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High-throughput single-cell technologies have recently emerged as essential tools in

biomedical research with great potential for clinical pathology when studying liquid and

solid biopsies. We provide an update on current single-cell methods in cerebrospinal

fluid research and diagnostics, focusing on high-throughput cell-type specific proteomic

and genomic technologies. Proteomic methods comprising flow cytometry and mass

cytometry as well as genomic approaches including immune cell repertoire and single-cell

transcriptomic studies are critically reviewed and future directions discussed.
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INTRODUCTION

Since its inception by Heinrich Quincke (1), lumbar punctures and cerebrospinal fluid (CSF)
analyses have become invaluable diagnostic tools in the clinical care of neurological patients.
Early-on, microscopic examination of CSF cells was included in the work-up and facilitated
the diagnosis of inflammatory and tumorous diseases of the central nervous system (CNS).
Quincke subclassified CSF cells into leukocytes, red blood cells and epithelial cells (2). Routine
work-ups include cell counts and detailed microscopic examinations with cells spun onto glass
slides and characterized by May–Gruenwald–Giemsa stain allowing differentiation of red blood
cells, lymphocytes, monocytes, granulocytes, and detection of malignant cells (Figure 1). Red
blood cells and leukocytes can be further assessed for activated cellular states (plasmablasts,
activated macrophages), and associated with certain diseases (erythrophages, siderophages,
lipophages) (3). Introduction of labeled antibodies against cell-specific antigens in the 1960s
allowed detailed analysis on slide-bound CSF cells by immunofluorescence and enzyme-
linked immunocytochemistry (4–6). However, traditional microscopic assessment exhibits several
limitations: (i) microscopic examinations are supervised, investigator-biased, and must be carried
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FIGURE 1 | Overview of featured single-cell methods, listing prominent characteristics of each method and providing schematic depictions of methodological

workflows and typical data visualizations.

out by experienced personnel; (ii) throughput is low as specimens
are spun separately on single slides; (iii) sensitivity is low, in
particular for rare cell populations; (iv) quantitative analyses are
challenging (Figure 1).

Here, we focus on next-generation high-throughput
technologies allowing cell-type specific analyses with high
accuracy in a fast and quantitative manner. Currently, most
methods are used in research requiring expensive equipment
and experience in sample preparation and computational data
analysis. Focused efforts are necessary to translate findings from
exploratory research into clinical practice, making those high-
throughput methods broadly accessible. Obstacles include low
cell counts and a short life span of CSF cells, posing challenges
for biobanking. Study inclusion, sample collection, quality check
(e.g., blood cell contamination, RNA integrity), and sample
processing must be done quickly according to standardized
protocols. Hence, we advocate for including novel single-cell
technologies in future studies enabling their use on a broader
scale and thereby increasing the relevance of CSF cytology in
clinical settings.

Profiling CSF Cell Heterogeneity by
High-Throughput Flow Cytometry
Multicolor flow cytometry was developed in the 1960s (7),
became available for broader use in the 1970s, and revolutionized
immunological research, biomarker development, and
clinical diagnostics (8, 9) (Figure 1). Fluorescently labeled
cells get excited by multiple lasers, and the detection of
fluorochrome emissions allows a multi-parameter cell-type
specific characterization. Modern cytometers can detect up to
18 fluorochromes in parallel and process several thousand cells
per second. In addition to cell surface markers, intracellular
molecules can be detected, revealing functional cellular
states like influx of ions, expression levels of transcription
factors, phosphorylation states, and cytokine levels (10, 11).
Fluorescence-activated cell sorting partitions cell populations
for downstream analyses including RNA sequencing and cell
culture assays.

Flow cytometry has been implemented for detailed cell
analyses including T cell counts in HIV, immunophenotyping
in immunodeficiencies, hematological malignancies, and during

Frontiers in Immunology | www.frontiersin.org 2 June 2019 | Volume 10 | Article 1302

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lanz et al. Single-Cell CSF Analysis

stem cell transplantation (12, 13). Flow cytometric CSF analysis
still lags behind due to high variabilities in cell populations,
lack of disease-specific cell markers, and low cell counts in
many neurological diseases. False-negative results are common
in disorders with only subtle increase in cell numbers, but higher
sensitivities can be achieved by increasing CSF volumes and
repeated measurements (14, 15). CSF cell populations in healthy
individuals are relatively uniform, however, differ significantly
from cell distributions in blood (16–18). T cells are the most
abundant cell type in the CSF, the CD4/CD8 ratio is skewed
toward CD4+ (CSF: 3 vs. blood: 2.1), and CCR7+ central
memory T helper subtypes are the dominating phenotype (∼90%
of the CD3+CD4+ T cell population), suggesting an important
role in immune surveillance of the CNS under healthy conditions
(17); granulocyte, B and NK cell counts are low (<1%) (19).

Most validated disease-specific flow cytometry panels are
currently used in primary CNS lymphomas supplementing
microscopic cytology and adding a high positive (92%),
however, low negative predictive value (52%) (15, 20). So far,
studies have not determined predictive values of CSF flow
cytometry in non-malignant diseases preventing its use in
routine diagnostics of neuroinflammatory, neurodegenerative,
and neurovascular disorders. However, many exploratory studies
have described disease-specific features, and more advanced
granular flow panels will help establish flow cytometry as a valid
diagnostic tool.

Elevated CD4/CD8 ratios have been described in stroke,
Guillain-Barré syndrome and multiple sclerosis (MS) and low
CD4/CD8 ratios in HIV. B cells and activated plasmablasts are
elevated in infectious conditions includingHIV and Lyme disease
as well-autoimmune diseases like MS (21, 22), while monocyte
counts are low in these diseases but elevated in glioblastoma
patients (23, 24). Notably, NK cells have been reported to be
elevated in patients with viral meningitis (24). Several studies
on inflammatory diseases have used flow cytometry for more
precise phenotypical profiling of T cell subsets, such as CD8+

cytotoxic or γδ-TCR-positive T cells (25–29), and NK cells (17,
19, 30), and some studies could correlate findings to treatment
responses or disease progression (31, 32). CSF cells in primary
neurodegenerative diseases are less well-studied (vs. proteins
such as neurofilaments, tau, and amyloid that are enriched
in the CSF) with some studies suggesting leukocyte activation
in neurodegenerative disorders. For example, CD8+HLA-DR+

activated T cells correlate with neurocognitive decline in patients
with Alzheimer’s disease (33). Despite ample evidence that an
active immune response contributes to neuronal damage after
ischemic stroke, CSF flow cytometry seems to be of limited
value in CNS ischemia. A larger flow cytometry study recently
reported a slight increase in cell numbers without differences
in cell distributions when compared to healthy individuals,
irrespective of stroke size and location (34). In summary,
exploratory studies have defined flow cytometry panels for
several neurological diseases. CSF flow cytometry is particularly
valuable in oncological diseases, followed by inflammatory and
infectious disorders. Correlations between cell status and clinical
outcome can provide meaningful support for neurological
diagnosis and patient care. Defining additional granular marker

panels will likely increase its relevance and justify a broader use
in CSF diagnostics in the future.

Characterizing CSF Cell Subsets by
High-Dimensional Mass Cytometry
Mass cytometry (cytometry by time of flight, CYTOF) is
related to flow cytometry but uses metal ion labels instead of
fluorochromes. Individual cells vaporize in inductively coupled
argon plasma withmetal ions getting ionized and introduced into
a time-of-flight (TOF) mass spectrometer allowing to distinguish
isotopes by a single atomic mass units (35). With virtually no
overlap between mass spectra, multidimensional data acquisition
of more than 100 parameters per cell is possible (usually in the
range of 30 to 60) allowing a throughput of up to 500 cells
per second (Figure 1). Data deconvolution algorithms provide
solutions for dimensionality reduction and clustering. Common
methods include principal component analysis (PCA) (36), t-
distributed stochastic neighbor embedding (t-SNE) (37), uniform
manifold approximation and projection (UMAP) (38), spanning-
tree progression analysis of density-normalized events (SPADE)
(36) and cluster identification, characterization, and regression
(CITRUS) (39). With the expansion of simultaneously detected
parameters, cell characterization is possible at an unprecedented
granular level, and intracellular molecular labeling further
enables dynamic monitoring of functional markers that add
mechanistic insight to descriptive cellular states (40, 41), and
even simultaneous measurement of specific RNA and protein
expression levels in single cells being possible (42).

CYTOF has been utilized to map the cellular landscape
of neuronal, glial and immune cells in rodent brains. For
example, CD44 was identified as a potential marker for
infiltrating leukocytes, border-associated macrophages could be
distinguished from microglia and dendritic cells, and a new
CD317+MHCII+CD39+CD86+ microglia subset was identified
in neurodegenerative and inflammatory models (41, 43, 44).
Protocols to dissociate and measure tumor cells and tumor
infiltrating leukocytes from glioma have been tested, and larger
CYTOF studies from human brain tumor tissue can be expected
soon (45). Recently, peripheral blood mononuclear cell (PBMC)
populations of glioblastoma and narcolepsy patients have been
studied by CYTOF (40, 46) and highlighted the role of immune
cells. However, due to low cell counts and freeze-storing
challenges, CYTOF studies have not yet been performed on
CSF. CYTOF is more expensive and challenging than flow
cytometry with computational expertise necessary to evaluate
high dimensional data. Currently, it is still an research tool, but
the myriad of investigated parameters can be condensed to a
focused set of cellular markers to be adopted for flow cytometry
and used to design cell-specific therapies.

Understanding CSF Lymphocyte Diversity
by Immune Repertoire Sequencing
B and T cell receptors (BCR and TCR) exhibit unique genetic
characteristics that can serve as natural markers of the adaptive
immune system. BCR and TCR are specialized cell surface
receptors on B and T lymphocytes, respectively, determining
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adaptive immune responses and immune memory (Figure 1).
Soluble BCRs are secreted as immunoglobulins, which opsonize
free antigens and activate complement factors as well as innate
immune cells. Cross-ligation of the membrane-bound BCR
by antigens triggers B cell activation and proliferation. T cells
detect specific antigens via TCRs when presented on major
histocompatibility complexes (MHC) by antigen-presenting
cells. During lymphocyte development, the genes coding
for each lymphocyte’s BCR and TCR rearrange and mutate,
resulting in an astounding diversity of 1013-1018 possible
BCRs and TCRs (47–49), although the realized lymphocyte
repertoire of an individual is several magnitudes smaller (50).
High diversity is needed to defend against a vast number
of possible pathogens. B cells (but not T cells) continue to
mutate their BCR upon B cell activation, striving to further
increase affinity to its cognate antigen in a process called
somatic hypermutation. BCR and TCR gene signatures are
unique to each lymphocyte and passed on to descendant cells.
The entirety of a person’s BCR and TCR sequences comprises
the immune repertoire, which can be studied using DNA or
mRNA next-generation sequencing methods (51–53). Repertoire
analysis is challenging because high sequence variabilities
complicate alignments to germline sequences. It therefore
requires rigorous validation to differentiate mutations from
sequencing errors. As each lymphocyte carries one unique
receptor sequence, single-cell conclusions can be drawn even
from bulk-sequencing experiments. However, single-cell
sequencing is needed to describe a receptor in its entirety,
as each receptor consists of two hetero-dimerizing protein
chains (53). Direct inference of an antigen from the receptor
sequence is currently not possible, however, new methods allow
clustering TCRs with similar antigen-specificities based on
predicted structures of antigen binding sites (54). Repertoires
provide valuable information about lymphocyte development
and maturation, somatic hypermutation, lymphocyte trafficking
(55, 56), and malignant transformations (57). Hence, several
studies have suggested the use of repertoires as disease-specific
biomarkers in MS, CNS lymphomas, and other neurologic
diseases (58–60).

B cell repertoire sequencing has recently attracted major
attention in MS when clinical trials using B cell depleting
therapies showed enormous efficacy (61, 62). Studies
comparing CSF, blood, lymph nodes, and meningeal B cell
follicles have suggested that B cells mature in secondary
lymphoid organs and traffic across the blood brain barrier
as switched memory B cells and plasmablasts (55, 56, 63).
Other repertoire studies demonstrated overrepresentation
of heavy chain V gene family 4 (VH4) in the CSF of MS
patients, likely as a result of chronic antigen-specific B cell
activation and proliferation. Specific VH4 genes together
with a set of characteristic mutations were proposed as an
experimental biomarker for MS (58, 60, 64, 65). Besides
MS (66–69), BCR and TCR repertoire sequencing of CSF
lymphocytes have been performed to tackle similar questions
in other neuroimmune diseases including NMDA and LGI1-
antibody positive encephalitis (70, 71), Rasmussen encephalitis
(72) and glioma (73). However, larger studies are needed

to recommend CSF repertoire sequencing to be used in
clinical neuroimmunology.

Dissecting CSF Cellular and Molecular
Heterogeneity by Single-Cell Genomics
Single-cell sequencing has emerged rapidly over the last years and
provides multi-dimensional and high-throughput possibilities to
study cell-type specific diversity based on cellular transcriptomes
(Figure 1). Plate-bound (several 100 cells per experiment),
droplet-bound, and multifluidic-based (several thousand cells
per experiment) methods provide sequencing depths of ∼1,000
to ∼6,500 genes per cell (74, 75). Single-cell RNA-sequencing
(scRNA-seq) can be performed using both fresh cell suspensions
from liquid and solid tissue samples (76–79) as well as isolated
nuclei from frozen material with well-preserved RNA (80–
82). scRNA-seq allows studying the entire transcriptome in an
unbiasedmanner, dissecting both cellular diversity andmolecular
transcriptomic changes in individual cells. This becomes an
extremely powerful tool when identifying disease-related cell
populations or performing repeated sampling during the course
of a disease.

scRNA-seq had great influence on immunological research
by enabling the identification of specific immune cell subtypes
and fostering our understanding of cellular diversity and cell-
type specific regulation patterns (78, 79, 83–85). Recently, elegant
computational algorithms have successfully inferred BCR and
TCR repertoires from scRNA-seq data (86–88). While single-cell
genomic methods have been successfully applied to solid tissues
using animal models and human pathologies including glioma
and MS (82, 89–91), it yet has only been the subject of very few
scRNA-studies focusing on HIV (92) and MS (93) suggesting the
presence of disease-specificmyeloid (HIV) and T follicular helper
cell (MS) subtypes in the CSF.

A broader availability and a wider use of scRNA-seq have
so far been impeded by high costs of reagents and the
need for computational expertise to run standardized high-
performance analyses. Also, due to the relatively low cell
number in non-infectious CSF preparations, high-throughput
scRNA-seq technologies have been restricted to solid tissue
or liquid biopsies like blood, where high cell numbers are
available. Novel multiplex approaches, however, can significantly
reduce costs and overcome challenges related to low CSF cell
number input by barcoding and pooling cells from different
individuals to be distinguished in retrospect during data analysis.
In an effort to improve multiplex approaches, natural genomic
variations, such as single-nucleotide polymorphisms (SNPs), can
be exploited to exclude droplets containing more than one
cell based on their inter-individual genomic signature (94).
Another multiplex assay uses lipid-tagged indices to identify cells
from different individuals and applies this method to single-cell
preparations (95).

In addition, single-cell epigenetic technologies were recently
developed that sequence the open chromatin landscape of
individual cells. These methods, which include ChIP-seq
(chromatin immunoprecipitation DNA-sequencing) and
ATAC-seq (assay for transposase-accessible chromatin using
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sequencing) (96, 97), have become powerful tools to profile
immune and tumor cell subsets in health and disease, in
particular when used with other methods like single-cell
repertoire sequencing (98, 99). Combinations of single-cell
genomic methods in conjunction with high-throughput
multiplex strategies will change biomedical research dramatically
in the near future and help dissect cellular heterogeneity and cell-
type specific gene regulation and expression in an unprecedented
way (100).

CONCLUSION AND FUTURE DIRECTIONS

We introduce four high-throughput multi-parameter
technologies and advocate for their implementation in CSF
cell diagnostics to gain a deeper understanding of cellular,
proteomic, and transcriptomic changes on a single-cell level.
The unparalleled depth of these methods allows researchers to
describe precise cellular landscapes of organ systems in health
and disease, characterize specific cell subsets in vast detail,
perform network analyses in complex cellular systems, and
suggest new cellular biomarkers for pathologies (41, 85, 101).
Currently, only flow cytometry has been introduced in routine
clinical CSF diagnostics. However, its relevance is often
limited and larger datasets with standardized protocols are
needed to maximize its contribution to CSF diagnostics.
Mass cytometry, repertoire sequencing, and single-cell
transcriptomics/epigenomics are still experimental methods,
ideally suited to gain detailed unbiased overviews and to provide
critical insight into disease mechanisms. Large high-dimensional

datasets derived from these methods need to be condensed to
focused marker sets that can be measured routinely. Notably,
additional single-cell technologies have been explored including
genomic sequencing (102), single-cell metabolomics (103), and
single-cell proteomics (104). Single-cell methods should be
implemented in future clinical trials as they can add valuable
mechanistic insight, and neurologists will have to monitor the
maturation of these technologies in the near future as they
promise to revolutionize cellular CSF diagnostics.
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