
RESEARCH Open Access

DCJ-RNA - double cut and join for RNA
secondary structures
Ghada H. Badr1,2*† and Haifa A. Al-aqel3*†

From 12th International Symposium on Bioinformatics Research and Applications (ISBRA 2016)
Minsk, Belarus. 5-8 June 2016

Abstract

Background: Genome rearrangements are essential processes for evolution and are responsible for existing
varieties of genome architectures. Many studies have been conducted to obtain an algorithm that identifies the
minimum number of inversions that are necessary to transform one genome into another; this allows for genome
sequence representation in polynomial time. Studies have not been conducted on the topic of rearranging a
genome when it is represented as a secondary structure. Unlike sequences, the secondary structure preserves the
functionality of the genome. Sequences can be different, but they all share the same structure and, therefore, the
same functionality.

Results: This paper proposes a double cut and join for RNA secondary structures (DCJ-RNA) algorithm. This
algorithm allows for the description of evolutionary scenarios that are based on secondary structures rather than
sequences. The main aim of this paper is to suggest an efficient algorithm that can help researchers compare two
ribonucleic acid (RNA) secondary structures based on rearrangement operations. The results, which are based on
real datasets, show that the algorithm is able to count the minimum number of rearrangement operations, as well
as to report an optimum scenario that can increase the similarity between the two structures.

Conclusion: The algorithm calculates the distance between structures and reports a scenario based on the
minimum rearrangement operations required to make the given structure similar to the other. DCJ-RNA can also be
used to measure the distance between the two structures. This can help identify the common functionalities
between different species.

Keywords: Genome Rearrangement, RNA Secondary Structure, DCJ, Similarity Measure, Sorting Scenario

Background
DNA is a biological blueprint that a living organism
must have to exist and remain functional. RNA holds
the guidelines for this blueprint. RNA is responsible
for transferring the genetic code from the nucleus to
the ribosome to build proteins. It is identified as a
series of letters with bases {A, C, G, U}. RNA’s sec-
ondary structure is required to define the functional-
ity of RNA molecules. In contrast to representing the

genome as a sequence, representing it as a secondary
structure provides more insight into the genome’s
function. In this paper, RNA’s secondary structure is
presented using a component-based representation,
which was recently proposed in 2011 [1]. In contrast
to similarity between gene orders, identifying the
similarity of functioning between two structures has a
greater impact on comparing species. Comparing two
species based on their secondary structures provides
more information and reveals more accurate evolu-
tionary scenarios [2]. Comparison of two species
based on their secondary structures can also be com-
bined with existing sequence-based algorithms to en-
hance sequence-based algorithms efficiency [3]. This
helps create more accurate phylogenies [4].

* Correspondence: badrghada@hotmail.com; haagel@imamu.edu.sa
†Equal contributors
1IRI- The City of Scientific Research and Technological Applications, University
and Research District, P. O. 21934, New Borg Alarab, Alexandria, Egypt
2University of Ottawa, Faculty of Engineering, Ottawa, Canada
3Imam Mohammad ibn Saud Islamic University, College of Computer and
Information Sciences, Riyadh, Saudi Arabia

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427
DOI 10.1186/s12859-017-1830-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1830-6&domain=pdf
mailto:badrghada@hotmail.com
mailto:haagel@imamu.edu.sa
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The paper outline is as follows - the RNA second-
ary structure is presented using a component-based
representation. The researchers proceed to describe
the measures that are used to determine the similarity
between components of the given structures. Genome
rearrangement in terms of sequences and its opera-
tions, sorting scenario, and distance measures are
summarized. We then propose a DCJ-RNA rearrange-
ment algorithm and explain it in detail. Two case
studies using real data are presented, illustrating the
detection and application of the proposed rearrange-
ment operations for real RNA secondary structures.
The results demonstrate that the proposed algorithm
provides one evolutionary scenario that shows how to
alter one structure to make it similar to the other or
the same as the other. Preliminary work has been
presented as a poster in [5].

RNA secondary structure component-based
representation
Badr and Turcotte [1] propose a component-based
structure to define interacting and non-interacting
patterns as follows - the representation can be used
to define interacting and non-interacting patterns for
RNA secondary structures. A pattern (P = {p1, p2. .. pm}) is
defined by its sub-patterns (Pi, 0 < i < m). Each sub-
pattern is defined by its length and intermolecular
(INTERM) and intramolecular (INTRAM) compo-
nents. For non-interacting patterns, there are no
INTERM components. These components are defined
by their opening bracket (OB), closing bracket (CB),
length, and relative locations within the sub-patterns.
In the INTERM component, OB and CB are located
in two different sub-patterns. In the INTRAM

component, OB and CB are located in the same sub-
pattern. In the INTERM component, OB and CB
must be in different sub-patterns, which suggests that
there must be at least two sub-patterns to have
INTERM components. OB is located in pi, and CB is
located in another sub-pattern (pj), where j > i and
1 ≤ j ≤ m. OB and CB are defined by their lengths
and locations relative to the beginning of pi. Thus,
INTERM = {OB, CB, j, len}. In INTRAM compo-
nents, OB and CB have to be in the same sub-
pattern, which indicates that there must be at least
one sub-pattern to have INTRAM components. OB
and CB are located in pi, where 1 ≤ i ≤ m. OB and
CB both are defined by their location and length.
Therefore, INTRAM = {OB, CB, len}. Figure 1 shows
an example of a non-interacting pattern.

Similarities between two RNA secondary structures
(Alignment distance)
Badr and AlTurki [6] propose a similarity measure
based on aligning two secondary structures that are
presented using a component-based representation.
The algorithm extracts the features of each compo-
nent, which are OB, CB, and length. The similarity
between two structures depends on the component’s
position, full length, and stem length. These measures
are used in the new proposed algorithm. The equa-
tions that are applied to calculate the similarity be-
tween two components, ai in structure A and bj in
structure B, d(fai, fbj), can be found in [6]. The simi-
larity measure between two components is used to
calculate the dynamic programming matrix using the
method proposed by Needleman and Wunsch [7].
The alignment score between two structures is

Fig. 1 An example of a component-based representation

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 116 of 131



calculated using Eq. 1, while the percentage of the
similarity between two structures is calculated using
Eq. 2 [6].

Score a; bð Þ ¼
Xn

i¼1

Xm

j¼1

d fai; fbjð Þ if ai is aligned with bj
0 otherwise

� �

ð1Þ

Score percentage a; bð Þ ¼ Score a; bð Þ
Max a; bð Þ ð2Þ

where Max(a, b) =Max {Score(a, a), Score(b, b.)}
RSmatch [8], which is another alignment distance,

is a tool for aligning RNA secondary structures and is
also used for motif detection. Determined with widely
used algorithms for RNA folding, it decomposes the
secondary structure of RNA into a set of atomic
structural components. These components are further
organized using a tree model to capture the structural
particularities. RSmatch can find the optimal global or
local alignment between two RNA secondary struc-
tures using two scoring matrices - one for single-
stranded regions and the other for double-stranded
regions. Jiang et al. [9] define the alignment of trees
as a measure of similarity between two secondary
structures in tree representation.

Sequence-based genome rearrangements
Genomes can be modeled using permutations. Each
gene can be allocated once at the genome and
assigned a unique number. A gene is modeled by a
signed integer when the gene strand is known to
biologists [10, 11].

Rearrangement operations
Two genomes can have the same number of genes but
may have different orders. A sequence of operations can
be applied to change one genome into another. The
most common rearrangement events or operations are
as follows [12, 13]:

� Inversion - This reverses the orientation of a gene
(or a group of genes).

� Transposition - This changes the order of a gene (or
a group of genes). In other words, if the gene is
located in one index, it is moved to another index.

� Gain - This adds a gene (or a group of genes) to a
genome.

� Loss - This removes a gene (or a group of genes)
from a genome.

� Duplication - This duplicates a specific gene (or a
group of genes) within a genome.

Distance measures
The distance between two genomes is the minimum
number of events or operations that are required to
transform one genome into the other. Yancopoulos et
al. [14] first proposed double cut and join (DCJ) op-
erations. A DCJ operation consists of cutting a gen-
ome at two distinct positions and joining the four
resulting open ends in a different way. Since a gene
(e.g., a) has an orientation, its two ends, namely the
extremities, can be distinguished and denoted as at
(tail) and ah (head). An adjacency in a genome is
either the extremity of a gene that is adjacent to one
of its telomeres or a pair of consecutive gene extrem-
ities in one of its chromosomes.
DCJ distance consists of two operations - cut, which

cuts an adjacency in two telomeres, and join, which con-
nect two telomeres to form an adjacency. A model in
which any operation consists of two cuts followed by
two joins on the extremities is considered a DCJ oper-
ation [15]. DCJ allows for multi-chromosomal genomes
with both circular and linear chromosomes.
DCJ distance can be easily calculated with the assist-

ance of an adjacency graph, which is a two-part multi-
graph in which each partition corresponds to the set of
adjacencies of one of the two input genomes. An edge
connects the same extremities of genes in both genomes.
In other words, a one-to-one correspondence exists be-
tween the set of edges in an adjacency graph and the set
of gene extremities. Vertices have degree one or two.
Therefore, an adjacency graph is a collection of paths
and cycles. DCJ distance can be define as follows:

dDCJ G1;G2ð Þ ¼ N� c G1;G2ð Þ þ p G1;G2ð Þ=2ð Þ ð3Þ

In this equation, c (G1, G2) is the number of cycles,
and p (G1, G2) is the number of odd paths in the adja-
cency graph.

Sorting scenario
One related issue is identifying a sorting scenario for the
given distance, which provides the operations them-
selves. A single or number of possible solutions or sort-
ing sequences can be found.
Bergeron et al. [11] provide an algorithm to obtain the

DCJ operation in O(n) time (Algorithm 1). Mathematic-
ally, sorting using DCJ operations is simple. As with
DCJ distance, DCJ operations take two adjacencies or
telomeres, cut the adjacencies/telomeres, and create new
adjacencies or telomeres. There are several DCJ oper-
ation types. A DCJ operation may create two adjacencies
by cutting two adjacencies. A DCJ operation may also
create an adjacency and telomere by cutting an adja-
cency and removing a telomere. In addition, a DCJ oper-
ation can consist of forming two telomeres by cutting an

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 117 of 131



adjacency. Finally, DCJ operations may create an adja-
cency by removing two telomeres.

Method: DCJ-RNA algorithm
The RNA component-based rearrangement algorithm
uses a component-based representation [2] that allows
for the unique description of any RNA pattern and
shows the main features of the pattern efficiently. The
proposed algorithm also uses the DCJ algorithm to de-
scribe rearrangement operations. It uses classical opera-
tions (inversions, translocations, fissions, fusions,
transposition, and block interchanges) with a single op-
eration and provides multi-chromosomal genomes. The
DCJ-RNA algorithm (Algorithm 2) is described next.

The DCJ-RNA algorithm completes three main steps:

Step 1 - Alignment of similar components based on
their component lengths and stem lengths.

In this step, calculate the similarity between compo-
nents in terms of their component lengths and stem

lengths [6]. Similar components are assigned together,
beginning with those with the greatest similarity. The
similarity measure that is used in this step is as follows -

d1 fai; fbj
� � ¼ ComponentLength fai; fbið Þ:StemLength fai; fbið Þ

ð4Þ

Then, a matrix (m × n) is built; the entries are the
component similarities in terms of component length
and stem length. The rows represent the components of
the first structure, and the columns represent the com-
ponents of the second structure. We then search for the
maximum entry (greedy) in the matrix. If it is greater
than the threshold enhancement (ε) (the minimum simi-
larity score between two components), the components
are assigned together, and the corresponding row and
column are deleted. If maximum similarity appears in
more than one entry, the position similarity is compared
between those components only and the assigned com-
ponents with the greatest similarity in position. Table 1
shows the matrix structure.

Step 2 - Permutation generation

In this step, a corresponding permutation is generated
for each of the two structures. This is completed by de-
termining the components to be inserted or deleted, as
well as the order of the similar components using the
alignment that is generated from step 1. A two-
dimensional array of 3 Χ in size (the maximum number
of components in A or B + 1) is constructed and identi-
fied as SortArray. The first row contains the desired
structure, the second row contains the deleted compo-
nents from the actual structure, and the third row con-
tains the inserted components from the desired
structure. An index value of zero for the first row is re-
served for the number of components in the actual
structure. An index value of zero for the second row is

Table 2 The structure of SortArray

Index 0 1 2 3 4 5 … Max + 1

SortArray[0] # of components in actual
structure

Desired Structure Components

SortArray[1] # of deleted components Deleted Components

SortArray[2] # of inserted components Inserted Components

Table 1 Component length and stem length similarity

a1 a2 a3 .. an

b1

b2

b3

bm

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 118 of 131



reserved for the number of deleted components. For
third row, an index of zero is reserved for the number of
components. Table 2 shows the SortArray structure.

Step 3 - Applying the DCJ algorithm.

The component numbers are used to determine the
permutations in the DCJ algorithm [16]. Two permuta-
tions are provided. The first is for the given or actual
permutation, and the second permutation is for the de-
sired one.
Each permutation has two chromosomes -

For the first permutation - The first chromosome is
the actual structure of the components, and the second
chromosome is the inserted components.
For the second permutation - The first chromosome
is the desired structure, and the second chromosome
consists of the deleted components.

Each permutation is represented by its adjacencies and
telomeres. Finally, the DCJ algorithm is applied to the
first and second permutations as input.
The DCJ algorithm [17] is modified in the way that it

is applied to sort the first chromosome from the second
permutation; this changes the first chromosome of the
first permutation. The second chromosome of the sec-
ond permutation consists of the deleted components,
which do not need to be sorted.

Example
In order to clarify the steps of the algorithm, real RNA
secondary structures from the Genomic tRNA Database
[18] are used as examples. The first structure is for E.

coli tRNA for leucine (A), while the other structure is
for E. coli tRNA for alanine (B) (see Fig. 2).
The two structures are presented using a component-

based representation -

� A = (85, INTERM = {}, INRAM = {a1 = (1, 75, 7),
a2 = (10, 24, 3), a3 = (28, 40, 5), a4 = (46, 53, 3),
a5 = (58, 70, 5)})

� B = (76, INTERM = {}, INTRAM = {b1 = (1, 66, 7),
b2 = (10, 22, 4), b3 = (27, 39, 5), b4 = (49, 61, 5)})

� The measure weights are equal to one, and
threshold enhancement (ε) is equal to 0.5.

Step 1 - Alignment of similar components based on
their component lengths and stem lengths.

In this step, the similarity between components is cal-
culated in terms of their component lengths and stem
lengths. Similar components are assigned together, be-
ginning with those with the greatest similarity (greedy).
In this example, the similarity between components is

shown in the matrix in Table 3. First, the maximum

Table 3 Similarity between components based on component
length and stem length

b1 b2 b3 b4

a1 0.39 0.24 0.29 0.29

a2 0.34 0.83 0.75 0.75

a3 0.25 0.86 1 1

a4 0.22 0.66 0.56 0.56

a5 0.25 0.86 1 1

Fig. 2 Structure A (left) and structure B (right)

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 119 of 131



number is one. The components are assigned together,
and the row and column are removed. In this case, d1
(a3, b3) and d1 (a3, b4) are at the same position, so the
nearest components are assigned in terms of their pos-
ition (a3 and b3). The same case applies for d1 (a5, b3)
and d1 (a5, b4). The maximum value, which is 0.83, is
searched for once again. Then, a2 and b2 are assigned,
and the row and column are deleted. The next value is
0.39, which is less than the threshold enhancement (ε)
value, suggesting that b1 must be inserted and that a1
must be deleted. Then, a4 is deleted because no other
components remain from the second structure.

Step 2 - Permutation generation

In this step, similar components are mapped according
to the process outlined in the previous step. The
inserted components and deleted components are then
identified (Table 4).

Step 3 - Applying the DCJ algorithm.

The permutations are constructed to apply the DCJ al-
gorithm. The first permutation is chr1 = {1, 2, 3, 4, 5}
and chr2 = {6}. The permutations are represented as a
sequence of numbers. To differentiate between the com-
ponents of the first structure and the second one, the re-
searchers represent the second structure’s component i
as i + N, where N equals the number of components in
the first structure. The second permutation is chr1 = {6,
2, 3, 5} and chr2 = {1, 4}.

Then, each genome is represented with its adjacencies
and telomeres to ensure that the DCJ algorithm can be
applied; the first and second permutations are as follows:

The first permutation is: {{1 t}, {1 h, 2 t}, {2 h, 3 t},
{3 h, 4 t}, {4 h, 5 t}, {5 h}, {6 t}, {6 h}}
The Second permutation is: {{6 t}, {6 h, 2 t}, {2 h, 3 t},
{3 h, 4 t}, {4 h, 5 t}, {5 h}, {1 t}, {1 h, 4 t}, {4 h}}

In addition, {1 t}, {1 h, 4 t}, and {4 h} will not be sorted
because they are included in the second chromosome.
After applying the DCJ algorithm, the number of DCJ op-
erations (3) is retrieved, as well as the sorting scenario is:

{{{6 t}, {1 h, 2 t}, {1 t}, {2 h, 3 t}, {3 h, 4 t}, {4 h, 5 t},
{5 h}, {6 h}},
{{6 t}, {6 h, 2 t}, {1 h}, {1 t}, {2 h, 3 t}, {3 h, 4 t}, {4 h,
5 t}, {5 h}},
{{6 t}, {6 h, 2 t}, {1 h}, {1 t}, {2 h, 3 t}, {3 h, 5 t}, {4 h,
4 t}, {5 h}}}.

Figure 3 shows the given structures following each re-
arrangement operation, as well as the similarity score
with the original structure after applying each rearrange-
ment operation. It also shows the final desired
operation.
To demonstrate the effect of the DCJ-RNA on increas-

ing the similarity between the structures, the CompPSA
algorithm [6] is used to calculate the similarity between
the structures before and after applying the algorithm.
The similarity between the structures is 42% before ap-
plying any changes and increases to 94% after applying
the DCJ-RNA algorithm (Fig. 4).

Results and discussion
To test and validate the DCJ-RNA algorithm, extensive
experiments are conducted, three experiments are ap-
plied to three different datasets.

Fig. 3 The given structures following each operation

Table 4 SortArray for the example

Index 0 1 2 3 4 5

SortArray[0] 5 6(b1) 2(a2) 3(a3) 5(a5)

SortArray[1] 2 1(a1) 4(a4)

SortArray[2] 1 6(b1)

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 120 of 131



Fig. 4 Structure A after applying the DCJ-RNA algorithm

Fig. 5 Structures A, B, and C, respectively, with their features listed as follows (ComponentID, opening bracket, closing bracket, component length)

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 121 of 131



Datasets
There are three different datasets - adjust dataset, accur-
acy dataset and scalability dataset. In this section, each
dataset is described in detail.

Adjust dataset
This dataset consists of three real RNA structures
named A, B and C shown in Fig. 5 where selected from
the NCBI GenBank [16]. it is used to determine the best
threshold enhancement (ε) value. There are two cases
for RNA similarities. Dissimilar sequences and exact/
approximate similar structures, structures A and B
are used. In other case, dissimilar structures and
exact/approximate similar sequences, structures A and
C are used.

Accuracy dataset
The accuracy dataset is used to calculate the perform-
ance and accuracy of the DCJ-RNA algorithm using dif-
ferent RNA structure sizes. This dataset consists of three
pairs of RNA structures that are chosen from the Gen-
Bank [19] and Rfam database [20] and differ in size. The

first pair of RNA structures consists of two small RNA
structures; named D and E, as shown in Fig. 6.
The second pair consists of two medium RNA struc-

tures; named F and G, as shown in Fig. 7.
The third pair consists of two large RNA structures;

named H and I, as shown in Fig. 8.

Scalability dataset
The scalability dataset is used to calculate the scalability
of the time and memory performance of the DCJ-RNA
algorithm using different RNA structure sizes. This data-
set consists of 11 RNA structures based on the first
RNA structure, A, in the adjust dataset. Then the second
structure is a duplicate of the first one, the third struc-
ture is a duplicate of the second one, and so on. The
RNA structures’ numbers, names, sizes, and number of
components are shown in Table 5. The first six RNA
structures (J, K, L, M, N, and O) are shown in Fig. 9.

Experiments
Three experiments are conducted - threshold adjust-
ment, performance accuracy, and time and memory

Fig. 6 Structures D and E, respectively, with their features listed as follows (ComponentID, opening bracket, closing bracket, component length)

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 122 of 131



performance experiments, the experiments are obtained
using real and simulated data in [19].

Threshold adjustment experiment
Threshold adjustment experiments are conducted to de-
termine the best threshold enhancement (ε) value that
gives the minimum number of rearrangement operations
to make the RNA structures exactly the same or ap-
proximately similar.

Experiment setup The used dataset is the adjust data-
set, while fixed parameters are WP equals 0 and Wcl and
Wsl equal 1. Experiments are conducted for 10 values of
threshold enhancement (ε) from 0 to 1.

Experiment results We change the value of the thresh-
old enhancement (ε) from 0.0, 0.1, 0.2, … 1.0 and obtain

the result shown in Table 6 for both cases - similar
structures with dissimilar sequences and similar struc-
tures with dissimilar sequences. As illustrated in Table 7,
when the threshold enhancement (ε) equals 1.0, it means
that the RNA structures are exactly similar but the num-
ber of the rearrangement operations is greater than the
other values. On the other side, when threshold en-
hancement (ε) equals 0.0, it means that when the desired
structure has less than or equal number of components
as compared to the given structure, the order of the
components is changed, and no components are added
or deleted.
From results, it can be seen that when the structures

are similar, the best threshold enhancement (ε) equals
0.6, because of the similarity between structures and the
number of rearrangement operations is reasonable; the
structures after sorting for each threshold enhancement

Fig. 7 Structures F and G, respectively, with their features listed as follows (ComponentID, opening bracket, closing bracket, component length)

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 123 of 131



Table 5 RNA structures with their features

RNA structure # 1 2 3 4 5 6 7 8 9 10 11

RNA Structure Name J K L M N O P Q R S T

Size (length) 68 136 272 544 1088 2176 4352 8704 10,336 20,672 41,344

Components Number 9 18 36 72 144 288 576 1152 1368 2736 5472

Fig. 8 Structures H and I, respectively, with their features listed as follows (ComponentID, opening bracket, closing bracket, component length)

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 124 of 131



(ε) are shown in Fig. 10. For the same reason, when the
structures are dissimilar, the best threshold enhancement
(ε) equals 0.8.

Performance accuracy experiment
The performance accuracy experiment is conducted to
show the accuracy of the DCJ-RNA algorithm with dif-
ferent RNA sizes. To test the effect of the DCJ-RNA al-
gorithm and calculate the similarity between structures,
the CompPSA algorithm [6] is used.

Experiment setup The dataset used is accuracy data-
set. Since all three RNA structures pairs are similar

in their structures and dissimilar in their sequences,
the threshold enhancement (ε) equals 0.6 and fixed
parameters are WP equals 0 and Wcl and Wsl are
equal to 1.

Experiment results DCJ-RNA was applied to three
pairs of RNA structures - small, medium, and large
RNA structures. Each experiment is discussed in de-
tail in the following.

Small pairs of RNA structures

Step 1 - Alignment of Similar Components Based on
Component Lengths and Stem Lengths

Calculate the similarity between components as shown
in Table 8. Then assign similar components together
whenever the similarity between them is greater than or
equal to threshold enhancement (ε), which is 0.6. Here,
assign D1 with E1, E4 with D3, E2 with D2, and add E3.

Step 2 - Permutation Generation

Fig. 9 Scalability dataset with six RNA structures

Table 6 Different threshold enhancement (ε) values with
algorithm accuracy

Similar structures and
dissimilar sequences (35%)

Similar sequences and
dissimilar structures (20%)

Threshold
enhancement (ε)

CompPSA Rearrangement
operations

CompPSA Rearrangement
operations

0.0 64% 2 59% 13

0.1 64% 2 71% 14

0.2 64% 2 71% 14

0.3 64% 2 71% 14

0.4 64% 2 71% 14

0.5 64% 2 94% 14

0.6 64% 2 94% 14

0.7 69% 3 94% 14

0.8 69% 3 97% 14

0.9 71% 4 100% 14

1.0 100% 7 100% 14

Table 7 Length similarity of small pairs of RNA structures in
terms of component length and stem length

E1 E2 E3 E4

D1 0.97 0.65 0.39 0.22

D2 0.5 0.74 0.35 0.21

D3 0.21 0.29 0.61 0.95

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 125 of 131



Construct SortArray, fill it as shown in Table 9. After
that, construct the permutations to apply the DCJ
algorithm.

Step 3 - Apply the Double Cut and Join Algorithm

Construct the permutations to apply the DCJ algo-
rithm. First permutation is (chr1 = {1,2,3} and chr2 = {6}).
(Note - permutation represented as a sequence of num-
bers, to differentiate between the first structure’s compo-
nents and the second structure’s components, we
represent the second structure’s component i as i + N,
where N equals the number of components in the first
structure.) The second permutation is - (chr1 = {1,2,6,3}
and chr2 = {}). Represent each genome with its adjacen-
cies and telomeres to apply the DCJ algorithm, the first
and second permutations are as follows:

The first permutation is: {{1 t}, {1 h, 2 t}, {2 h, 3 t},
{3 h}, {6 t}, {6 h}}
The second permutation is: {{1 t}, {1 h, 2 t}, {2 h, 6 t},
{6 h, 3 t}, {3 h}}

After applying the DCJ algorithm, we obtain the num-
ber of the DCJ operations, which is 2, and the sorting
scenario is:

{{{1 t}, {1 h, 2 t}, {2 h, 3 t}, {3 h}, {6 t}, {6 h}}, {{1 t},
{1 h, 2 t}, {2 h, 6 t}, {6 h, 3 t}, {3 h}}}

The similarity between the given structures D and E
is 58% before applying any changes, while it increases
to 85% after applying the DCJ-RNA algorithm; see
Fig. 11.

Medium pairs of RNA structures

Step 1 - Alignment of Similar Components Based on
Component Lengths and Stem Lengths

Calculate the similarity between components as
shown in Table 10, then, assign F7 with G6, F6 with
G5, F4 with G3, F3 with G2, F5 with G1, delete F1,
delete F2, and add G4.

Step 2 - Permutation Generation

Fig. 10 RNA structures after sorting for each threshold enhancement (ε)

Table 8 SortArray for small pairs of RNA structures

Index 0 1 2 3 4

SortArray[0] 3 1(D1) 2(D2) 6(E3) 3(D3)

SortArray[1] 0

SortArray[2] 1 6(E3)

Table 9 Length similarity of medium pairs of RNA structures in
terms of component length and stem length

G1 G2 G3 G4 G5 G6

F1 0.39 0.43 0.16 0.2 0.71 0.35

F2 0.11 0.23 0.13 0.16 0.23 0.12

F3 0.56 0.95 0.44 0.53 0.68 0.59

F4 0.52 0.51 0.96 0.92 0.29 0.58

F5 0.81 0.66 0.63 0.72 0.48 0.9

F6 0.54 0.65 0.28 0.33 0.99 0.55

F7 0.91 0.62 0.55 0.64 0.55 1.0

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 126 of 131



Construct SortArray, fill it as shown in Table 11. After
that, construct the permutations to apply the DCJ
algorithm.

Step 3 - Apply the Double Cut and Join Algorithm

Construct the permutations to apply the DCJ algo-
rithm. The first permutation is (chr1 = {1, 2, 3, 4, 5, 6, 7}
and chr2 = {11}). The second permutation is - (chr1 = {5,
3, 4, 11, 6, 7} and chr2 = {1, 2}). Represent each genome
with its adjacencies and telomeres as:

The first permutation is: {{1 t}, {1 h, 2 t}, {2 h, 3 t},
{3 h, 4 t}, {4 h}, {5 t}, {5 h, 6 t}, {6 h, 7 t}, {7 h}, {11 t},
{11 h}}
The second permutation is: {{5 t}, {5 h, 3 t}, {3 h, 4 t},
{4 h, 11 t}, {11 h, 6 t}, {6 h, 7 t}, {7 h}, {1 t}, {1 h, 2 t},
{2 h}}

After applying the DCJ algorithm, we obtain the num-
ber of the DCJ operations, which is 4, and the sorting
scenario is:

{{{1 t}, {1 h, 2 t}, {2 h, 3 t}, {3 h, 4 t}, {4 h}, {5 t}, {5 h,
6 t}, {6 h, 7 t}, {7 h}, {11 t}, {11 h}},
{{1 t}, {1 h, 2 t}, {2 h, 6 t}, {3 h, 4 t}, {4 h}, {5 t}, {5 h,
3 t}, {6 h, 7 t}, {7 h}, {11 t}, {11 h}}

{{1 t}, {1 h, 2 t}, {2 h, 6 t}, {3 h, 4 t}, {4 h, 11 t}, {5 t},
{5 h, 3 t}, {6 h, 7 t}, {7 h}, {11 h}}
{{1 t}, {1 h, 2 t}, {2 h}, {3 h, 4 t}, {4 h, 11 t}, {5 t}, {5 h,
3 t}, {6 h, 7 t}, {7 h}, {11 h, 6 t}}}

The similarity between the given structures F and G
is 49% before applying any changes, while it increases
to 94% after applying the DCJ-RNA algorithm; see
Fig. 12.

Large pairs of RNA structures

Step 1 - Alignment of Similar Components Based on
Component Lengths and Stem Lengths

Calculate the similarity between components as
shown in Table 4.7, then, assign H1 with I2, H2 with
I3, H3 with I4, H4 with I5, H5 with I6, H6 with I7, H7

with I8, H8 with I9, H with I10, H10 with I11, H11 with
I12, and insert I1.

Step 2 - Permutation Generation

Construct SortArray fill it as shown in Table 12. After
that, construct the permutations to apply the DCJ
algorithm.

Step 3 - Apply the Double Cut and Join Algorithm

Construct the permutations to apply the DCJ algo-
rithm. The first permutation is (chr1 = {1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11} and chr2 = {12}). The second per-
mutation is - (chr1 = {12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11} and chr2 = {}). Represent each genome with its

Fig. 11 Given, sorted, and desired structures for small pairs of RNA structures

Table 10 SortArray for medium pairs of RNA structures

Index 0 1 2 3 4 5 6 7

SortArray[0] 7 5(F5) 3(F3) 4(F4) 11(G4) 6(F6) 7(F7)

SortArray[1] 2 1(F1) 2(F2)

SortArray[2] 1 11(G4)

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 127 of 131



Fig. 12 Given, sorted, and desired structures for medium pairs of RNA structures

Table 11 Length similarity of large pairs of RNA structures in terms of component length and stem length

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

H1 0.35 0.63 0.83 0.13 0.11 0.2 0.15 0.23 0.38 0.39 0.67 0.62

H2 0.44 0.59 1.0 0.13 0.15 0.2 0.14 0.21 0.41 0.38 0.65 0.66

H3 0.26 0.24 0.13 1.0 0.37 0.7 0.77 0.26 0.04 0.44 0.24 0.07

H4 0.42 0.11 0.15 0.37 1.0 0.56 0.31 0.09 0.1 0.23 0.2 0.12

H5 0.41 0.21 0.2 0.7 0.56 1.0 0.64 0.21 0.06 0.45 0.37 0.11

H6 0.27 0.27 0.14 0.77 0.31 0.64 1.0 0.37 0.04 0.48 0.26 0.08

H7 0.27 0.41 0.21 0.26 0.09 0.21 0.37 1.0 0.06 0.52 0.36 0.11

H8 0.21 0.21 0.41 0.04 0.1 0.06 0.04 0.06 1.0 0.12 0.23 0.66

H9 0.6 0.57 0.38 0.44 0.23 0.45 0.48 0.52 0.12 1.0 0.63 0.21

H10 0.57 0.64 0.65 0.24 0.2 0.37 0.26 0.36 0.23 0.63 1.0 0.39

H11 0.36 0.36 0.66 0.07 0.12 0.11 0.08 0.11 0.66 0.21 0.39 1.0

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 128 of 131



adjacencies and telomeres to apply the DCJ algorithm,
as the following:

The first permutation is: {{1 t}, {1 h, 2 t}, {2 h, 3 t},
{3 h, 4 t}, {4 h, 5 t}, {5 h, 6 t}, {6 h, 7 t}, {7 h, 8 t}, {8 h,
9 t}, {9 h, 10 t}, {10 h, 11 t}, {11 h}, {12 t}, {12 h}}
The second permutation is: {{12 t}, {12 h, 1 t}, {1 h,
2 t}, {2 h,3 t}, {3 h, 4 t}, {4 h, 5 t}, {5 h, 6 t}, {6 h, 7 t},
{7 h, 8 t}, {8 h, 9 t}, {9 h, 10 t}, {10 h, 11 t}, {11 h}}

After applying the DCJ operations, we get the number
of the DCJ algorithm, which is 2, and the sorting sce-
nario is:

{{{12 t}, {1 t}, {1 h, 2 t}, {2 h, 3 t}, {3 h, 4 t}, {4 h, 5 t},
{5 h, 6 t}, {6 h, 7 t}, {7 h, 8 t}, {8 h, 9 t}, {9 h, 10 t},
{10 h, 11 t}, {11 h},{12 h}},

{{12 t}, {12 h, 1 t}, {1 h, 2 t}, {2 h,3 t}, {3 h, 4 t}, {4 h,
5 t}, {5 h, 6 t}, {6 h, 7 t}, {7 h, 8 t}, {8 h, 9 t}, {9 h, 10 t},
{10 h, 11 t}, {11 h}}}

The similarity between the given structures H and I
is 84% before applying any changes, while it increases
to 91% after applying the DCJ-RNA algorithm; see
Fig. 13.

Time & Memory performance experiment
The time and memory performance experiment is con-
ducted to test the performance of the DCJ-RNA algo-
rithm using different RNA structure sizes.

Experiment setup The scalability dataset is used, while
fixed parameters WP equals 0 and Wcl and Wsl are equal
to 1. Threshold enhancement (ε) equals 0.6 since

Fig. 13 Given, sorted, and desired structures for large pairs of RNA structures

Table 12 SortArray for large pairs of RNA structures

Index 0 1 2 3 4 5 6 7 8 9 10 11 12

SortArray[0] 12 12(I1) 1(H1) 2(H2) 3(H3) 4(H4) 5(H5) 6(H6) 7(H7) 8(H8) 9(H9) 10(H10) 11(H11)

SortArray[1] 0

SortArray[2] 1 12(I1)

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 129 of 131



structures are similar. The two structures in each experi-
ment are identical which means the similarity between
them is 100%.

Experiment results Consider the maximum number of
components to be N; the time complexity of step 1 is O(N
log N) for the worst case. Each time we have to search for
the maximum value for N values then discard the row

and column related to maximum value, as a result, the
next search is applied to (N-1) components and so on.
The time complexity of the second step is O(N), since this
step determines the inserted components and the deleted
components. The algorithm moves through the entries
only once to fill SortArray in which they are all of size N.
For step three, the time complexity is O(N) since the DCJ
algorithm is used. Therefore, the worst time for the entire
algorithm is O(N log N). Table 13 and Fig. 14 confirm
the time performance analysis empirically using the scal-
ability dataset. The space requirement for the first step is
O(N2) when the same number of components are present.
For the second step, the memory takes O(3 N) for
SortArray. For the third step, the space of memory is
O(2 N). Hence, the total space requirement for DCJ-RNA
algorithm is O(N2). Table 13 shows time and memory
performance results from this experiment and the corre-
sponding graph representation (Fig. 14).

Conclusion
The DCJ-RNA algorithm is proposed and is able to de-
scribe the evolutionary scenarios that are based on

Table 13 Time and memory performance results of the
DCJ-RNA algorithm

Length Number of
components

Time in
seconds

Memory usage
in MB

68 9 0.010739 1.11

136 18 0.020159 1.11

272 36 0.026246 1.78

544 72 0.039157 3.44

1088 144 0.130200 9.38

2176 288 0.208723 1.50

4352 576 0.502496 4.43

8704 1152 2.657500 17.50

Fig. 14 The performance results for time (a) and memory (b)

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 130 of 131



rearrangements of secondary structures rather than se-
quences. The DCJ-RNA algorithm is optimal. Since
RNA secondary structures reveal more functionality, this
algorithm can help in the comparison between the func-
tionality of structures. Real data is used to illustrate the
details of the proposed algorithm. It demonstrates that
the algorithm is able to detect the minimum number of
rearrangement operations in order to make one struc-
ture more similar to the other. A rearrangement sce-
nario increases similarity between the first structure and
any other structure. This creates an ideal framework for
applying rearrangement operations to secondary struc-
tures rather than sequences.
The algorithm is applied to non-interacting patterns

only. Therefore, future work should extend the algo-
rithm to consider interacting RNA patterns. In addition,
the researchers would like to explore other well-defined
structures, such as chemical structures, and investigate
the application of a similar approach that can define a
scenario for changing one structure into another struc-
ture. Using the DCJ-RNA approach, we would also like
to develop a tool that can help biologists compare RNA
structures to folded RNA structures that are based on
the corresponding RNA sequence. This tool, which is
unavailable, would be ideal for biologists, as suggested at
the RECOMB-CG conference in 2014.

Acknowledgements
A 2-page abstract has been published in Lecture notes in computer science:
Bioinformatics research and applications.

Funding
This research has been supported by the National Plan for Sciences
and Technology, King Saud University, Riyadh, Saudi Arabia (Project
No. 12-BIO2605–02). The Funding institute did not play any role in design and
conclusions. The publication costs were covered by the authors.

Availability of data and materials
Data can be available upon request.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 18
Supplement 12, 2017: Selected articles from the 12th International
Symposium on Bioinformatics Research and Applications (ISBRA-16):
bioinformatics. The full contents of the supplement are available online at
https://bmcbioinformatics.biomedcentral.com/articles/supplements/
volume-18-supplement-12.

Authors’ contributions
GB proposed, conceived, designed, and coordinated the study, helped in
drafting of the manuscript, and critically revised the final manuscript. HA
designed the benchmark, developed the DCJ-RNA steps, carried out
testing and validation, and helped in drafting of the manuscript. All
authors participated in analysis and interpretation of results. Both
authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 16 October 2017

References
1. Badr G, Turcotte M. Component-based matching for multiple interacting

RNA sequences. In: 7th International Conference on Bioinformatics Research
and Application. Berlin, Heidelberg; 2011. p. 73–86.

2. Gesell T, Schuster P. Phylogeny and evolution of RNA structure. Methods
Mol Biol. 2014;1097:319–78.

3. Shang L, Gardner D, Xu W, Cannone J, Miranker D, Ozer S, Gutell R. Two
accurate sequence, structure, and phylogenetic template-based RNA
alignment systems. BMC Syst Biol. 2013;7(4):1–15.

4. Keller A, Förster F, Müller T, Dandekar T, Schultz J, Wolf M. Including RNA
secondary structures improves accuracy and robustness in reconstruction of
phylogenetic trees. Biol Direct. 2010;5:1–12.

5. Badr G, Alaqel H. Genome rearrangement for RNA secondary structure
using a component-based representation - An initial framework. New York:
Poster presentation at RECOMB-CG; 2014.

6. Alturki A, Badr G, Benhidour H. Component-based pair-wise RNA secondary
structure alignment algorithm, Master Project. Riyadh: King Saud University; 2013.

7. Needleman SB, Wunsch CD. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol. 1970;
48(3):443–53.

8. Liu J et al. A method for aligning RNA secondary structures and its
application to RNA motif detection. BMC Bioinformatics. 2005;6–89. doi:10.
1186/1471-2105-6-89.

9. Jiang T, Wang L, Zhang K. Alignment of trees - An alternative to tree edit.
In: Crochemore M, Gusfield D, editors. Combinatorial Pattern Matching.
Berlin, Heidelberg: Springer; 1994. p. 75–86.

10. Hannenhelli S, Pevzner PA. Transforming cabbage into turnip (polynomial
algorithm for sorting signed permutations by reversals. In: 27th Annual ACM
Symposium on the Theory of Computing; 1995. p. 178–89.

11. Bergeron A, Mixtacki J, Stoye J. A unifying view of genome rearrangements.
In: B√°cher P, Moret BE, editors. Algorithms in Bioinformatics. vol. 4175.
Berlin, Heidelberg: Springer; 2006. p. 163–73.

12. Hannenhalli S, Pevzner PA. Transforming men into mice (polynomial
algorithm for genomic distance problem). In: Foundations of Computer
Science, 1995 Proceedings, 36th Annual Symposium on Foundations of
Computer Science; 1995. p. 581–92.

13. Dias Z, Meidanis J. Genome rearrangements distance by fusion, fission, and
transposition is easy. In - String Processing and Information Retrieval, SPIRE
2001 Proceedings, 8th International Symposium on 13–15 Nov 2001. p. 250–3.

14. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic
permutations by translocation, inversion, and block interchange.
Bioinformatics. 2005;21:3340–6.

15. Christie - Genome rearrangement problems, Ph.D. Dissertation. Glasgow:
Department of Computer Science, Glasgow University; 1998.

16. Chan PP, Lowe TM. GtRNAdb - A database of transfer RNA genes detected
in genomic sequence. Nucleic Acids Res. 2009;37(Database):D93–D97.

17. Zhang K, Shasha D. Simple fast algorithms for the editing distance between
trees and related problems. SIAM J Comput. 1989;18:1245–62.

18. Alaqel H, Badr G. Genome rearrangement for RNA secondary structure
using a component-based representation: Master Project. Riyadh: King Saud
University; 2015.

19. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J,
Sayers EW. GenBank. Nucleic Acids Res. 2013;41(Database issue):D36-42.

20. Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, et al. Rfam
11.0–10 years of RNA families. Nucleic Acids Research. 2012:1–7.

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):427 Page 131 of 131

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-12
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-12
http://dx.doi.org/10.1186/1471-2105-6-89
http://dx.doi.org/10.1186/1471-2105-6-89

	Abstract
	Background
	Results
	Conclusion

	Background
	RNA secondary structure component-based representation
	Similarities between two RNA secondary structures (Alignment distance)
	Sequence-based genome rearrangements
	Rearrangement operations
	Distance measures
	Sorting scenario


	Method: DCJ-RNA algorithm
	Example

	Results and discussion
	Datasets
	Adjust dataset
	Accuracy dataset
	Scalability dataset

	Experiments
	Threshold adjustment experiment
	Performance accuracy experiment
	Small pairs of RNA structures
	Medium pairs of RNA structures
	Large pairs of RNA structures
	Time & Memory performance experiment


	Conclusion
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

