certainly requires further attention and
experimental validation.
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