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Abstract: Congenital fibrinogen disorders are rare pathologies of the hemostasis, comprising quan-
titative (afibrinogenemia, hypofibrinogenemia) and qualitative (dysfibrinogenemia and hypodys-
fibrinogenemia) disorders. The clinical phenotype is highly heterogeneous, being associated with
bleeding, thrombosis, or absence of symptoms. Afibrinogenemia and hypofibrinogenemia are the
consequence of mutations in the homozygous, heterozygous, or compound heterozygous state in one
of three genes encoding the fibrinogen chains, which can affect the synthesis, assembly, intracellular
processing, stability, or secretion of fibrinogen. In addition to standard coagulation tests depending
on the formation of fibrin, diagnostics also includes global coagulation assays, which are effective in
monitoring the management of replacement therapy. Genetic testing is a key point for confirming
the clinical diagnosis. The identification of the precise genetic mutations of congenital fibrinogen
disorders is of value to permit early testing of other at risk persons and better understand the corre-
lation between clinical phenotype and genotype. Management of patients with afibrinogenemia is
particularly challenging since there are no data from evidence-based medicine studies. Fibrinogen
concentrate is used to treat bleeding, whereas for the treatment of thrombotic complications, admin-
istered low-molecular-weight heparin is most often. This review deals with updated information
about afibrinogenemia and hypofibrinogenemia, contributing to the early diagnosis and effective
treatment of these disorders.

Keywords: afibrinogenemia; hypofibrinogenemia; genetic testing; global coagulation assays;
bleeding; thrombosis

1. Classification and Terminology of Congenital Fibrinogen Disorders

Diseases affecting fibrinogen can be inherited or acquired. Congenital fibrinogen dis-
orders are a heterogeneous group of rare, inherited abnormalities of blood coagulation [1]
and can be subclassified in type I and type II disorders. Type I disorders (afibrinogenemia
and hypofibrinogenemia) influence the amount of fibrinogen in human blood (fibrinogen
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level decreased to less than 1.8 g/L), whereas type II (dysfibrinogenemia and hypodysfib-
rinogenemia) impact primarily the quality of fibrinogen in the circulation [1,2]. Following
the laboratory parameters needed for definition of disease seriousness, suggested by the
European Network of Rare Bleeding Disorders (EN-RBD) with the support of the Interna-
tional Society of Thrombosis and Hemostasis, quantitative fibrinogen deficiency may be
classified into mild hypofibrinogenemia (lower limit of normal level—1.0 g/L), moderate
hypofibrinogenemia (0.9–0.5 g/L), severe hypofibrinogenemia (0.5–0.1 g/L), and afibrino-
genemia (unmeasurable fibrinogen level <0.1 g/L) [3,4]. The Orphanet classification of rare
hematological diseases and the Orphanet classification of rare genetic diseases indicates
afibrinogenemia (ORPHA98880) and congenital hypofibrinogenemia (ORPHA101041) [5,6].
According to the Factor XIII and Fibrinogen Subcommittee of the Scientific Standardization
Committee of the ISTH, for congenital quantitative fibrinogen disorders, it is necessary to
provide an accurate diagnosis and to classify the patients not only based on their fibrinogen
levels but also according to their clinical phenotype (Table 1) [1,7].

Table 1. Classification of congenital quantitative fibrinogen disorders [7].

Type and Subtypes Quantitative Fibrinogen Disorders Descriptions
Afibrinogenemia

A. Afibrinogenemia Afibrinogenemia and bleeding phenotype or asymptomatic
individuals

B. Afibrinogenemia with a thrombotic phenotype Afibrinogenemia and thrombotic phenotype
Hypofibrinogenemia

A. Severe hypofibrinogenemia Functional fibrinogen level <0.5 g/L
B. Moderate hypofibrinogenemia Functional fibrinogen level between 0.5–0.9 g/L

C. Mild hypofibrinogenemia Functional fibrinogen level between 1.0 g/L and lower limit of
normal level

D. Hypofibrinogenemia with fibrinogen storage disease Congenital hypofibrinogenemia with histologically proven
accumulation of fibrin in hepatocytes

The first remark on afibrinogenemia was made by Rabe and Salomon in 1920, when
the authors discussed an unusual case of 9-year-old boy suffering from repeated bleed-
ing episodes by gastrointestinal bleeding starting shortly after his birthday [4]. Later,
Mosesson defined afibrinogenemia as a congenital bleeding disorder of fibrinogen influ-
encing the amount of fibrinogen in human blood; along with other defects of fibrinogen,
afibrinogenemia is considered a rare disorder [2,8,9]. Clinical signs of afibrinogenemia
and hypofibrinogenemia are various, ranging from being asymptomatic to experiencing
dangerous life-threatening bleeding or thromboembolic episodes [1,10–12]. In addition,
we also know a type of hypofibrinogenemia that is associated with comorbid liver disease,
known as hepatic fibrinogen storage disease [13].

2. Structure and Function of Fibrinogen

Fibrinogen is a 340-kDa plasma glycoprotein mainly synthesized by liver parenchymal
cells [14,15]. The protein is also stored in the platelet alpha granules, thus providing a
localized boost in fibrinogen concentration at sites of platelet activation [16]. Fibrinogen
is synthetized as a hexamer composed of two copies of three homologous polypeptide
chains (Aα, Bβ, and γ), interconnected by a complicated series of disulfide bonds [1,9]. The
N-terminus of each chain is disulfide-linked to form the central E region, while the disulfide-
linked C terminal of the Bβ, γ, and a portion of the Aα chains form two lateral globular D
regions. Fibrinogen polypeptides are encoded by three independent genes, all located on
the “p” arm of chromosome 4 (at positions 4q31.3, 4q31.3, and 4q32.1, respectively) [1,17,18].
This region spans approximately 50kb. The gene coding for the fibrinogen Aα chain (FGA)
has a 7.6-kb size and consists of 6 exons, the Bβ chain gene (FGB) presents 8 exons and
occupies an 8-kb-long region, and the γ chain gene (FGG) encompasses an 8.5-kb region
and consists of 10 exons [18,19]. The genes are separately transcribed and translated into
polypeptides: 644 amino acids for the Aα chain, 491 amino acids for the Bβ chain, and
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437 amino acids for the γ chain [20]. The normal range of fibrinogen is 1.8 to 4.2 g/L in
our laboratory. Normal level ranges may vary slightly among different laboratories. Some
laboratories use different measurements or different reagents. There may also be slight
differences in the normal levels ranges according to gender, age, geographic region, race,
or ethnic origin. Fibrinogen has a circulating half-life of 3–5 days [20–24].

The first report identifying fibrinogen was by Dr. Olaf Hammarsten (1841–1932), who
elucidated the fact that the precursor of fibrin is fibrinogen, which will clot when exposed
to thrombin [2,10]. Fibrinogen serves as a scaffold for platelet aggregation via the activated
form of integrin αIIbβ3 (also known as glycoprotein IIb/IIIa). Platelet aggregation via
fibrinogen cross-linking provides an initial hemostatic barrier following blood vessel injury
as part of the rapid primary hemostatic response. Subsequently, thrombin activation on
the platelet surface leads to conversion of fibrinogen to fibrin [25]. The conversion of
fibrinogen to fibrin is the final step in the blood coagulation cascade. The important fact is
that fibrinogen level is the main determinant of the structure of the resulting fibrin network.
Taking everything into account, fibrinogen and fibrin play essential and linking roles in
fibrinolytic pathway, cellular interactions, inflammation, preventing microbial invasion and
proliferation upon trauma, wound healing, vascular events, and neoplasms [24,26]. On the
other hand, fibrinogen also has an anticoagulant role, probably by sequestering unbound
thrombin, and participates in the implantation of the fetus [3,27]. During intrauterine
development, fibrinogen is present in the blood around the time of termination of hepatic
histogenesis and spleen vascularization (10–11 weeks of gestation) with similar levels as in
adults [25].

3. Epidemiology and Clinical Features

The evaluation of the worldwide rare bleeding disorders prevalence relies on two large
surveys that collected epidemiologic data: World Federation of Haemophilia (WFH) and
European Network of the Rare Bleeding Disorders (EN-RBD) [28,29]. According to the 2019
World Federation Haemophilia Annual Global Survey, which assessed information from
115 countries, fibrinogen deficiencies represent 0.91% of cases of the total number reported
324,648 people, with bleeding disorders being more prevalent in men when compared
with women [30]. Of the total number of rare bleeding disorders (without hemophilia
A, hemophilia B, and von Willebrand disease), the worldwide distribution of fibrinogen
disorders is 6.0% (Figure 1). However, it should be emphasized that only 76 countries
reported the number of patients with fibrinogen deficiencies. This can present a problem
in calculating the total world prevalence.

Among European countries, Slovakia, Ireland, and the United Kingdom have the
highest prevalence of fibrinogen deficiency 13–18:1,000,000. A key role is played by regular
reporting of newly diagnosed cases of rare bleeding disorders in individual national
registries. An estimated worldwide prevalence of afibrinogenemia is approximately 1–2 per
million in the general population [31–33], so it is considered a remarkably rare disorder.
The EN-RBD reported 592 patients with congenital fibrinogen deficiency in the database.
The prevalence was similar in women (54%) and men (46%) below the age of 60 years, and
the prevalence was similar amongst all age groups [34]. According to the latest published
cross-sectional international study, quality of life was recorded overall 204 patients with
afibrinogenemia from 25 countries, of which more than 50% of patients came from Asia [35].
In populations with frequent consanguineous marriages, the prevalence of afibrinogenemia,
like the occurrence of other disorders of hemostasis with autosomal recessive inheritance,
is increased [2]. Geographical differences in prevalence reflect high occurrence in children
of consanguineous parents in Muslim countries. Comparative data from databases in Iran,
Italy, and the United Kingdom points out the worldwide distribution (subjects with plasma
fibrinogen ≤10% of normal) [1]. As for congenital hypofibrinogenemia, its prevalence is
generally considered to be higher with respect to afibrinogenemia; however, to date, there
are no exact data since a large proportion of patients are asymptomatic and hence difficult
to be diagnosed.
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Figure 1. Worldwide distribution of RBDs derived from the WFH survey 2019.

Apart from the prevalence calculations based on the systematic description of afib-
rinogenemic/hypofibrinogenemic cases, a complementary approach to determine the
worldwide prevalence for these disorders is based on the large amount of genetic data
deposited in publicly available databases. In this respect, by a systematic analysis of
exome/genome data from approximately 140,000 individuals belonging to the Genome
Aggregation Database (GnomAD;), Paraboschi and colleagues showed that the worldwide
prevalence for recessively inherited fibrinogen disorders could be 10-fold higher than that
so-far described. In addition, it was confirmed that prevalence rates change considerably
among populations, going from 1 in 1 million individuals in East Asia, to 24.5 in 1 million
people in Europe (excluding non-Finnish Europeans). Importantly, heterozygous indi-
viduals could be present in the general population at a frequency of approximately 1 in
100 [36].

Clinical manifestations of quantitative fibrinogen disorders are very heterogeneous
(Figure 2). In afibrinogenemia, bleeding episodes are the main symptoms, whereas hypofib-
rinogenemia is more frequently an asymptomatic phenotype. The severity and pattern of
clinical manifestations are dependent on the fibrinogen levels [20]. In a retrospective study
describing the incidence of bleeding symptoms in 100 patients with afibrinogenemia and
hypofibrinogenemia, the mean annual incidence of bleeding episodes per year approached
one bleeding per year. This incidence was significantly lower than the incidence of bleeding
in hemophilia. Some patients had no bleeding events during the follow-up period [37].

As for bleeding symptoms, umbilical cord bleeding in neonates is generally the
first and most frequent sign of the afibrinogenemia, manifesting in 85% of the cases [10].
However, a later age of onset can also occur. The disorder can manifest by uncommon
intracranial bleeding in childhood, being the principal cause of death in affected patients.
There is also a close relationship with spontaneous splenic rupture in patients with afib-
rinogenemia [38].
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Except these potentially life-threatening complications, the most frequent manifes-
tations of afibrinogenemia are mucosal bleeding, especially menorrhagia, epistaxis, and
bleeding in the oral cavity [35,39]. Musculoskeletal bleeding (and also bleeding into the
joints) is reported in approximately half of the individuals with afibrinogenemia [1,39,40],
and in some studies, it was more prevalent than bleeding from mucosal surfaces. Bleed-
ing from the gastrointestinal and urinary system occurs less frequently [38,41]. First
trimester miscarriage and ante- and postpartum hemorrhages were documented, too [2].
Hemoperitoneum is another infrequent gynecologic and obstetric issue of this inherited
fibrinogen disorder [2]. Quantitative fibrinogen abnormalities can also lead to complicated
wound healing [2,42]. Besides spontaneous bleeding, bleeding after minor injury and
excessive bleeding during various interventions are further major manifestations of afib-
rinogenemia [10]. Last but not least, bleeding symptoms of afibrinogenemic patients are
retroperitoneal hemorrhage and hemoptysis [2]. It was documented that patients with low
fibrinogen activity have higher occurrence of unprovoked major bleeding events, while
patients with sufficient fibrinogen activity were asymptomatic [37].

Paradoxically, patients with afibrinogenemia can experience severe, spontaneous, or
repeated thromboembolic complications [1,27,43–46]. Arterial and also venous throm-
boembolic episodes in various locations have been reported: thrombosis in peripheral
arteries, recurrent myocardial infarction [47], thrombosis of abdominal aorta with periph-
eral embolization, cerebral [29] or hepatic vein thrombosis [48], or venous thrombosis after
the delivery [2,49,50]. In patients with hypofibrinogenemia, diagnosed arterial thrombo-
sis were documented, confirming that thrombosis frequently develops at younger age,
it is present in large vessels, its recurrence is not uncommon, and therapeutic manage-
ment is not clarified yet. Venous thrombosis appears to be the most common thrombotic
event [12,19,51,52].

It should be noted that low fibrinogen levels do not compensate a hypercoagulable
state [36]. In absence of fibrinogen or at low levels, the small amount of thrombin usu-
ally formed remains longer in the circulation, as no or less sequestering on circulating
fibrinogen occurs (i.e., antithrombin function of fibrin is impaired) [27]. Besides, thrombin
generation has been shown to be increased in the plasma of patients with low levels of
fibrinogen [6]. The reasons for increased thrombotic risk are not entirely understood [53].
The pathogenesis at the basis of the paradoxical thrombotic tendency in patients with CFD
is likely multifactorial, depending on different exogeneous and endogenous risk factors,



Diagnostics 2021, 11, 2140 6 of 17

such as genetic thrombophilia, use of fibrinogen replacement therapy, immobilization,
pregnancy, or trauma [1,12].

4. Laboratory Assays

Initial laboratory diagnosis for afibrinogenemia and hypofibrinogenemia should in-
clude routine clotting times (prothrombin time (PT), activated partial thromboplastin time
(aPTT), or thrombin time (TT)) and fibrinogen assays (activity and antigen) [54]. Fibrino-
gen activity can be determined by the Clauss or PT-derived fibrinogen assays. The most
accurate method to determine fibrinogen level is the Clauss assay, based on the comparison
of TT of dilutions of plasma against a plasma standard. PT-derived fibrinogen assay is
not a direct determination of fibrinogen activity; measurement derives from the change
in light transmission or scatter from a PT curve [22]. Assay for measuring the fibrinogen
antigen is performed using luminescent immunoassay (LIA). Immunological assays are
based on the determination of antigen concentration using a specific antibody directed
against fibrinogen: LIA, EID (immunoprecipitation method called electroimmunodiffu-
sion), or ELISA (enzyme-linked immunosorbent assay) [1,22]. Global hemostasis tests are
used in diagnostics in specialized laboratories to better determine the clinical phenotype
(Table 2) [2].

Table 2. Diagnostic procedures of quantitative fibrinogen disorders.

Diagnostic Procedures Afibrinogenemia Hypofibrinogenemia

Prothrombin time (PT) extremely prolonged prolonged/normal—depending on
fibrinogen levels

Activated partial thromboplastin time (aPTT) extremely prolonged prolonged/normal—depending on
fibrinogen levels

Thrombin time (TT) extremely prolonged prolonged/normal—depending on
fibrinogen levels

Reptilase time (RT) extremely prolonged prolonged/normal—depending on
fibrinogen levels

Fibrinogen activity (FBG: F (Clauss)) undetectable proportional decrease
Fibrinogen antigen (FBG: Ag) undetectable proportional decrease

PT-derived fibrinogen assay undetectable decrease, proportional to fibrinogen
levels

Genotype (FGA, FGB, FGG genes)
Global hemostasis tests (research laboratories)

The diagnosis of afibrinogenemia is established on the undetectable level of fibrinogen
activity and absence or trace amounts of fibrinogen antigen [55]. All coagulation tests
depending on the formation of fibrin as the last step in the coagulation pathway (PT,
aPTT, or TT) are infinitely prolonged. Most patients with congenital hypofibrinogenemia
are incidentally diagnosed during routine coagulation screening [56]. The diagnosis of
hypofibrinogenemia is based on the detection of a proportional reduction of both fibrinogen
activity below the lower limit of the normal level (<1.8 g/L) [22]. Routine clotting times
are prolonged in proportion to the fibrinogen deficiency. TT is the most sensitive test.
In hypofibrinogenemia, there has been confirmed correlation between fibrinogen Clauss
assay and PT-derived fibrinogen assay with statistical significance p < 0.0001 (Figure 3) [22].
PT-derived fibrinogen assay may have a diagnostic utility. Moreover, we should think that
some clinical studies demonstrated that PT-derived level were significantly higher than the
Clauss method [57,58].
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Peyvandi et al. concluded that in fibrinogen deficiency, there is a strong relationship
between coagulation factor activity level and clinical bleeding phenotype [44].

Differential diagnosis between severe hypofibrinogenemia and afibrinogenemia may
be difficult due to the limited sensitivity of coagulation tests at fibrinogen levels less than
0.5 g/L [20]. In clinical practice, we use the ratio of functional activity to antigen level [59].
A ratio higher than 0.7 is typical for hypofibrinogenemia, and a ratio lower than 0.7 is
typical for dysfibrinogenemia [60]. In addition to routine clotting times, it is necessary
to examine the blood count with a focus on the platelet count. Indeed, in 25% patients
with afibrinogenemia, mild thrombocytopenia has been reported [61]. Some abnormalities
in platelet function tests can be observed: these abnormalities are almost reversible after
substitution of fibrinogen, such as platelet adhesion and adenosine diphosphate (ADP)-
induced platelet aggregation. On the other hand, thrombin- and collagen-stimulated
platelet aggregation is normal [62,63].

Global hemostatic assays, such as thromboelastography (TEG; Haemonetics, Braintree,
MA, USA) or rotational thromboelastometry (ROTEM; TEM International, Munich, Ger-
many), in diagnosis of bleeding disorders, prediction of blood transfusion, and mortality in
patients with bleeding manifestations has been reviewed [64]. These assays provide us with
more information on coagulation efficiency, such as clot formation kinetics, maximum clot
strength, and rate of fibrinolysis [56]. ROTEM/TEG are used in acute conditions for rapid
assessment of fibrinogen levels. ROTEM/TEG play important roles in diagnosis and trans-
fusion requirements, including fibrinogen replacement in fibrinogen deficiency. Moreover,
ROTEM/TEG can be used to detect systemic fibrinolysis (physiologic, hypofibrinolysis,
and hyperfibrinolysis) [65,66]. Functional fibrinogen assay using ROTEM (FIBTEM) is an
important tool for the assessment of fibrinogen level and its deficiency. FIBTEM assay
evaluates the functional stability of fibrin polymerization, the end product of the enzy-
matic coagulation cascade [67]. The clot strength in FIBTEM is the most used parameter
for discrimination of fibrinogen deficiencies and their correlations with fibrinogen levels
(Clauss). This strong correlation of FIBTEM results with plasma fibrinogen level confirmed
published studies. FIBTEM assay to diagnose fibrinogen deficiency and predict transfusion
requirements other variables, such as hematocrits, factor XIII, and fibrinogen concentrate
ranges, should be taken into consideration. FIBTEM assay provides data on the external
coagulation pathway in which platelets are eliminated. The result of this test provides an
estimate of the contribution of fibrinogen to coagulation [68]. FIBTEM assay is sensitive to
clot polymerization disorders. Fibrinogen Clauss determines the fibrinogen activity and
does not distinguish between qualitative and quantitative defect of fibrinogen. It follows
that reduced clot firmness can be differentiated only by performing FIBTEM assay [66].



Diagnostics 2021, 11, 2140 8 of 17

Point-of-care testing in trauma and surgery with ROTEM/TEG allows us to target the
administration of coagulation factors. The FIBTEM assay is used to determine fibrinogen
levels and calculate dosage as reported in clinical studies [68]. Maximum clot firmness as
one of parameters in FIBTEM is used for the prediction of fibrinogen deficiency and need of
fibrinogen concentrate [69]. MCF can confirm the effectiveness and safety of normalization
of clot formation after the infusion of fibrinogen in patients with afibrinogenemia and
hypofibrinogenemia [70]. Unfortunately, only a few clinical studies focused on predicting
the clinical phenotype using ROTEM/TEG [71].

Thrombin generation test is a method which provides a global overview of the hemo-
static status. The method evaluates the dynamics of thrombin generation over time [72].

The results of thrombin generation can be examined in patients with afibrinogenemia
and hypofibrinogenemia because they can give information about the overall coagulation
potential. Thrombin generation could be of particular interest in afibrinogenemia, as it
reflects the individual’s overall coagulation potential [73] and can help to identify the
patients at the highest risk of thrombotic manifestations. This method tests the overall
balance between procoagulant and anticoagulant forces and helps in diagnosis of hypoco-
agulability and hypercoagulability states [74]. Thrombin generation assay has been used
only in the research area. The most recently published study did not show a correlation of
the clinical phenotype with thrombin generation levels in CFD. This study has limitations
for a low number of cohorts. Further large, multicenter studies are needed to confirm these
data [75].

5. Genetics of Afibrinogenemia and Hypofibrinogenemia

Afibrinogenemia (Online Mendelian Inheritance in Man, OMIM #202400) Afi is an
autosomal recessive disorder, and it is the consequence of mutations in the homozygous
or compound heterozygous state in one of the three genes encoding fibrinogen chains.
Hypofibrinogenemia (OMIM + 134820, * 134830, and * 134850; dominant trait) has been
traditionally considered as a distinct clinical entity from afibrinogenemia; however, it
actually represents the phenotypic expression of the heterozygous condition for a single
mutation occurring within the fibrinogen gene cluster. For both afibrinogenemia and
hypofibrinogenemia, causative mutations can affect the synthesis, assembly, intracellular
processing, stability, or secretion of the hexameric fibrinogen leading to decreased levels of
circulating fibrinogen [53].

The Human Gene Mutation Database (HGMD) summarizes well the spectrum of
mutations located in the FGA/FGB/FGG genes [2,19]. Other relevant sources of information
are the LOVD (Leiden Open Variation database) pages dedicated to FGA/FGB/FGG genes
(still under construction), which are curated by the European Association for Hemophilia
and Allied Disorders (EAHAD), as well as the Human Fibrinogen Database (HFD) curated
by the Groupe d’Etude sur l’Hemostase et la Thrombose. It is important to underline
that all these sources of information indeed report on mutations in the fibrinogen cluster
associated not only with afibrinogenemia and hypofibrinogenemia but also with other
fibrinogen disorders (i.e., hypo-dysfibrinogenemia, dysfibrinogenemia, fibrinogen storage
disease, and hereditary renal amyloidosis) [36].

By consulting the public version of the HGMD repository (accessed on 20 July 2021),
the extreme allelic heterogeneity of congenital fibrinogen disorders is evident: a total of
363 mutations have been found in the fibrinogen gene cluster, of which 142 are in the FGA
gene (39%), 90 in FGB (25%), and 131 in FGG (36%). These numbers are even higher when
accessing the restricted section of this database (169, 107, and 153 genetic variants described
in the FGA, FGB, and FGG genes, respectively).

The distribution of fibrinogen-related mutations, according to their type, is sum-
marized in Tables 3 and 4. Here, it is possible to appreciate from one side the high
prevalence of missense mutations (especially in the FGG gene, where they reach the
highest level, i.e., 76% of the total) and, on the other side, the low frequency of gross
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deletions/duplications/rearrangements (i.e., only nine pathogenic variants have been
described collectively for the three genes).

Table 3. Mutational spectra of congenital fibrinogen disorders in the FGA, FGB, and FGG genes.

Number of Mutations
Mutation Type FGA FGB FGG

Missense 54 55 100
Nonsense 25 12 4
Splicing 11 7 9

Regulatory 3 3 1
Small deletions 28 8 15
Small insertions 11 2 0

Small indels 4 1 1
Gross deletions 5 1 1

Gross insertions/duplications 1 0 0
Complex rearrangements 0 1 0

Total (public HGMD repository) 142 90 131
(169) (107) (153)

Data were retrieved from the Human Gene Mutation Database (HGMD) (http://www.hgmd.cf.ac.uk/, accessed
on 20 July 2021). In parentheses, the number of mutations available through the restricted access to the database.

Table 4. Distribution of mutations in the FGA, FGB, and FGG genes according to the associated
phenotype.

Number of Mutations
Disease/Phenotype FGA FGB FGG

Afibrinogenemia 55 24 14
Dysfibrinogenemia 38 17 50
Renal amyloidosis 14 0 0

Hypofibrinogenemia 13 30 41
Fibrinogen variant 4 3 7

Susceptibility to venous thromboembolism 3 0 0
Decreased fibrinogen levels? 2 0 0
Decreased fibrinogen levels 0 0 1

Hypodysfibrinogenemia 2 3 9
Afibrinogenaemia? 1 2 0

Afibrinogenemia/hypofibrinogenemia 1 1 1
Afibrinogenemia with recurrent venous

thromboembolism 1 0 0

Amyloidosis, Ostertag-type 1 0 0
Deep vein thrombosis? 1 0 0

Dysfibrinogenemia? 1 0 1
Hemorrhages 1 3 0

Association with increased post-stroke mortality 1 0 0
Menorrhagia 1 0 1
Thrombosis 1 0 0

Venous thromboembolism? 1 0 0
Association with cerebral infarction 0 1 0

Epistaxis 0 1 1
Hypofibrinogenaemia? 0 1 1

Association with increased clot stiffness 0 1 0
Increased plasma fibrinogen levels 0 1 0

Thrombotic tendency 0 1 0
Protection against venous thromboembolism 0 1 0

Increased risk for deep venous thrombosis 0 0 1
Hypofibrinogenaemia with hepatic storage 0 0 3

Total (public HGMD repository) 142 90 131
Data were retrieved from the HGMD (http://www.hgmd.cf.ac.uk/, accessed on 20 July 2021) and references
therein. Phenotypes are all those reported in such database (the question mark the uncertainty of the associ-
ated diagnosis).

http://www.hgmd.cf.ac.uk/
http://www.hgmd.cf.ac.uk/
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The distribution of fibrinogen-related mutations according to the associated phenotype
is reported in Table 4. From the table, it clearly emerges the great variety of phenotypes
associated with variants in the fibrinogen genes; on the other hand, this also presents a
difficulty for physicians to classify patients on the basis of their fibrinogen levels rather than
of their symptoms. For instance, among the 93 listed afibrinogenemia-causing mutations,
carrier patients were classified on the basis of plasma fibrinogen, but among them, it is
possible to find those having experienced bleeding episodes, those that were asymptomatic,
or even those with thrombotic phenotypes.

Notwithstanding this plethora of phenotypes, the great majority of mutations de-
scribed in the fibrinogen cluster have been associated with “genuine” afibrinogenemia
(93 mutations) or hypofibrinogenemia (84 mutations; Table 4). An additional 12 mu-
tations can be easily reconducted to type I quantitative fibrinogen disorders (i.e., two
associated with “Decreased fibrinogen levels?”, one with “Decreased fibrinogen levels”,
three with “Afibrinogenaemia?”, three with “Afibrinogenaemia/hypofibrinogenemia”,
one with “Afibrinogenemia with recurrent venous thromboembolism”, and two with “Hy-
pofibrinogenaemia?”; see phenotypes listed in Table 4). Overall, since the description of
the first afibrinogenemia-causing mutation 22 years ago (an 11-kb deletion affecting the
FGA gene), ≈200 different pathogenic variants have been reported [76]. The majority of
mutations leading to afibrinogenemia are located in FGA (55 out of 93, ≈60%), whereas
hypofibrinogenemia-causing variants cluster in the FGG gene (41 out of 84, ≈49%; Table 4).
It is also interesting to underline that the mutational spectrum of afibrinogenemia is char-
acterized by the presence of at least two recurrent mutations, both located in FGA and both
typical of Caucasian patients: the already mentioned 11-kb deletion and the c.510 + 1G > T
splice site mutation; in a cohort of 74 unrelated probands, Casini and colleagues highlighted
that these variants, respectively, represent 12.2 and 23.6% of the mutated alleles [77].

6. Genetic Diagnosis and Antenatal Diagnosis

DNA Sanger sequencing of the coding portions of FGA/FGB/FGG has been the
gold standard in the last 20 years for the identification of molecular defects underlying
afibrinogenemia and hypofibrinogenemia. This is due to the fact that these disorders
show extreme allelic heterogeneity (with most mutations being “private” defects and only
few being recurrent). Hence, genetic screenings have traditionally been performed by
polymerase chain reaction (PCR) amplifications of exons, splice sites, and promoter regions
of the FGA/FGB/FGG genes, followed by direct sequencing of the amplified products. This
approach has been coupled in some laboratories with a screening based on the Multiplex
Ligation Probe Amplification (MLPA) method to search essentially for large deletions
otherwise missed by Sanger sequencing.

The molecular screening based on Sanger sequencing has, of course, its pros and
cons. In fact, despite its standardization, the ease of execution, and the relative ease of
analyzing the results, Sanger sequencing can sometimes be costly, time consuming, and
quite complicated (like in the case of large and multi-exonic genes; in the case of fibrinogen,
there is the necessity to screen the entire cluster). In addition, it is possible to miss mutations
lying deep in introns unless the entire gene is sequenced.

The advent of next-generation sequencing (NGS) techniques is, of course, changing
the overall picture of genetic diagnosis, and “inherited bleeding, thrombotic, and platelet
disorders” (collectively called BPDs and including a- and hypo-fibrinogenemia), are not
exceptions. In this frame, a first seminal paper appeared in the literature in 2016: Simeoni
and colleagues [78] developed a high-throughput sequencing platform targeting a total
of 63 genes (the ThromboGenomics platform) and applied their design to 137 individuals
with a suspect of BPD. The diagnostic yield was 46%, underlying that there is still a need
for identifying novel molecular causes of BPDs. Similar results were later obtained by
Downes et al. [79], who applied the same platformto screen 2396 BPD patients: they reached
a diagnostic yield of 50%, identified hundreds of mutations (half of which novel), and also
proposed an oligogenic model of inheritance for some patients.
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Specifically concerning fibrinogen disorders, the largest study based on NGS screening
of affected patients appeared in 2019 [80]. Here, a total of 17 Spanish patients (suffering
from a-, hypo, or dys-fibrinogenemia) were screened by using a NGS approach based on
sequencing the complete FGA, FGB and FGG genes (i.e., also including introns). All patients
were associated with one/two mutations, thus underlying the overall good performance
of the adopted strategy [80].

For the future, it is conceivable that—also thanks to the significant drop in costs—
genetic diagnosis will be carried out by using more comprehensive NGS strategies, i.e.,
whole-exome sequencing (WES) or whole-genome sequencing (WGS). These approaches
will offer novel intriguing possibilities: (i) to highlight the oligogenic nature of specific
conditions/patients; (ii) as for WGS, to identify “elusive” mutations (large rearrangements,
large deletions, deep-intonic mutations, mutations in enhancers, or other regulatory re-
gions); and (iii) to identify modulators of the phenotype. In this last case, it could be
possible to answer to open questions, such as the differences in the severity of hemor-
rhagic manifestations in individuals carrying the same mutation or the reason why some
afibrinogenemic patients are susceptible to develop thrombosis. Of course, we are aware
that these are currently speculations (and hopes). However, it should be noted that some
encouraging examples related to congenital fibrinogen disorders come from the literature.
For instance, dysfibrinogenemias are often related to pathogenic variants affecting residues
p.Gly17, p.Pro18, p.Arg19, and p.Val20 in the amino-terminal region of the fibrinogen Aα-
chain. However, while mutations at residues p.Gly17, p.Pro18, and p.Val20 are exclusively
linked to bleeding tendency, the clinical phenotype of patients with mutations at amino
acid p.Arg19 can vary from bleeding to thrombotic tendency [81]. In this frame, the case
described by Bor and colleagues [81] is intriguing: they exome sequenced a Danish family
with thrombotic episodes, revealing from one side the dysfibrinogenemia-causing mutation
Aα-p.Arg19Gly and from the other a series of single-nucleotide polymorphisms located
in FGA, FGB, and FGG. These polymorphisms are possibly responsible for an increased
fibrin fiber thickness and fibrin mass-to-length ratio, thus suggesting that the combination
of genotypes may contribute to the thrombogenic phenotype of these patients

A final thought concerns the management of recessively inherited coagulation disor-
ders, which depends on two fundamental steps: genetic counseling in consanguineous
marriages and prenatal diagnosis in families at risk for having members with severe form
of the disorder. These approaches are not easily realizable in the praxis [31].

Pregnant women with a family history, predominantly those with a history of con-
sanguinity, ought to be properly counseled with regard to risk of having a child with
the disorder. If we know the mutation, prenatal analysis could be planned: in fact, for a
disease such as afibrinogenemia, where bleeding after loss of the umbilical cord stump is
frequent and, in some cases, lethal, the prenatal diagnosis of an affected infant can allow
treatment immediately after birth and before the first bleeding manifestation. However,
the issue of prenatal diagnosis in rare bleeding disorders is still under debate [82], espe-
cially considering that, in most cases, it is performed using invasive procedures (such as
withdrawal of chorionic villi) that can have dramatic consequences on the fetus. The first
prenatal diagnosis for afibrinogenemia was done for a Palestinian family with two affected
daughters by Neerman-Arbez et al. in 2003 [83]. In babies of known/suspected carrier
couples, cord blood detection of genetic mutations can be done. Indirect prenatal testing by
the use of linkage analyses might be an option in rare inherited bleeding disorders, too [82].

7. Treatment

Substitution therapy is effective in the treatment of bleeding episodes in congenital
fibrinogen disorders [55,75]. If possible, specific plasma-derived factor concentrate de-
prived of active viruses ought to be administered preferentially in rare bleeding diseases.
Fresh frozen plasma (FFP) or cryoprecipitate should be administered in the unavailability
of plasma-derived factor concentrate [3]. FFP has several disadvantages: the decreased
amount of fibrinogen that is infused leads to the need to repeat the administration more
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times to achieve the appropriate fibrinogen level; in addition, there are transfusion-related
risks (e.g., transfusion-related acute lung injury (TRALI) and transmission of virus in-
fections) [75,76]. In addition, cryoprecipitate has many of these handicaps; it also needs
compatibility testing, thawing, and it has a complicated application [76]. It is not provided
in many Western European countries, but it is still administered in the United States and
the United Kingdom [66]. A standard dose of 10–20 units (500–1000 mL) of methylene blue-
cryoprecipitate is awaited to raise fibrinogen activity by 0.6–1.2 g/L in a 70 kg adult [84,85].
It may continue daily or every other day in the absence of consumption with frequent
monitoring of the activity, according to the indication and reaction [76].

To date, we know six fibrinogen concentrates: RiaSTAP /Haemocomplettan® P (CSL
Behring, Marburg, Germany), Fibryga® (Octapharma, Lachen, Switzerland), FibCLOT®/
CLOTTAFACT® (LFB, Les Ullis, France), Fibrinogen HT® (Benesis, Osaka, Japan), FibroRAAS®

(Shangai RAAS, Shangai, China), and FIB Grifols® (Grifols, Barcelona, Spain) [2,10,37,69,86,87].
Fibrinogen replacement treatment, especially the most frequently administered con-

centrate Haemocomplettan P/Riastap, is suggested as therapy for spontaneous bleeding
events and as prophylaxis before surgical interventions or against unprovoked bleeds in
individuals with congenital and acquired fibrinogen deficiency [56,62].

Safety (less frequent allergic reactions), accuracy, simple dosing in small amounts, and
rapidity of administration are the primary reasons for the paramount use of fibrinogen
concentrates [62,87]. On the other hand, venous or arterial thrombotic events were present
in 30% of subjects with fibrinogen deficiency treated by fibrinogen concentrates, mostly in
afibrinogenemics [3,63]. Moreover, the potential risk of prion-transmission or venous access
complications are other side effects of their usage [2]. As the pharmacokinetic properties
of fibrinogen after substitution show a large among-patients variability, tailoring of the
prophylactic regimen to the pharmacokinetics of the individuals can be a possibility [87].
This is the reason why the individualized management is considered to be “a job of mastery”
(Figure 4) [2].

According to the pharmacokinetics of fibrinogen described above, a standard dosage
of fibrinogen concentrate of 4–6 g should raise plasma fibrinogen activity by 1.0–1.5 g/L in
a 70 kg adult [3,63]. For a better calculation of the dosage, the following formula may be
helpful: dose (g) = awaited increase in g/L x plasma volume. Plasma volume calculate: 0.07
× (1 − hematocrit) × weight (kg) [55]. Moreover, the fibrinogen dose using the FIBTEM
assay can be calculated as follows: Fibrinogen concentrate dose (g) = (target FIBTEM MCF
(mm) − actual FIBTEM MCF (mm)) × (body weight (kg)/70) × 0.5 g/mm [68].

For unprovoked hemorrhage, suggested fibrinogen concentrations are >1 g/L until
hemostasis is normalized and >0.5 g/L until the bleeding surface is entirely restored [55].
Fibrinogen concentrate of 50–100 mg/kg every 2–4 days with resultant fibrinogen activity
>1.0–1.5 g/L was normally needed to treat or prevent spontaneous or surgical hemor-
rhage [37,63]. Therefore, for these situations in afibrinogenemia, hypofibrinogenemia, or
hemorrhagic dysfibrinogenemia, the United Kingdom Hemophilia Centre Doctors’ Organi-
zation guidelines suggest assessment of fibrinogen concentrate in the dose 50–100 mg/kg,
with smaller doses repeated if needed at 2–4 day intervals to maintain fibrinogen activity
>1.0 g/L [3].

Antifibrinolytics can be helpful in the cases of mucosal bleeding, but they ought to
be used very carefully in subjects with a personal or family history of thrombotic episode.
Estrogen/progesterone derivatives have been given in menorrhagia [3,76].

Moreover, in prevention, the trough fibrinogen level to be targeted is unknown because
fibrinogen concentrate has been potentially linked to a risk of thrombosis.

For women with fibrinogen activity <0.5 g/L or with previous poor pregnancy outcomes,
the prophylaxis during pregnancy with fibrinogen concentrate at firstly 50–100 mg/kg twice
per week, tailored to retain trough fibrinogen activity >1 g/L is suggested [3,76].
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Management of Thrombotic Complications

The management of thrombotic complications in patients with afibrinogenemia and
hypofibrinogenemia is problematic because of their bleeding tendency. Antithrombotic
treatment should be individualized and the potential risk of thrombosis weighed against the
likely benefits of treatment. An accurate thromboprophylaxis with low molecular weight
heparin should be considered in all patients with thrombotic history [6]. Some authors
recommend use of compression stockings and low molecular weight heparin in patients
with a history of thrombosis that undergo surgery [12]. In patients who develop thrombotic
complications following replacement therapy, some authors continue the latter if indicated
and co-administer low-molecular-weight or unfractionated heparin [5]. A case study also
described the successful use of a new oral anticoagulant (rivaroxaban) for the anticoagulant
management in patient with afibrinogenemia and severe hypofibrinogenemia [12,88]. The
treatment of thrombotic episodes is very demanding due to the high risk of bleeding [5,16].
Further studies are required to determine the optimal postoperative thromboprophylaxis
in CFD.

8. Conclusions

Congenital afibrinogenemia and hypofibrinogenemia are rare bleeding diseases. Even
though the number of patients studied is quite significant, research in this area, performed
in the clinics and laboratories, is still very important [2]. In fact, despite the current pro-
gresses, many issues remain, especially regarding the correct way to achieve more effective
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treatment as well as regarding the set-up of optimal schedule for the prophylactic man-
agement of the affected patients [89]. In addition, individuals with afibrinogenemia and
hypofibrinogenemia may experience severe life-threatening bleeding or thromboembolic
episodes [51]. A better understanding of pathogenic mechanisms as well as the setting
up of new/ameliorated diagnostic procedures also at genetic level are therefore an urgent
need for the multidisciplinary long-term management of these patients.
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