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Abstract: Doxorubicin (DOX) is a widely used first-line antitumor agent; however, acquired drug
resistance and side effects have become the main challenges to effective cancer therapy. Herein,
DOX is loaded into iron-rich metal–organic framework/tannic acid (TA) nanocomplex to form a
tumor-targeting and acid-activatable drug delivery system (MOF/TA-DOX, MTD). Under the acidic
tumor microenvironment, MTD simultaneously releases DOX and ferrous ion (Fe2+) accompanied by
degradation. Apart from the chemotherapeutic effect, DOX elevates the intracellular H2O2 levels
through cascade reactions, which will be beneficial to the Fenton reaction between the Fe2+ and H2O2,
to persistently produce hydroxyl radicals (•OH). Thus, MTD efficiently mediates chemodynamic ther-
apy (CDT) and remarkably enhances the sensitivity of chemotherapy. More encouragingly, the cancer
cell killing efficiency of MTD is up to ~86% even at the ultralow equivalent concentration of DOX
(2.26 µg/mL), while the viability of normal cells remained >88% at the same concentration of MTD.
Taken together, MTD is expected to serve as drug-delivery nanoplatforms and •OH nanogenerators
for improving chemo/chemodynamic synergistic therapy and reducing the toxic side effects.

Keywords: doxorubicin; chemotherapy; metal–organic framework; hydroxyl radicals; chemodynamic
therapy

1. Introduction

Cancer ranks as a leading cause of death in countries around the world, and the burden
of cancer incidence and mortality is rapidly increasing worldwide. Chemotherapy is one
important clinical procedure for cancer treatment [1]. However, multidrug resistance and
side effects of anticancer drugs have become the major challenges that limit the successful
outcome of this option [2,3]. Thus, exploring the method of reducing the strong side effects
and the potential molecular mechanisms involved in drug resistance will contribute greatly
to increasing the therapy efficiency [4,5]. As an anthracycline antitumor agent, DOX has
good clinical efficacy in the treatment of a variety of tumors. DOX can be tightly bound
to DNA by embedding between G–C base pairs and destroying its spatial structure in the
presence of a considerable concentration of drugs, thereby inhibiting the synthesis of DNA
and DNA-dependent RNA, then inhibiting cell transcription and proliferation [6,7]. Despite
the extensive and long-term clinical application of DOX, substantial hurdles remain to be
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addressed, including non-specific delivery, poor solubility, short half-life, evoked multidrug
resistance, and other strong side effects. Nowadays, multifunctional nanoparticles have
been developed to deliver antitumor drugs through active or passive targeting, such as lipo-
somes and polymer micelles [8]. Nanoparticles-based therapies have gained attention and
made gratifying progress in the battle for cancer treatment. As the first FDA-approved anti-
cancer nanodrug, Doxil® (PEGylated liposomal formulation of doxorubicin) was approved
for the clinical treatment of ovarian and metastatic breast cancer, as well as various forms
of myeloma [9]. Since the success of Doxil in clinical trials, a myriad of studies has been
conducted to transform R&D efforts into commercially available products. Unexpectedly,
the clinical data did not manifest that Doxil enhanced antitumor efficacy, compared with
the upshot of free DOX [10,11]. There still exists an urgent medical demand to improve the
efficacy or reduce the toxic side effects of DOX.

Recently, the activatable nanocarriers for drug delivery have attracted extensive atten-
tion because of their more specific drug-release property, which remarkably increases the
effective concentration of drugs at tumor sites [12]. It is well known that the occurrence and
development of malignant tumors result in the special tumor microenvironment (TME),
such as hypoxia, low pH, low catalase expression, etc. [13]. Therefore, the studies on
activatable nanocarriers that respond to TME and intracellular signals can overcome crucial
challenges in conventional nanodrug delivery systems, which will be helpful in enhancing
the therapeutic efficacies and reducing the side effects [14]. In particular, the acidic pH
of tumor extracellular and intracellular microenvironment is regarded as an appropriate
internal trigger for the drug release in the tumor region and/or within the endosomes
and lysosomes of tumor cells. Compared with the pH value of normal tissues (pH 7.4),
the extracellular pH value of tumor is between 6.0 and 7.2 [15], and the pH value of lyso-
somes and endosomes of tumor cells decreased to 4.0–5.0 [16]. Metal–organic framework
(MOF) nanoparticles with unique physicochemical properties, such as tunable and porous
structure, easy functionalization, and large surface areas, had been extensively used for
drug delivery, catalysis, and imaging [17–19]. MOFs can be biodegradable due to the weak
coordination bonds, which definitely permits a promising platform for drug delivery and
stimuli-responsive release [19]. MIL-101(Fe)-NH2 nanoparticles have been found to have
high drug loading efficiency and possess enhanced tumor cell uptake. Moreover, they have
been shown to have a pH-responsive release property [20]. In addition, it is worth noting
that MIL-101(Fe)-NH2 nanoparticles mimicking enzymes are capable of catalyzing H2O2 in
the tumor microenvironment, to generate hydroxyl radical (•OH) through Fenton reaction,
and inducing tumor cell apoptosis, which is termed chemodynamic therapy (CDT) [18,21].
Unfortunately, the CDT efficacy is severely limited by H2O2 supply and iron metabolism
in the tumor. Accordingly, it is a greatly necessary and important way to increase the
production of •OH by elevating the content of intracellular H2O2 level and increasing the
catalyst iron ions amount in tumors.

Prior studies have shown that DOX elevates the intracellular H2O2 level through
PARP and NADPH oxidase activation except inducing cell apoptosis through inhibition
of topoisomerase II [22,23]. It is believed that DOX can enhance oxidative stress, which
is expected to improve the MIL-101(Fe)-NH2 nanoparticles-initiated CDT efficacy by pro-
moting the production of •OH. In this study, MIL-101(Fe)-NH2 nanoparticles were firstly
chelated with a natural iron chelator tannic acid (TA) to form MOF/TA nanoparticles. Then,
DOX was loaded into the inner cavities of MOF/TA nanoparticles with high efficiency,
benefiting from its porous structure and large surface areas (Scheme 1a). The MOF/TA-
DOX nanocomplexes (MTD) as a DOX delivery and acid-activatable release platform could
release DOX in the acidic TME, accompanied by the degradation of MOF. Apart from
the chemotherapeutic effect, DOX also elevated the content of intracellular H2O2 levels.
Meanwhile, during the degradation process, ferric ion (Fe3+) could be rapidly reduced to
ferrous ion (Fe2+) by TA. Consequently, the intracellular •OH was rapidly and massively
produced due to the considerably higher catalytic activity of Fe2+ and high content of
H2O2 (Scheme 1b). The drug delivery and catalytic nanoplatform based on the iron-rich
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metal–organic framework/tannic acid (TA) nanocomplex was expected to furnish an alter-
native strategy for improving the efficacy of chemotherapy and reducing the side effects.
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Scheme 1. Illustration of MTD as an acid-activatable nanodrugs enhancing tumor chemotherapy:
(a) preparation of MTD and (b) mechanism of MTD enhancing tumor chemo/chemodynamic therapy.

2. Materials and Methods
2.1. Chemicals and Materials

Ferric chloride hexahydrate (FeCl3•6H2O), amino terephthalic acid (BDC-NH2), and
tannic acid (TA) were acquired from Macklin (Shanghai, China). ICG-NHS was purchased
from Ruixibio (Xi’an city, China). Potassium bromide (KBr) was purchased from Meryer
(Shanghai, China). Methylene blue (MB) was purchased from Rhawn (Rhawn Co., Ltd.,
Shanghai, China). ROSGreen H2O2 probes were purchased from Shanghai Maokang
Biotechnology, China. Finally, 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride
(DAPI) was purchased from Beyotime Institute of Biotechnology (Shanghai, China).

2.2. Characterization

Morphological study of the MOF/TA was performed with transmission electron mi-
croscopy (TEM, JEM-1230, JEOL, Akishima, Japan) and scanning electron microscopy (SEM,
Hitachi H-7593; Hitachi, Ltd., Tokyo, Japan). FTIR spectroscopy analyses of MOF, TA, and
MOF/TA were conducted using an FT-IR spectrophotometer (Nicolet iS5, Thermo Fisher
Scientific, Waltham, MA, USA). ESR spectra of different samples with DMPO were recorded
on an ESR spectrometer (Bruker EMXnano, Bruker, Bremen, Germany). H&E stains of
mice tumors collected from different groups were imaged using an inverted fluorescence
microscope (DM IRE2, Leica, Wetzlar, Germany). The hydrodynamic diameters of MOF/TA
were determined by dynamic light scattering (DLS, Malvern Zetasizer Nano-ZS ZEN 3600,
Malvern Instruments, Worcestershire, UK).

2.3. Synthesis and Analysis of MTD Nanoparticles

Typically, 1.8912 g FeCl3•H2O and 0.6339 g 2-aminoterephthalic acid were placed in a
Teflon-lined autoclave, and 43 mL DMF was added. Next, the above solution was stirred
at room temperature for 30 min until the chemical compounds were dissolved. Then, the
Teflon-lined autoclave was put in an electric drying blower box subjected to solvothermal
treatment at 180 ◦C for 24 h. Through centrifugation (10,500× g rpm, 10 min) and washing
with DMF three times, the nanoparticles were obtained. Then, the MOF nanoparticles were
dried in a vacuum for further use. Afterward, 2 mg MOF nanoparticles were dissolved in



Materials 2022, 15, 1096 4 of 14

2 mL ddH2O, and 0.5 mg TA was added; then, the MOF/TA nanoparticles were obtained
by stirring the above mixture at room temperature for 12 h. To obtain MTD, 5 mg DOX
was dissolved in 1 mL DMSO and dropwise added in MOF/TA solution (20 mg in 10 mL
ddH2O) and stirred at 37 ◦C for 12 h. The products were collected by centrifugation,
washed three times with ddH2O, and stored in ddH2O.

To verify the loading content of DOX, the absorption spectra of MOF/TA, DOX, and
MTD solution were measured by a microplate reader at 400–800 nm. Different concentration
(0, 5, 25, 50, 80, 100 µg/mL) of DOX solution were prepared to make DOX standard curve.

Loading efficiency (%) = Loaded DOX weight/Added DOX weight × 100 (1)

Encapsulation efficiency (%) = Loaded DOX weight/(Nanoparticle weight +
Added DOX weight) × 100

(2)

2.4. Iron Release Analysis

MOF/TA were dispersed in 5 mL acidic (pH = 5.0) and neutral PBS (pH = 7.4), and
centrifugated at the indicated time point (0, 1, 2, 4, 8, 12, 24 h). The supernatant (200 µL)
was mixed with 200 µL 1,10-phenanthroline monohydrate (0.1 %), and the absorbance at
521 nm was measured using a microplate reader.

To analyze the concentration of iron released from MOF/TA, a standard curve of Fe
iron concentration was obtained using different concentrations (0, 5, 25, 50, 80, 100 µg/mL)
of FeCl3 solution. Next, 200 µL different FeCl3 solution was mixed with 200 µL VC
and 200 µL 1,10-phenanthroline monohydrate (0.1%), and the absorbance at 521 nm was
measured.

2.5. Generation of Hydroxyl Radical (•OH)

Methylene-blue colorimetric method was used to analyze the generation of hydroxyl
radical. The acidic PBS (pH = 5.0) contained MB (45 µg/mL) was mixed with MOF/TA
nanoparticles and H2O2. After 4 h, the absorbance spectra were measured, and the ab-
sorbances at 665 nm were detected. The MB, MB plus H2O2, and MB plus MOF/TA were
set as the control. Generation of hydroxyl radical under neutral conditions was performed
in PBS (pH = 7.4) using the same method.

2.6. DOX Release from MTD

The release of DOX was analyzed under acidic and neutral conditions. Briefly, 2 mL
acidic (pH = 5.0) or neutral (pH = 7.4) PBS containing MTD was put in a dialysis bag
(MWCO 3500) and immersed in 10 mL acidic PBS. The DOX concentration was detected
with a microplate reader in 2 mL of acidic or neutral solution at a certain time point (0, 1, 2,
4, 8, 12, 24 h), and fresh 2 mL acidic or neutral PBS was used as the control.

2.7. Uptake of MTD

To study the internalization of MTD nanoparticles, the nanoparticles were labeled
with ICG-NHS. 2 × 105 cells were cultured in 20 mm confocal dishes and grown overnight
(12 h). ICG-labeled MTD nanoparticles were co-incubated with the cells for 1 or 4 h
and washed with PBS three times. Finally, the cells were stained with DAPI for confocal
microscope analysis.

2.8. Cellular H2O2 Content

To study the cellular H2O2 content of 4T1 cells after MTD treatment, 2 × 105 cells
in 20 mm confocal dishes were incubated for 4 h with PBS, MOF/TA, DOX, and MTD
nanoparticles, respectively, and the cells were then washed with PBS three times and
stained with ROS green H2O2 probes for confocal microscope analysis.
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2.9. Fluorescence Imaging for Cellular Fe Ion Content and •OH

Similarly, 2 × 105 cells were incubated for 4 h with PBS, MOF/TA, and MTD nanopar-
ticles, respectively. After being washed with PBS three times, the cells were stained with
PGSK probes for confocal microscope analysis to study the cellular Fe ion content of
4T1 cells after MTD treatment. After confocal analysis, the cells were collected for flow
cytometry analysis.

Likewise, the cells were incubated with the indicated different treatments and stained
with APF probes. The images were obtained by confocal microscope to study cellular
•OH generation.

2.10. Cell Viability

The CCK-8 assay was applied to measure the toxicity of nanocomplexes in 4T1 cells.
The cells (5 × 103 cells per well) were seeded in 96-well plates and grown overnight (12 h)
and treated with MOF/TA, DOX, and MTD at 5, 10, 25, 50 µg/mL. After treatment for 24 h,
CCK-8 solution (10 µL per well) was added. After incubation for 2 h, the absorbance at
450 nm was detected, and the relative cell viability was calculated.

2.11. Animal Experiments

All of the experiments were performed under protocols approved by the Animal
Research Ethics Committee of Guangxi University. Balb/c nude female mice (4–5 weeks
old) were purchased from Zhuhai BesTest Bio-Tech Co., Ltd. Afterward, 4T1 cells (1 × 106)
were inoculated subcutaneously in the right hind thigh of mice. To study the distribution
of nanoparticles, 4T1 tumor-bearing mice were injected with ICG and ICG-MTD via the tail
vein. When the tumor volume reached about 100 mm3, the Balb/c nude mice were imaged
at 1, 2, 4, 8, 12, and 24 h after injection by the Living Image IVIS Spectrum (PerkinElmer).

When the tumor volume reached about 100 mm3, mice were randomly divided into
four groups and treated with PBS, MOF/TA, and MTD (10 mg/kg), respectively. The
nanoparticles were injected by the tail vein. During the treatment period, the body weight
and tumor sizes (length and width) were measured every three days. The tumor volume
was calculated by using the formula: V = L (length) × W (width) × W/2. After treatment,
mice were sacrificed, and the tumors and the organs were collected for H&E analysis.

2.12. Statistical Analysis

Statistical analyses were conducted using Student’s t-tests. Significance was calculated
via unpaired two-tailed Student’s t-test. p value were calculated by t-test; * and ** indicated
p < 0.05 and p < 0.01, respectively.

3. Results
3.1. Preparation and Characterization of Nanodrugs

The MOF nanoparticles (MIL-101(Fe)-NH2) were prepared according to a previously
reported method [24]. The scanning electron microscope (SEM) images of the constructed
MOF nanoparticles showed well dispersed and uniform nanoscale size, and the hydrated
particle size of MOF was ~174.6 nm (Figure 1a and insert). After stirring with TA, the
FT-IR spectrum of MOF/TA showed the characteristic peak at 1200 cm−1 and 575 cm−1,
which were attributed to the polyphenol -OH vibration of TA and Fe-O vibration of MOF,
respectively. Meanwhile, the characteristic peak at 1200 cm−1 also showed weaker than TA
due to the coordination of iron and polyphenol -OH groups (Figure 1b). Next, DOX was
further stirred with MOF/TA, and the absorbance spectra showed that the characteristic
absorption peak of DOX appeared in MTD (Figure 1c). According to the standard curve of
DOX, the loading and encapsulation efficiencies were 82.61% and 4.52%, respectively. In
addition, the zeta potential of MTD changed from +25.23 mV to −23.36 mV, suggesting
the great stability of suspensions. These results indicated the successful preparation of the
nanodrugs MTD.
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3.2. Analysis of Drug Release and •OH Generation

Nanoparticles, as drug delivery carriers, could be degraded and release drugs respon-
sively by utilizing the characteristics of the tumor microenvironment, such as weak acidity
and high GSH content [25,26]. Therefore, we firstly investigated the biodegradability of
MOF/TA nanoparticles. TEM images showed that the MOF/TA nanoparticles displayed a
regular square shape at pH = 7.4 and pH = 5.0 for 1 h. However, under the acidic condition,
the square shape of MOF/TA nanoparticles changed to round at 12 h, while MOF/TA
remained square shape under neutral PBS (Figure 2a), indicating the biodegradability of
MOF/TA nanoparticles under acidic conditions. Owing to this characteristic, iron ions
could be released from the nanoparticles. Therefore, we next analyzed the release of iron
ions by the O-phenanthroline spectrophotometry method. Under acidic conditions, the
concentration of iron ions was 1.27624 mM at 1 h, while under neutral conditions, the
number of iron ions was 0.00864 mM at 1 h and remained a very low concentration at 24 h,
only 0.01811 mM (Figure 2b). These results suggested the rapid release of iron ions from
nanoparticles in a pH-dependent manner, which will be beneficial for MOF/TA acting as
Fenton reaction catalyzer to generate cytotoxic •OH under acidic tumor microenvironment.

The concept of chemodynamic therapy was firstly proposed by Bu [27], which was
dependent on transition metal elements, such as iron, manganese, and copper ions, to
catalyze the •OH production through the Fenton reaction. Due to MB oxidization by •OH
into colorless solution, an MB colorimetry assay was used to test the ability of MOF/TA
nanoparticles to produce •OH. It was observed that the presence of H2O2 could reduce
the absorption value of MB at 665 nm, compared with the MOF/TA group. Notably,
compared with the neutral condition, the absorption value of MB under acidic conditions
was obviously decreased (Figure 2c,d). This resulted from efficient •OH generation by
Fenton reaction since many iron ions were rapidly released from MOF/TA nanoparticles
under acidic conditions. Interestingly, MOF/TA alone could reduce the absorption value of
MB, which was related to the fact that MB is a kind of electronegative dye and can adsorb
to positively charged nanoparticles [28].

Next, electron spin resonance spectroscopy (ESR) was used to verify whether MOF/TA
nanoparticles have the ability to catalyze H2O2, to produce •OH. As shown in Figure 2e,
the characteristic peak of •OH could be observed in the presence of MOF/TA and H2O2,
indicating the generation of •OH catalyzed by MOF/TA. The drug release profiles of MTD
were further evaluated in different pH conditions. The results showed that the cumulative
release of DOX was in a time-dependent way. Compared with the neutral condition, the
acidic condition facilitated the release of DOX from the nanoparticles (Figure 2f).



Materials 2022, 15, 1096 7 of 14

Materials 2022, 14, x FOR PEER REVIEW 7 of 15 
 

 

which was related to the fact that MB is a kind of electronegative dye and can adsorb to 
positively charged nanoparticles [28]. 

Next, electron spin resonance spectroscopy (ESR) was used to verify whether 
MOF/TA nanoparticles have the ability to catalyze H2O2, to produce •OH. As shown in 
Figure 2e, the characteristic peak of •OH could be observed in the presence of MOF/TA 
and H2O2, indicating the generation of •OH catalyzed by MOF/TA. The drug release pro-
files of MTD were further evaluated in different pH conditions. The results showed that 
the cumulative release of DOX was in a time-dependent way. Compared with the neutral 
condition, the acidic condition facilitated the release of DOX from the nanoparticles (Fig-
ure 2f). 

 
Figure 2. pH-responsive property and •OH generation of MOF/TA: (a) pH-responsive biodegraded 
property of MOF/TA; (b) iron release behavior of MOF/TA; (c) MB absorbance spectrum under 
acidic and neutral conditions after the different treatments; (d) MB absorbance at 665 nm under 
acidic and neutral conditions after different treatments; (e) ESR spectrum of different samples; (f) 
DOX release behavior of MTD. Data are represented as the arithmetic mean ± SD, and one-way 
ANOVA followed by Dunnett’s test were performed for statistical analysis (** p < 0.01).  

  

Figure 2. pH-responsive property and •OH generation of MOF/TA: (a) pH-responsive biodegraded
property of MOF/TA; (b) iron release behavior of MOF/TA; (c) MB absorbance spectrum under
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and neutral conditions after different treatments; (e) ESR spectrum of different samples; (f) DOX
release behavior of MTD. Data are represented as the arithmetic mean ± SD, and one-way ANOVA
followed by Dunnett’s test were performed for statistical analysis (** p < 0.01).

3.3. Detection of Intracellular •OH and Cytotoxicity of the Nanodrugs

To verify if MTD can be internalized by tumor cells and exert chemotherapeutic effect
by increasing the H2O2 levels, the 4T1 cells were co-incubated with ICG-labeled MTD,
and the images were obtained by CLSM analysis. As indicated in Figure 3a, strong green
fluorescence was observed in the tumor cells after incubation for 4 h, indicating that MTD
could enter effectively into the cells. Notably, red fluorescence of DOX could be observed
in both the cytoplasm and the nucleus. This result suggested that DOX released from MTD
could enter the nucleus, which was consistent with a previous study.
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Figure 3. In vitro chemo/chemodynamic therapy effect: (a) CLSM images of MTD internalized
behavior. Scale bar, 10 µm; (b) CLSM images of cellular H2O2 content after different treatments. Scale
bar, 50 µm; (c) CLSM images of cellular •OH content after different treatments. Scale bar, 20 µm;
(d) flow cytometry analysis of cellular iron content after different treatments. The cell viability of
(e) 4T1 and (f) MCF10A after different treatments were assessed with CCK8. Data are represented
as the arithmetic mean ± SD, and one-way ANOVA followed by Dunnett’s test were performed for
statistical analysis (* p < 0.05, ** p < 0.01).

DOX can induce apoptosis as well as increase the content of H2O2 in cells [29]. Thus,
a green fluorescence probe for H2O2 was used to detect the levels of intracellular H2O2
content by CLSM after the cells were incubated with the indicated treatments. The results
showed that the green fluorescence intensity of DOX was stronger than that of the control
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group, indicating that the content of H2O2 in the cells was increased (Figure 3b). Compared
with the control, treatment with MOF/TA obviously decreased the green fluorescence
intensity. This was due to the consumption of H2O2 for the Fenton reaction catalyzed
by MOF/TA. The presence of DOX could partly invert this inhibitory effect of MOF/TA.
These results indicated that DOX could compensate for H2O2 consumption by MOF/TA to
elevate the substrate of Fenton reaction and promote the formation of •OH, improving the
sensitivity of chemotherapy.

Considering that MTD could increase the intracellular iron ions that catalyzed the
formation of •OH from H2O2 in tumor cells, and the chemotherapeutic drugs DOX released
from MTD could elevate the intracellular H2O2 content as the substrates for Fenton reaction,
we speculated that a considerable amount of cytotoxic •OH could be produced in cells
after MTD treatment. To verify this, an APF probe was used to detect the generation of
•OH. The images obtained by CLSM showed an increase in fluorescence intensity in cells
after treatment with DOX, MOF/TA, and MTD groups (Figure 3c).

Next, the effect of MTD on intracellular iron content was evaluated in tumor cells.
A heavy metal fluorescence quenching indicator PGSK was used to indicate the content
of iron ions in cells. After treatment with MOF/TA and MTD, the fluorescence intensity
of PGSK in cells was significantly quenched, compared with that in the control group
(Figure 3d), indicating that there was a high content of ferrous ions in the cells. The high
concentration of iron ions in cells, as the catalyst of Fenton reaction, could provide the
premise for the conversion of H2O2 to •OH. Among them, the strongest fluorescence
intensity could be observed in cells treated with MTD, indicating that MTD treatment
could efficiently induce cellular •OH generation. Therefore, it is believed that MTD
nanoparticles act as the •OH nanogenerators to effectively kill tumor cells, resulting from
Fenton reaction between intracellular iron originated from MOF- and DOX-induced H2O2
generation. In order to evaluate the cytotoxic effect of MTD, cell viability was detected
after the different treatments by a CCK8 kit according to the manufacturer’s protocol.
As indicated in Figure 3e, cell viability was <53% after treatment with 10 µg/mL MTD
(the equivalent concentration of DOX is as low as ~0.45 µg/mL), and the viabilities in
cells treated with the same concentration of MOF/TA; DOX was still >63%, indicating the
synergistic chemotherapeutic effect of MTD. More encouragingly, the cancer cell killing
efficiency of MTD was up to ~86%, even at the ultralow equivalent concentration of DOX
(2.26 µg/mL), while the viability of normal cells remained >88% at the same concentration
of MTD (Figure 3f).

3.4. Selective Distribution of Nanodrugs in Tumor

To test if the nanoparticles could be enriched in tumors, ICG- or ICG-labeled MTD
were, respectively, injected intravenously to 4T1 tumor-bearing mice. Fluorescence images
were obtained by the Living Image IVIS spectrum at the specified time points after injection.
Strong fluorescence within the tumor could be detected in both ICG- and ICG-MTD groups
at 8 h, indicating selective accumulation of the nanoparticles in the tumor. It should be noted
that strong fluorescence could be observed only in the tumor after ICG-MTD treatment,
but mice injected with ICG showed strong fluorescence intensity in both the tumor and
other organs (Figure 4a,b). These results indicated that ICG-labeled MTD exhibited a good
target for tumors, which is beneficial to improve the antitumor effect of chemotherapy. We
next analyzed the distribution of MTD in mice by harvesting the major organs and tumors
for ex vivo fluorescence imaging at 8 h post injection. Indeed, tumors from the ICG-labeled
MTD treated groups showed strong fluorescence, in comparison with the tumors from
the free ICG-treated mice (Figure 4c). This result indicates that MTD nanocomplexes have
the properties of long-term circulation and tumor-specific accumulation. It could not be
ignored that the highest fluorescence signal was observed in the intestine, which suggested
the excretion pathway of MTD (Figure 4d).
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3.5. Antitumor Effect of Nanodrugs In Vivo

To evaluate the antitumor effects of nanoparticles in mice, mice bearing 4T1 tumors
were divided into four different treatment groups: PBS, MOF/TA, DOX, and MTD. After
injection, tumor growth and body weight of mice were monitored every three days. As
shown in Figure 5a, the average tumor size in MOF/TA, DOX, and MTD groups was
smaller than that of the control group, indicating their inhibition effects on tumor growth.
Treatment with MTD showed the highest inhibitory rate of 93.728% on tumor growth, which
was attributed to the synergistic chemotherapeutic effects of nanoparticles. Meanwhile, the
body weights of mice in each treatment group did not show an obvious change (Figure 5b),
indicating that the nanoparticles have good biological safety. In order to further study
the killing effect of nanoparticles on the tumor, tumor tissues of each treatment group
were collected after the treatment period, and H&E was performed (Figure 5c). Obvious
damage could be observed in tumor tissue from the mice treated with MTD. These results
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demonstrate that the MTD nanoparticles have good tumoricidal effects and biological
safety through selectively targeting tumors and effectively inducing tumor damage.
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4. Discussion

Currently, two drug delivery nanosystems including liposomes and albumin nanoplat-
forms had already been approved by the FDA for clinical application [30]. However, the
drug delivery to the tumor site relied considerably on the enhanced permeability and
retention (EPR) effect, which was due to the defective blood vasculature of tumor tissues,
poor lymphatic drainage, and increased vessel permeability [31]. It was only considered
as a passive targeting strategy for drug delivery. In this study, although MTD could
enhance the effective concentration of drugs at the tumor site by responsive release, it
showed poor passive targeting and was easily captured by the reticuloendothelial system,
while the chemical bonds on the surface of nanoparticles can be used to link with small
molecules such as HA and anti-CD47 to bind receptors that are highly expressed on the
surface of tumor cells to achieve active targeting of tumors. [32,33] Therefore, the targeting
properties of nanodrugs would be further improved by surface modification of specific
targeted molecules. In addition, the •OH production performance was also affected by
the limited residence time of nanodrugs in the tumor site. Although the •OH was highly
cytotoxic, the short duration is an obstacle to further improving the therapeutic efficacy
of tumors. Surprisingly, the strategies of delicately designed nanoparticles may help to
solve these difficulties. A previous study shows that, due to their small size, nanoparticles
self-aggregate in a tumor microenvironment with high levels of GSH, thus enhancing tumor
retention and accumulation of the nanoparticles [34]. It has also widely been reported
that the mechanism by which nanoparticles degrade within the tumor microenvironment
accompanies the release of the loaded catalytic enzymes, such as poly(ethylene glycol)-
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modified glucose oxidase (GOx), to continuously generate •OH and enhance the killing
effect of tumor cells [35,36]. In addition, the •OH produced by the Fenton reaction between
H2O2 and Fe3+/Fe2+ can initiate ferroptosis to enhance the killing effect [37]. Recently,
immunotherapy, as an emerging strategy in tumor therapy, was expected to specifically
inhibit tumors in the long term [38]. To date, numerous immunotherapeutic agents have
been approved by FDA including checkpoint inhibitor drugs for targeting the PD-1/PD-
L1 axis and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) [39]. Accumulating
lines of evidence have also suggested chemotherapy combined with immune checkpoint
inhibitors would enhance antitumor effects in tumor therapy [40,41]. •OH could trigger
immunogenic cell death (ICD) and initiate a potentiated antitumor immune response, as
reported in [42,43]. In previous research, we have verified that the •OH nanogenerator
enhances the antitumor immune response by inducing ICD in combination therapy with
the PD-L1 blockade, efficiently inhibiting tumor growth [21]. Therefore, the combination of
immunotherapy represented by immune checkpoint blockers (ICBs) with the nanodrugs
mediated chemotherapy could be expected to achieve synergistic enhancement and even
long-term antitumor effects.

5. Conclusions

In summary, we successfully prepared a pH-responsive, iron-based nanoparticle
(MTD), which contributes to enhancing the chemotherapeutic effect and reducing the side
effects significantly. MTD increased the effective concentration of DOX at the tumor site
and elevated the intracellular H2O2 concentration based on the characteristics of acidic
responsive release and the dual functions of DOX. Accordingly, MTD demonstrated the
best therapeutic effect in the 4T1 tumor model, with the highest inhibitory rate of 93.728%,
due to the chemotherapeutic effect and property of persistently producing •OH. Taken
together, the drug-loaded, iron-rich MOF nanoparticles are promising to serve as activatable
nanodrugs for reducing the toxic side effects of chemotherapy and improving the efficacy
of tumor chemotherapy.
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