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Abstract: Evaluation of impact characteristics of carbon nanomaterials is very important and helpful
for their application in nanoelectromechanical systems (NEMS). Furthermore, disclination lattice
defects can generate out-of-plane deformation to control the mechanical behavior of carbon nanoma-
terials. In this study, we design novel stable wavy graphene sheets (GSs) using a technique based on
origami and kirigami to control the exchange of carbon atoms and generate appropriate disclinations.
The impact characteristics of these GSs are evaluated using molecular dynamics (MD) simulation,
and the accuracy of the simulation results is verified via a theoretical analysis based on continuum
mechanics. In the impact tests, the C60 fullerene is employed as an impactor, and the effects of the
different shapes of wavy GSs with different disclinations, different impact sites on the curved surface,
and different impact velocities are examined to investigate the impact characteristics of the wavy GSs.
We find that the newly designed wavy GSs increasingly resist the kinetic energy (KE) of the impactor
as the disclination density is increased, and the estimated KE propagation patterns are significantly
different from those of the ideal GS. Based on their enhanced performance in the impact tests, the
wavy GSs possess excellent impact behavior, which should facilitate their potential application as
high-impact-resistant components in advanced NEMS.

Keywords: disclination; wavy graphene sheet; impact characteristics; origami and kirigami; molecu-
lar dynamics method; continuum mechanics method

1. Introduction

Impact resistance is an essential evaluation criterion in material design, especially for
the application of materials developed for use in aircraft, automobiles, sports products, and
machine elements. Since they were first reported [1], graphene sheets (GSs) have attracted
enormous interest among scholars globally. Ideal GSs are one-carbon-atom-thick, two-
dimensional carbon nanomaterials with hexagonal lattice structures that exhibit excellent
mechanical, electrical, chemical, and thermal properties [2–4]. In particular, the high-strain-
rate behavior [5] of GSs can be exploited for potential applications as high-impact-resistant
components in nanoelectromechanical systems (NEMS). The difficulty and complexity of
nano-scale impact simulations has meant that impact testing of carbon nanomaterials, such
as GSs [6–9] and carbon nanotubes (CNTs) [10], has been performed based on molecular
dynamics (MD) simulation, revealing the high impact resistances of both GSs and CNTs. In
addition, a numerical spring–mass model has been adopted to describe the impact behavior

Nanomaterials 2022, 12, 436. https://doi.org/10.3390/nano12030436 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12030436
https://doi.org/10.3390/nano12030436
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-6515-8392
https://orcid.org/0000-0002-5635-9165
https://doi.org/10.3390/nano12030436
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12030436?type=check_update&version=3


Nanomaterials 2022, 12, 436 2 of 15

of GSs [11–13]. Furthermore, theoretical analysis based on continuum mechanics has
enabled examination of the transverse impact response of GSs, and the results suggest that
the impact velocity can significantly affect the absorption of impact energy by GSs [14–16].

However, most of the studies in the literature on the impact characteristics of carbon
nanomaterials have focused on ideal carbon nanomaterials with hexagonal lattice struc-
tures. During the fabrication of GSs or CNTs, lattice defects, such as dislocations [17],
disclinations [18–20], and Stone–Wales defects [21], commonly appear owing to high tem-
peratures or external forces. These lattice defects negatively affect the materials, for example
by weakening their mechanical properties; however, certain lattice defects have been found
to enhance the mechanical and electrical properties of low-dimensional materials [22–31].
In particular, lattice defects involving heptagons and pentagons play an important role in
forming two-dimensional GSs with complex curved surfaces. The introduction of lattice
defects to an ideal GS can result in an out-of-plane deformation of the crystal structure
because of the spontaneously generated curvature, which transforms the surface from a
two-dimensional plane to a three-dimensional curved surface. Because this shape change
is a stress relaxation process triggered by the lattice defects, most of the strain energy in the
GS is released during the relaxation process. Nelson et al. [32] reported that the surface
tension of the curve surface of a 2D crystalline membrane vanished by introducing lattice
defects and the out-of-plane deformation could retain a local two-dimensional topology.
However, complex stress- and strain-energy distributions are observed depending on the
location and types of the lattice defects. Therefore, new functional GSs can be produced
with a variety of out-of-plane deformations by appropriately modifying the type, position,
and density of lattice defects in GSs. Qin et al. [23] studied the influence of lattice defects
on the interlaminar shear strength and in-plane tensile strength of wavy multilayer GSs,
revealing that the lattice defects significantly strengthened the mechanical properties of the
wavy GSs. Qin at al. [24] also showed that the introduction of lattice defects to GSs yielded
wavy GSs with auxetic structures (i.e., structures with negative Poisson’s ratios) and hence
also excellent fracture strength and toughness.

Disclinations, which were first observed in 1965 [33], are more complex lattice defects
that can cause rotational displacement within multi-scale materials, such as metals [34], car-
bon structures [35], and strata [36]. To the best of our knowledge, disclinations can induce
the most prominent out-of-plane deformations in low-dimensional carbon nanomaterials,
especially in GSs [37], and can result in noticeably wavy stable GS structures. Therefore,
disclination-induced wavy GSs can also exhibit enhanced impact characteristics.

Buckminsterfullerene (C60), discovered in 1985 [38], was used as the impactor in this
study because of its spherical shape and structure. C60 is a polygon with 60 carbon atoms
symmetrically arranged like a soccer ball; the symmetry of this structure assists us to
simplify the analytical model and theoretical analysis. In addition, as C60 is known to be
the smallest fullerene [39], it can be used to impinge on almost every location on wavy GS
surfaces, which is convenient for our evaluation of the effects of impact position in this
study.

The aims of the study reported herein were to form new wavy GSs by introducing
disclination lattice defects and to investigate the impact characteristics of these GSs for
potential applications as high-impact-resistant components in advanced nanoelectrome-
chanical systems (NEMS). A technique based on origami and kirigami was adopted to
model new wavy GS structures based on controlling complex lattice defect disclinations
in ideal GSs to generate out-of-plane deformations. Then, MD simulations of impact tests
on ideal and wavy GSs were performed using the fullerene C60 as the impactor, and the
accuracy of the MD simulation was verified by theoretical analysis of an ideal GS based
on continuum mechanics. The influence of the specific wavy GS shapes generated using
different disclination gaps, as well as the effects of different points of impact and different
impact velocities on the impact resistance, was probed.
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2. Methods
2.1. Simulation Models

Origami and kirigami, traditional Japanese artistic techniques, have been utilized
in a wide range of natural science and engineering fields [40]. Miura-ori, conceived by
Miura in 1970 [41], involves nonlinear creasing of materials to allow expansion, and folding
in the vertical and horizontal directions to improve their strength. We adopted origami
and kirigami in this study to form complicated paper models of GSs with disclinations,
instead of the complex phase field crystal (PFC) method used for designing curved GS with
lattice defects [20,23]. Positive and negative disclinations were introduced by removing and
inserting wedge shapes from/into an ideal planar GS, respectively. The details of the pro-
posed origami- and kirigami-based technique for forming wavy GSs with disclinations are
presented in Figure 1a. Based on the paper models constructed using the origami–kirigami
technique, atomic models of the disclination-incorporated wavy GSs were created, with
different types of disclinations generating different out-of-plane deformations and yielding
differently shaped GSs. A four-membered ring in the GSs was defined as an isolated posi-
tive disclination that forms a conical curved surface, whereas an eight-membered ring in
the GSs was defined as an isolated negative disclination that forms a saddle-shaped curved
surface, as shown in Figure 1b. Thus, each repeating unit of the wavy GSs was constructed
as a disclination quadrupole combining two pairs of the four- and eight-membered rings,
i.e., four isolated disclinations. Observing the structure along the z-axis from the positive
direction, the two eight-membered rings are arranged in the upper right and lower left
regions, and the two four-membered rings are arranged in the lower right and upper left
regions. The four isolated disclinations connected in this manner were regarded as one
basic wavy unit, and multiple units were connected to create a unique wavy GS model
constructed as a network of disclinations. Although an ideal GS has a stable structure
with a planar shape, the introduction of disclinations formed a GS with an inherently
curved surface, as shown in Figure 2. Furthermore, the wavy GS with an assembly of
disclinations exhibited greater stability than the ideal GS, with improvements in the impact
characteristics of the GS that might possibly be attributed to the corrugated structure.

As shown in Figure 2, the impact tests involved impinging the fullerene C60 (mass,
1.197 zg; diameter, 6 Å) on a GS with dimensions of 120 Å × 120 Å. Moreover, all four
edges of the target GSs were fixed during the impact test. Impact tests were performed
on an ideal GS and four types of wavy GSs (named as wavy1, wavy2, wavy3, and wavy4)
with different disclination densities, as shown in Table 1. The central position in the z
direction of each GS model was set to 0 Å. Because C60 is initially positioned above the
GS, it was necessary to place it at a sufficiently large distance to avoid the influence of
the van der Waals (vdW) interaction forces between the carbon atoms of C60 and the GS
(20–30 Å) [42]; therefore, in this work, the height of C60 was set to 30 Å. As detailed in
Table 1, l was the distance between adjacent upward-facing four-membered rings (Figure 2),
and the disclination density was defined as the number of disclinations per unit area.
After performing the impact simulation with different types of GSs, the wavy4 model with
l = 31.79 Å was selected for further analysis using different positions of impact and impact
velocities. With respect to the points of impact, the lowest and highest points (z positions
with the greatest magnitudes) nearest to the center of the wavy GS model were defined as
A0 and A4, respectively; moreover, three evenly spaced points between A0 and A4 were
defined as A1, A2, and A3 (black circles in Figure 2).
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Table 1. Parameters of the four types of wavy GSs.
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using the Open Visualization Tool (OVITO). The adaptive intermolecular reactive empirical
bond order (AIREBO) [44] force field (Equation (1)), which has been extensively used for
probing the mechanical properties of carbon nanomaterials in general, was employed for
all the intra- and inter-molecular interactions.

E = 1
2 ∑

i
∑
j 6=i

[
EREBO

ij + ELJ
ij + ∑

k 6=i,j
∑

l 6=i,j,k
Etors

kijl

]
(1)

where EREBO
ij is the REBO potential of a covalent bond, ELJ

ij is the Lennard–Jones (LJ)
potential of a non-covalent bond, and Etors

kijl is tortional potential that depends on the
dihedral angle. Because the AIREBO potential has been applied for calculating dihedral
angles, it was a suitable choice for use in evaluating the curved surface model characteristics
of the constructed GSs. In addition, because the vdW interaction forces cannot be ignored,
the interactions between the carbon atoms in C60 and the GSs were considered. The cut-
off distance in the potential was set to 1.7 Å to maintain the smoothness of the wavy
GS structures and avoid the scattering of atoms during the impact tests. A time step of
1.0 fs and a temperature of 5 K were employed in all the simulations. Prior to the impact
tests with C60, the target GSs and C60 were fully relaxed and equilibrated at 5 K and
a pressure of 0 atm in an isothermal–isobaric ensemble (NPT) for 5 ps. The relaxation
was conducted using the conjugate gradient (CG) method, and the accuracy (∆E) was set
to 10−20. Moreover, all the impact tests were conducted using the NVE ensemble, i.e.,
Newton’s equation.
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2.3. Continuum Mechanics Method

A theoretical analysis of an ideal GS based on continuum mechanics was performed
with the aim of verifying the accuracy of our MD simulations. According to the continuum
mechanics method, an ideal GS can be simulated using a continuum plate model; hence,
the governing equation of motion for a rectangular GS can be written as follows:

D
∂4z(x, y, t)

∂x4 + 2D
∂4z(x, t)
∂x2∂y2 + D

∂4z(x, t)
∂y4 + ρh

∂2z(x, t)
∂t2 = q(x, y, t), (2)

where z(x, y, t) is the flexural deflection of the rectangular GS, t is the time, q(x, y, t) is the
transverse load acting on the GS plate, and ρ is the density of the GS. D is the flexural
rigidity of the GS plate, which is expressed as follows:

D = Eh3

12(1−ν2)
, (3)

where E is the elastic modulus of the GS, h is the thickness of the GS, and ν is Poisson’s
ratio for the GS.

All edges of the rectangular GS are simply supported; therefore, the displacement and
load function could be represented as follows:

z(x, y, t) =
∞
∑

m=1

∞
∑

n=1
Zmn(t) sin mπx

La
sin nπy

Lb
, (4)

q(x, y, t) =
∞
∑

m=1

∞
∑

n=1
Qmn(t) sin mπx

La
sin nπy

Lb
, (5)

where Zmn(t) is the time-dependent coefficient, and Qmn(t) is a term corresponding to the
Fourier series expansion. La and Lb (both equal to 120 Å) are the side lengths of the GSs.

A concentrated load, F(t), is assumed to be located at the (ξ, η) position. Therefore,

Qmn(t) =
4F(t)
LaLb

sin mπξ
La

sin nπη
Lb

. (6)

Substituting Equations (3)–(6) into Equation (2) resulted in the following expression:

..
Zj,mn + ω2

j,mnZj,mn = 4F(t)
ρhLaLb

sin mπξ
La

sin nπη
Lb

, (7)

where j = 1,2, and

ω2
mn = π4D

ρh

[(
m
La

)4
+ 2
(

m
La

)2( n
Lb

)2
+
(

n
Lb

)4
]

. (8)

The solution to Equation (7) can be expressed as

Z(t) =
4

ρhLaLbωmn
sin

mπξ

La
sin

nπη

Lb

∫ t

0
F(τ) sin ωmn(t− τ)dτ. (9)

The deflection at an impact position (ξ, η) located in the middle of the GS plate can be
expressed as

w
(

La

2
,

Lb
2

, t
)
=

4
ρhLaLb

∑
m=1,3,5,···

∑
n=1,3,5,···

∫ t

0
F(τ) sin ωmn(t− τ)dτ. (10)

Therefore, the contact deformation of the rectangular GS plate can be written

α(t) = w(t)− 4
ρhLaLb

∑
m=1,3,5,···

∑
n=1,3,5,···

∫ t

0
F(τ) sinωmn(t− τ)dτ, (11)
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where w(t), as expressed in Equation (12), gives the displacement of the impact mass.

w(t) = v0
Ft− 1

m0

∫ t
0 F(τ)(t− τ)dτ, (12)

where m0 and v0
F are the mass and initial velocity of the impactor C60, respectively.

The Hertz law of contact [45] was employed to express the relationship between the
contact force, F(t), and deformation, α(t), as follows:

F(t) = Kα(t)3/2, (13)

where K, the Hertzian contact stiffness, was determined using the radius of the impactor
and the stiffness values of the impactor and GS plate. The energy Ψ(t) absorbed by the GS
plate within time t can be expressed in term of the impact force F acting on the GS plate
and the displacement w of the point of impact:

Ψ(t) =
∫ t

0 F(τ)dw =
∫ t

0 F(τ)
.

w(τ)dτ. (14)

3. Results and Discussion
3.1. Comparison of Ideal GS Impact Tests via MD Simulation and Continuum Mechanics Method

Impact tests of an ideal GS using MD simulation and the continuum mechanics method
were first compared. Figure 3 shows the calculated energies for the impact of an ideal GS
with C60 at an initial impact velocity of 10 Å/ps, along with the total kinetic energies (KEs)
and potential energies (PEs) values of GS and C60, respectively, which suggest that the
KE of the impactor can be absorbed as the KE and PE of GS. For GS, the impact-induced
deformations were not completely preserved, and it returned to its initial shape, resulting
in as absorption of the KE of the impactor; the KE of GS is a little higher than the KE of the
impactor due to the newly generated negative PE of GS. For C60, because it was considered
as a rigid body, the KE of C60 after impact became completely 0.0 eV. In addition, the
theoretical value of the initial KE of fullerene,

(
mF
(
v0

F
)2
)

/2 = 3.75 eV, was almost equal to
total energy, which was depicted in Figure 3 (purple line) to facilitate this comparison.

In the MD simulation, the initial distance between C60 and the ideal GS was set as
30 Å to eliminate the influence of the vdW interaction forces; therefore, a period of descent
of the C60 prior to its impact on the GS was considered. The KE of the GS during this
period was a nonzero constant value prior to the start of the impact. The atoms in the
GS were presumed to sensitively react to slight changes prior to impact and continue to
experience some movement after the impact. When C60 impinged on the GS, the KE of the
GS considerably increased with increasing impact time. However, the theoretical results
obtained using the continuum mechanics method showed that the KE of the GS increased
from zero and converged to a value a little higher than the initial KE of the impinging
C60. The KE of the GS prior to impact was zero in the theoretical calculations because the
minimal motions of the atoms in the GS were neglected. A comparison of the post-impact
KEs of the GS revealed reasonable agreement between the KEs obtained using the two
methods.

In particular, the results satisfy the law of conservation of energy, indicating the
suitability of the employed MD simulation for investigating the impact tests. Similar MD
simulation impact tests were performed on the wavy GSs with disclinations, and the effects
of disclination density, KE distribution, site of impact, and impact velocity were examined.
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Figure 3. Comparison of energies of an ideal GS impacted by C60 estimated using MD simulation and
a method based on continuum mechanics. The thick purple line at the top at 3.75 eV represents the
initial KE of the C60 with an initial velocity v0

F = 10 Å/ps. KE, PE, and total energies of the different
types of GSs and C60 during the impact tests.

3.2. Effects of Disclination Density

Impact simulations on the ideal and four wavy GSs with different disclination densities
(Table 1) were conducted using v0

F = 10 Å/ps to analyze the impact characteristics, as shown
in Figure 4. For the ideal and wavy GSs, the points of impact were at the center and the A4
site near the center, respectively (Figure 2). Figure 4a shows the KEs of each GS obtained
during the impact tests. The A4 location corresponds to the tip of a protruding portion of
the wavy GSs, and represents the region with the greatest z-coordinate value. Therefore, A4
is guaranteed to be in contact with any impactor for at least some time during the collision,
even if the impactor is larger than C60 or has a flat tip. In addition, the pre-impact KEs of
the ideal and wavy GSs are almost the same, presumably because the numbers of carbon
atoms in the models were composed of approximately the same 10,000 carbon atoms; the
Kes per carbon atom of the ideal and wavy GSs were approximately equal to each other. A
difference can be observed in the impact time at which the KE of each GS began to increase
because of the varying heights of the A4 sites of the different wavy models. Therefore,
wavy4, which has the highest A4 site, was impacted the earliest, followed by wavy3; the
ideal GS exhibited the longest impact time. At the end of each impact test, the KE of all the
GS converged to approximately the same value, i.e., the initial KE of the C60 impactor.
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an initial velocity v0

F of 10 Å/ps. (a) Comparison of KEs of the different types of GSs impacted by C60.
(b) Comparison of ∆E for the different types of GSs impacted by C60. (c) Comparison of KEs of C60

impacting the different types of GSs.

During the impact simulation, the wavy1 model exhibited higher KE values than
the other models. However, in terms of the change in KE immediately before and after
the impact, that is, the impact-induced change in KE, the ideal and wavy1 GSs models
displayed similar behavior, with the other models showing smaller changes. In essence, the
ideal GS exhibited a greater capacity to absorb the KE of the impactor, whereas the wavy4
GS absorbed the least KE from the impactor, as shown in Figure 4b. ∆E is the amount of KE
change of GSs before and after being impacted by C60, as shown in Figure 4a. The wavy
GSs have high resistance to impact. This behavior can also be observed by comparing the
KEs of C60 during the collisions, as shown in Figure 4c. The C60 that collided with the ideal
GS lost almost all of its KE, whereas the C60 units that collided with the wavy2, wavy3,
and wavy4 GSs retained KEs of approximately half of their original value after impact.
Compared to the ideal GS, the wavy GSs were better able to resist the KE of the impactor.

3.3. Distribution of KE

The impact-related changes to the various GS model structures were elucidated us-
ing the KE distributions of the GSs at representative durations of 0.0, 0.5, 1.0, and 1.5 ps
(Figure 5). Although the initial sizes of the five models are similar, different KE distribu-
tions are exhibited because of the different out-of-plane deformations produced by the
introduced disclinations. For the ideal, disclination-free GS, the KE distribution expanded
as a concentric circle from the central point of impact and was eventually distributed
throughout the GS. The wavy1 model with the highest disclination density showed the
most extended KE distribution among the four wavy GSs. However, the KE distribution
is circular at 0.5 ps and spread in a cross-shaped pattern along the x and y directions,
with negligible propagation in the diagonal direction. The wavy2, wavy3, and wavy4
models almost did not absorb KE from the fullerenes, which is consistent with the analysis
presented in the previous section; therefore, no noticeable trends were observed in their
KE distributions. Videos of the KE distribution during the impact tests obtained via MD
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simulation, provided as Supplementary Videos S1–S5, clearly illustrate the spread of the
KE distribution. Therefore, in the ideal GS, the impact-induced KE spread concentrically
and was ultimately dispersed throughout the GS, whereas in the wavy GSs, which ab-
sorbed similar amounts of KEs as the ideal GS, the KE propagation was limited in terms of
direction and range.
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F of 10 Å/ps. The distributions at 0, 0.5, 1.0, and 1.5 ps were computed based on the
moment of impact corresponding to 0 ps.

3.4. Effects of Impact Location

Different impact characteristics, such as energy conversion and GS deformation, were
obtained for the collisions between C60 and different locations within the wavy GSs. The
wavy4 model, which had the lowest disclination density, was selected as a representative
GS to reveal the effects of impact location. The wavy4 model was impacted with C60 at
v0

F = 10 Å/ps at five locations (A0–A4; Figure 2), and the results are shown in Figure 6.
The moments of impact at the different sites occurred at different times because of the
different distances between each impact location and C60. After the impact, the KEs of
the GS impacted at the A0, A1, A2, and A3 sites converged to higher KE values. The A0
site corresponds to the lowest point on the surface (most negative z-coordinate value) of
the inverted cone in the wavy GSs; therefore, C60 collides with the A0 site in a manner
similar to the dropping of a mass into a saucer, i.e., with minimal bouncing. After the first
impact of C60 on the GS at the A3 site, it bounces and impacts the GS again at a different
location, which results in two energy changes in the curve corresponding to A3 prior to
convergence. In the scenarios involving the A0, A1, and A2 sites, the post-impact KEs
increase only slightly over time and nearly converged to the converged KE of location A3;
however, the KE corresponding to location A4 converged to a value approximately half
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that of the converged KE of the other impact sites. This is because the collision of C60 with
site A4, which is the highest point on the wavy GS surface (most positive z-coordinate
value), resulted in C60 bouncing directly off the GS and not bouncing back onto it, unlike
the behavior at the other impact sites. However, because location A4 is the highest point on
the wavy GS surface, it can be presumed that this is the most probable location for impact,
especially when the diameter of the impactor is considerably larger than that of C60. The
KE absorption at A4 is lower than that at the other locations. Therefore, when a collision
occurs at A4, the wavy GS can presumably retain the impact-induced shape change, that is,
it can absorb more KE. By contrast, the protruding portion of the surface cannot easily resist
the deformation, which means that there is little KE absorption. Therefore, KE absorption
by the wavy GSs is strongly dependent on the site of impact. The wavy structure can be
approximately classified into protruding areas and other areas, and we established that KE
absorption by the wavy GSs was greater for collisions with surface depressions.
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3.5. Effects of Impact Velocity

The wavy GSs exhibited reduced Young’s moduli and bending moments compared to
those exhibited by the ideal GS. The wavy GSs can be considered as consisting of deformable
shells. To investigate the effects of impactor velocity on the KEs of the GSs, the wavy1
model was impacted at site A4 by C60 at velocities, v0

F, of 10, 20, 30, 40, 50, and 60 Å/ps.
As shown in Figure 7, the pre-impact KEs of all the GSs are similar. However, all the KEs
of the GSs converged to different constant values. For comparison, short lines colored
to match the corresponding KE curve have been included on the right in Figure 7; these
lines indicate the values of

(
mF
(
v0

F
)2
)

/2, which increase with impactor velocity. However,

the converging value of the KE is close to
(

mF
(
v0

F
)2
)

/2 only at v0
F = 10 Å/ps, which can

be explained by considering the conservation of energy. With increasing impact velocity,
the difference between the value of

(
mF
(
v0

F
)2
)

/2 and the corresponding converging KE
increased. This is because of the microvibrations of the C60 colliding with the wavy GS
at low impact velocities, and the rebounding of the C60 from the GS at higher velocities;
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the wavy1 GS was ruptured when C60 collided with the GS at v0
F = 60 Å/ps. In particular,

at higher impact velocities, the deformation of the GS was considerably greater than that
achieved at lower impact velocities. The deformation energies of the GSs with different
impact velocities are shown in the inset of Figure 7, confirming that the KEs of the GSs
impacted by C60 at higher velocities are retained at higher velocities.
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4. Conclusions

In this work, new stable wavy GSs were generated by appropriately introducing
disclinations into an ideal GS using a technique based on origami and kirigami. The impact
characteristics of wavy GSs with incorporated disclinations were investigated using MD
simulations, and the accuracy of these was verified using a continuum mechanics method.
The disclination density significantly affected the impact characteristics of the wavy GSs
and even determined their energy absorption and dispersion rates. Because disclinations
can produce prominent out-of-plane deformations in GSs, they can reduce the spread of
post-impact effects. Consequently, the KE distribution in the ideal GS was an expanding
circle, whereas that in the wavy GS exhibited cross-shaped (local) propagation, indicating
that the wavy GS structures offer control over the range of KE propagation. By comparing
the impact results obtained at different points of impact, the C60 impactor was found to
undergo various numbers of bounces and possess varying KE absorption, owing to the
nonuniformity of the disclination-induced out-of-plane deformations in GSs. Nonetheless,
with respect to the impact velocity, the absorption ratio of the target GS decreased at
velocities higher than v0

F = 10 Å/ps. Therefore, the results of these impact tests indicate
that these new wavy GS structures possess improved impact characteristics with respect to
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ideal GSs, which should promote their application as high-impact-resistant components in
advanced NEMS.
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