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Abstract: Even in adult brains, restorative mechanisms are still retained to maintain the
microenvironment. Under the pathological conditions of central nervous system (CNS) diseases,
several immature cells in the brain would be activated as a compensative response. As the concept
of the neurovascular unit emphasizes, cell-cell interactions play important roles in this restorative
process. White matter damage and oligodendrocyte loss are representative characteristics for many
neurodegenerative diseases. In response to oligodendrocyte damage, residual oligodendrocyte
precursor cells (OPCs) initiate their proliferation and differentiation for the purpose of remyelination.
Although mechanisms of oligodendrogenesis and remyelination in CNS diseases are still mostly
unknown and understudied, accumulated evidence now suggests that support from neighboring
cells is necessary for OPC proliferation and differentiation. In this review, we first overview basic
mechanisms of interaction between oligodendrocyte lineage cells and neighboring cells, and then
introduce how oligodendrogenesis occurs under the conditions of neurodegenerative diseases,
focusing on vascular cognitive impairment syndrome, Alzheimer’s disease, and multiple sclerosis.
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1. Introduction

It has been nearly 20 years since the neurovascular unit (NVU), a conceptual structural unit
composed of neurons, glial cells (astrocytes, microglia, oligodendrocytes), vascular endothelial/smooth
muscle cells, pericytes, and extracellular matrix, was proposed as a new paradigm for the investigation
of stroke [1,2]. The emergence of this concept was based on the fact that brain function along with
dysfunction arise from integrated interactions between networks of cellular components as listed
above (Figure 1). Since NVU is responsible for the regulation of blood flow and blood-brain barrier
(BBB) through the vascular system, the concept of NVU has been utilized to elucidate pathological
mechanisms of other neurological diseases (partly/totally) caused by deficient cerebral blood flow
(CBF) or the breakdown of BBB [3–6]. NVU has broadened our knowledge to manage complex diseases
by unveiling a variety of novel findings about cell-cell and cell-extracellular matrix interactions that
occur during the disease course. As primary etiologies for central nervous system (CNS) diseases are
most likely to be found in the gray matter, past studies mainly focused on the protection and recovery
of neurons that lie within the gray matter. However, since alterations of the white matter are observed
in those diseases as well, referring to white matter components as a therapeutic target should also be
of great importance.
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Figure 1. Schematic of the neurovascular unit (NVU): One of the key messages from the concept of 
the neurovascular unit may be that cell-cell interaction is critical for maintaining brain function. This 
schematic introduces some examples of how each component works together in the neurovascular 
unit. The neuronal compartment may include neuronal precursor cells along with neurons. The glial 
compartment includes astrocytes, oligodendrocytes, and microglia. The vascular compartment may 
include both endothelium and pericytes. Please note that there are several important mechanisms of 
cell-cell interaction even within each compartment. For example, in the glial compartment, microglia 
regulate the phenotypic change in astrocytes [7]. Also in the same compartment, oligodendrocytes 
interact with astrocytes and microglia. 

Oligodendrocyte, categorized as a sub-type of glial cells, is one of the major cell types in the 
cerebral white matter. Oligodendrocytes contribute to the white matter function by forming myelin 
sheaths. As the concept of NVU emphasizes, oligodendrocytes may not stand alone and should 
receive support from neighboring cells to play their roles in the white matter. Therefore, clarifying 
non-cell autonomous mechanisms of oligodendrocyte regeneration should be essential to understand 
the pathophysiology of the white matter in the recovery phase of neurodegenerative diseases. In this 
review, we will first briefly overview oligodendrocyte-related cell-cell interaction in the white matter. 
Then, we will discuss how those cell-cell interactions are involved in oligodendrocyte 
damage/regeneration under the diseased conditions of CNS diseases, such as vascular cognitive 
impairment syndrome (VCI, formerly called vascular dementia), Alzheimer’s disease (AD), and 
multiple sclerosis (MS, a representative white matter disease). 

2. Oligodendrocyte-Related Cell-Cell Interaction in White Matter 

The main components of the white matter are neuronal axons, oligodendrocyte lineage cells 
(e.g., oligodendrocytes and oligodendrocyte precursor cells (OPCs)), endothelial cells, astrocytes, and 
microglia. These cells may support each other to maintain white matter homeostasis. However, 
compared to the mechanisms of cell-cell interaction in the gray matter, the NVU function/role in the 
white matter is still relatively unknown. Nonetheless, recent studies have revealed many key 
mechanisms for cell-cell interaction in the white matter, especially under the pathophysiological 
conditions of neurodegenerative diseases. One of the main differences in the NVU between the gray 
matter and the white matter may be the involvement of oligodendrocyte lineage cells. Therefore, in 
order to consider effective therapeutic approaches for white matter-related diseases, we may need to 
understand how oligodendrocyte lineage cells interact with other surrounding cells.  

A well-documented oligodendrocyte-related cell-cell interaction is in myelinated axons. Myelin 
sheaths formed by oligodendrocytes are critical in increasing impulse speed to achieve fast and 

Figure 1. Schematic of the neurovascular unit (NVU): One of the key messages from the concept
of the neurovascular unit may be that cell-cell interaction is critical for maintaining brain function.
This schematic introduces some examples of how each component works together in the neurovascular
unit. The neuronal compartment may include neuronal precursor cells along with neurons. The glial
compartment includes astrocytes, oligodendrocytes, and microglia. The vascular compartment may
include both endothelium and pericytes. Please note that there are several important mechanisms of
cell-cell interaction even within each compartment. For example, in the glial compartment, microglia
regulate the phenotypic change in astrocytes [7]. Also in the same compartment, oligodendrocytes
interact with astrocytes and microglia.

Oligodendrocyte, categorized as a sub-type of glial cells, is one of the major cell types in
the cerebral white matter. Oligodendrocytes contribute to the white matter function by forming
myelin sheaths. As the concept of NVU emphasizes, oligodendrocytes may not stand alone
and should receive support from neighboring cells to play their roles in the white matter.
Therefore, clarifying non-cell autonomous mechanisms of oligodendrocyte regeneration should
be essential to understand the pathophysiology of the white matter in the recovery phase of
neurodegenerative diseases. In this review, we will first briefly overview oligodendrocyte-related
cell-cell interaction in the white matter. Then, we will discuss how those cell-cell interactions
are involved in oligodendrocyte damage/regeneration under the diseased conditions of CNS
diseases, such as vascular cognitive impairment syndrome (VCI, formerly called vascular dementia),
Alzheimer’s disease (AD), and multiple sclerosis (MS, a representative white matter disease).

2. Oligodendrocyte-Related Cell-Cell Interaction in White Matter

The main components of the white matter are neuronal axons, oligodendrocyte lineage cells
(e.g., oligodendrocytes and oligodendrocyte precursor cells (OPCs)), endothelial cells, astrocytes,
and microglia. These cells may support each other to maintain white matter homeostasis. However,
compared to the mechanisms of cell-cell interaction in the gray matter, the NVU function/role in
the white matter is still relatively unknown. Nonetheless, recent studies have revealed many key
mechanisms for cell-cell interaction in the white matter, especially under the pathophysiological
conditions of neurodegenerative diseases. One of the main differences in the NVU between the gray
matter and the white matter may be the involvement of oligodendrocyte lineage cells. Therefore,



Int. J. Mol. Sci. 2018, 19, 1743 3 of 16

in order to consider effective therapeutic approaches for white matter-related diseases, we may need
to understand how oligodendrocyte lineage cells interact with other surrounding cells.

A well-documented oligodendrocyte-related cell-cell interaction is in myelinated axons.
Myelin sheaths formed by oligodendrocytes are critical in increasing impulse speed to achieve
fast and effective neuronal signal transduction. Furthermore, through a myelin-independent
manner, oligodendrocytes can maintain the functional integrity and survival of axons. For example,
oligodendrocytes secrete several trophic factors, such as insulin-like growth factor-1 (IGF-1) and
glial-cell derived neurotrophic factor (GDNF), to support axonal function [8]. Conversely, axonal
activities may in turn help oligodendrocyte lineage cells. Axon-secreted molecules or axonal surface
ligands have been reported to regulate the differentiation and maturation processes of oligodendrocytes.
For example, Jagged ligands expressed in axons send signal to OPCs through the Notch pathway
to inhibit their differentiation [9]. Axon-myelin interaction is disturbed under diseased conditions.
Just like the gray matter, the activation of several deleterious factors and pathways takes place
during the course of degeneration in the white matter. For example, under the acute phase of white
matter injury, oligodendrocyte function would be affected/changed by direct attack from deleterious
substances such as matrix metalloproteinases (MMPs), while some MMPs would be beneficial during
the chronic phase. Also, in a recent study, vesicular glutamate release from axons was shown to
cause myelin damage through GluN2C/D-containing N-methyl-D-aspartate (NMDA) glutamate
receptors [10]. Even if oligodendrocyte (and its precursor) cells could avoid immediate death from
those factors, the metabolic dysfunction of oligodendrocyte lineage cells triggered by the assault would
cause abnormal myelin replenishment and the synthesis of myelin-related proteins, resulting in an
impairment of myelin-axon coupling. Then, eventually, the disturbance of oligodendrocyte-neuron
interaction would lead to white matter dysfunction.

Besides neuron-glia interaction, oligodendrocytes also work closely with other sub-types of
glial cells. Astrocytes are well known to physically interact with neighboring cells to maintain
a strictly-regulated microenvironment in the brain. For example, in the perivascular region, astrocytes
tune vascular tone and CBF through their fine processes that form a close liaison with blood
vessels [11]. Astrocytes also support vascular endothelial cells to form the BBB to protect brain
cells against several deleterious substances. In addition, through gap junctions, astrocytes directly
interact with oligodendrocytes to support their function [12,13]. Furthermore, an indirect interaction
may also be important for the support from astrocytes to oligodendrocytes. Soluble factors secreted
from astrocytes are reported to protect oligodendrocyte lineage cells from external stress such as
hypoxia [14]. In an animal model of acute spinal cord injury, transplantation of cultured astrocytes
facilitated the myelin restoration in the demyelinated lesion via accelerating the proliferation of
endogenous OPCs [15]. Microglia, another sub-type of glial cells, also have an important interaction
with oligodendrocyte lineage cells. In a cell-culture system, microglial presence was demonstrated
to increase the synthesis of myelin-specific proteins in cultured OPCs [16]. Other studies also
confirmed that conditioned medium from non-activated microglia enhanced the survival/maturation
of OPCs in vitro [17,18]. These studies used non-activated microglia, but the microglial phenotype
may be closely related to regulate OPC function. In a mouse model of traumatic injury, histone
deacetylase (HDAC) inhibition prevented white matter damage, possibly through phenotypic switch
to the M2 microglia that preserve neighboring oligodendrocyte lineage cells both in vivo and
in vitro [19]. Taken together, the interaction with other sub-types of glial cells would be necessary for
oligodendrocyte lineage cells to keep their roles both under pathological and physiological conditions.

The cerebrovascular system (e.g., cerebral endothelial cells and pericytes) also provides
an important mechanism for oligodendrocyte lineage cells to play roles in white matter. Although
a physical contact of mature oligodendrocytes with cerebral endothelial cells has not been confirmed
so far, OPCs are predicted to directly contact with cerebral endothelial cells (and pericytes) in the
perivascular region [20,21]. OPCs are known to be active during the developmental phase to generate
mature oligodendrocytes that would eventually form myelin sheaths. Although the formation of
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myelinated tracts occurs at the early stage of life, their homeostatic density is maintained throughout
life. For myelin homeostasis in an adult brain, neural stem progenitor cells (NSPCs) may be required
to transform into OPCs in addition to residual OPCs [22–25]. In response to white matter injury in
adult brains, NSPCs inside the subventricular zone (SVZ) along with the residual OPCs outside the
subventricular zone would proliferate and differentiate at a faster rate to promote the endogenous
repairing process [26–30]. When OPCs in adult brains are activated in demyelinated lesions, they revert
their phenotype to active OPCs that could be found in neonatal brains. They were found to produce
cytokine interleukin-1β (IL-1β) and C-C motif chemokine 2 (CCL2) to enhance the mobilization and
repopulation of the OPCs for remyelination [31]. NSPC-derived Olig2-expressing cells in the SVZ
differentiate into highly migratory OPCs that reside close to the blood vessels. These vessels serve as
a scaffold for the migration to the area of injury by releasing chemoattractants such as brain-derived
neurotrophic factor (BDNF) and fibroblast growth factor-basic (bFGF) [27,28,32,33]. Past studies using
in vitro cell-culture systems carefully examined the involvement of cerebral vascular endothelial cells
in regulating the function of oligodendrocyte lineage cells. For example, co-culture of endothelium with
NSPCs has shown that the interaction between endothelium and neural precursor cells promotes the
differentiation of NSPCs into oligodendrocytes (as well as astrocytes and neurons) under the influence
of CCL2/monocyte chemotactic protein-1 (MCP-1) [34]. Another study showed that conditioned
media from endothelial cells promoted the transformation of NSPCs into oligodendrocyte lineage
cells [35]. In addition, endothelial-derived growth factors are confirmed to promote the proliferation
and migration of OPCs in vitro [36,37]. However, the expression pattern of endothelial growth factors
may change by oxidative stress [36,38], and stressed endothelial cells could not support the OPC
proliferation in vitro [36]. Therefore, the disturbance of OPC-endothelium trophic coupling under
pathological conditions may be a part of reasons for myelin degradation or white matter dysfunction.
In addition, as stated above, OPCs may also physically come into contact with pericytes in the
perivascular region of white matter. Although the mechanism of OPC-pericyte interaction is still
mostly unknown, a recent comprehensive study, which conducted magnetic resonance imaging (MRI),
viral-based tract-tracing, and behavior and tissue analysis with pericyte-deficient mice, demonstrated
that pericyte degeneration disrupted the white matter microcirculation [39]. In addition, the disruption
of the microcirculation resulted in an accumulation of toxic blood-derived fibrin (ogen) deposits
and CBF reductions, which triggered a loss of myelin, axons, and oligodendrocytes [39]. Another
study also confirmed the supportive roles of pericytes in OPCs by showing that conditioned media
from pericytes supported the survival of OPCs in vitro [21]. In addition, a recent study indicated an
involvement of an anchoring protein A-kinase anchor protein 12 (AKAP12) in the supportive roles of
pericytes for OPC function. AKAP12 regulated growth factor production in pericytes and conditioned
media from AKAP12-deficient pericytes no longer supported the differentiation of OPCs in vitro [40].
As several types of brain cells interact with each other in the perivascular space [41], future studies are
warranted to examine the oligodendrocyte-related cell-cell interaction in the region to obtain a deeper
understanding of the pathological mechanisms of neurodegenerative diseases.

3. Molecular Mechanisms of Oligodendrocyte Repair/Damage in Neurodegenerative Diseases

Under the pathological conditions of neurodegenerative diseases, multiple deleterious cascades
are simultaneously over-activated to exacerbate oligodendrocyte damage. Since it would be difficult
to block all of these pathways at once, we may also need to pay attention to the mechanisms of
oligodendrocyte regeneration to achieve effective therapy for white matter-related diseases. In this
section, by focusing on VCI, AD, and MS, which would be more likely to present vast cerebral white
matter lesions compared to other neurodegenerative diseases (except special genetic disorders), we will
discuss what kind of mechanisms are involved in oligodendrogenesis under these diseased conditions.
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3.1. Vascular Cognitive Impairment Syndrome (VCI)

VCI is caused by the impairment of blood supply to the brain. Even though VCI is usually
not recognized as a demyelinating disease, white matter dysfunction does occur in most cases of
VCI. For example, in the case of subcortical ischemic vascular dementia, which is the most common
subtype of VCI [42,43], a pathological background of stepwise-worsening neurological deficits and
a loss of executive function represent immense periventricular white matter degeneration due to
chronic cerebral hypoperfusion caused by fibrohyalinosis of the medullary artery [44–46]. Analyses
of postmortem brain from patients with VCI revealed that there was a significant increase of various
progenitor cells [47]. In the SVZ and peri-infarct regions, cells that were positive for doublecortin
(DCX), nestin, and polysialylated neural cell adhesion molecules (PSA-NCAMs) were accumulated in
stroke patients. In addition, in the white matter lesions of VCI patients, OPCs were also increased while
mature oligodendrocytes were decreased [47]. These studies may suggest that there is an endogenous
mechanism to promote oligodendrogenesis in the brain of VCI patients. However, in most cases,
the recovery of lost functions cannot be achieved. This may partially be due to a lack of growth
factors that could support the proper differentiation of progenitor cells under the conditions of chronic
cerebral hypoperfusion. Also, since the prevalence of VCI increases with age, aging itself may cause
negative effects towards white matter regeneration, presumably by poor blood perfusion to the lesion
and/or by the absence of systemic factors essential for compensative responses [48].

Thus far, detailed biological mechanisms that suppress oligodendrocyte regeneration in patients
with VCI still remain elusive. However, recent basic studies using rodent models of VCI have made
several important findings for understanding the pathophysiology of VCI [49–52]. Those rodent
models replicate representative pathological white matter changes observed in VCI patients, including
the disruption of the blood-brain barrier, glial activation, oxidative stress, demyelination with axonal
damage, and increase of OPCs in demyelinated lesion (Table 1). Among them, to understand the
pathological mechanisms of VCI, a mouse model of prolonged cerebral hypoperfusion achieved by
artificially constricting bilateral common carotid arteries is now relatively well-accepted to examine
white matter pathology [53]. Here, we introduce some key findings from recent studies using the
mouse hypoperfusion model, focusing on oligodendrocyte protection and restoration.

Table 1. Rodent models for vascular cognitive impairment syndrome (VCI).

Parameter SHR-SP (Rat) BCAO (Rat) BCAS (Gerbil) BCAS (Mouse)

Operation/surgery No surgery Ligation only Coil placement Coil placement
Cerebral blood flow (CBF) decline (%) 50–70% ~70% ~70%

White matter legion ~20 weeks ~1 week over 8 weeks ~2 weeks
Cognitive dysfunction ~4 weeks ~2 weeks ~4 weeks

SHR-SP: spontaneously hypertensive rats (stroke prone); BCAO: bilateral common carotid artery occlusion; BCAS:
bilateral common carotid artery stenosis.

Although there is no clinically proven drug that would protect the white matter from damage in
VCI, several therapeutic targets have been reported from studies using the mouse hypoperfusion model.
A radical scavenger edaravone is now used in clinical settings for treating stroke and amyotrophic
lateral sclerosis (ALS) [54–58]. In a mouse model of chronic hypoperfusion, treatment with edaravone
ameliorated white matter damage (myelin degradation, oligodendrocyte death, and blood-brain barrier
damage) and promoted compensative oligodendrogenesis presumably by inhibiting hypoxia-induced
free radicals from attacking cellular components [59–61]. In addition, a phosphodiesterase-III inhibitor,
cilostazol, which is also used in clinic for peripheral vascular diseases, was proven to be effective for
oligodendrocyte protection and restoration in the corpus callosum of hypoperfused mice through
the upregulation of cAMP-responsive element binding protein (CREB) signaling and Btg2 (regulator
of cell differentiation) gene expression [62,63]. Furthermore, by combining the mouse model of
hypoperfusion with pharmacological and genetic manipulation approaches, several promising targets
for oligodendrocyte protection and restoration in VCI have been demonstrated, including sphingosine
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kinase [64], angiotensin II type 2 receptor [65], Na+-K+-Cl− cotransporter 1 [66], and transient receptor
potential melastatin 2 (TRPM2) channel [67].

Comorbidities are not negligible factors for VCI. In fact, hypoperfused mice with type 2 diabetes
exhibited a lower proliferation of OPCs [68]. In addition, the proliferation and differentiation of OPCs
after cerebral hypoperfusion were also dampened by age, presumably due to the defects in CREB
signaling [62]. Furthermore, as discussed in the section above, cell-cell trophic coupling is critical
for maintaining proper oligodendrocyte function. Using a transgenic mouse line wherein BDNF
expression is downregulated specifically in glial fibrillary acidic protein (GFAP)-positive astrocytes,
astrocyte-derived BDNF was shown to be supportive for oligodendrogenesis under the conditions of
cerebral hypoperfusion [69]. Another study demonstrated that pericyte-derived bone morphogenetic
protein 4 (BMP4) may have an important role in modulating astrogenesis and oligodendrogenesis after
white matter damage by chronic hypoperfusion [70]. In addition, recent study revealed that secretome
of endothelial progenitor cells would boost oligovascular remodeling in the hypoperfused mice by
increasing vascular density and by potentiating the proliferation and maturation of OPCs [71]. All these
studies support the idea that the concept of NVU would be useful to understand the mechanisms of
white matter dysfunction in VCI. However, it should be noted that the pathology in human VCI is
very complicated, and any single rodent model could not suffice to understand the mechanisms in
oligodendrocyte damage/repair in VCI precisely [72]. From the translational viewpoint, the usage
of multiple animal models should be considered for examining the underlying mechanisms in white
matter damage and for the pursuit of therapeutic targets for VCI.

3.2. Alzheimer’s Disease (AD)

AD is usually considered as a gray matter disease due to the distribution of hallmark pathological
changes known as extracellular neuritic plaques formed by amyloid-beta (Aβ) aggregation and
neurofibrillary tangles, which consists of phosphorylated tau protein. Nevertheless, recent imaging
studies showed that hyperintensities of the white matter is a good predictor of AD incidence [73–75],
and that early AD patients with micro- and macro-structural abnormalities in the white matter have
higher risk of disease progression [76]. These findings imply that white matter degeneration may also
be an important pathophysiological feature for AD.

White matter pathology in AD may be at least partly due to the modification in white matter
structure/component by aging. Overall hemispheric white matter volume is known to decrease with
age, and a maximum of a 45% decrease in the total length of myelinated fibers was found between
individuals of 20 and 80 years old [77]. Although myelin production by oligodendrocytes may continue
throughout life, aging causes thinner myelin sheaths and shorter internodes. In fact, the same study
also confirmed an appearance of thinner axons in the elderly [77]. Thinner myelin sheaths and smaller
axons would result in functional deficits due to conduction failure and a greater vulnerability to
trauma, oxidative stress, or Aβ toxicity [78]. Demyelinated lesions tend to distribute within the areas
with relatively low CBF, which are usually found in profound, periventricular white matter. Both in
normal elderly populations and in AD patients, a decrease of vessel density in the periventricular
region was observed [79], which would eventually lead to oligodendrocyte damage by hypoxic stress.
Besides decreases in CBF, a recent pathological study reported that parietal white matter degeneration
in AD patients could partially be attributed to Wallerian-like degeneration, which is a secondary axonal
loss due to neuronal loss caused by the accumulation of phosphorylated tau in the cortex [80]. Another
recent translational study described the predominance of microglia-induced neuroinflammation in the
white matter of aged mice/humans and also in the brains of early-onset AD patients [81], suggesting
that the evaluation of white matter inflammation may have a clinical value for predicting the onset
and progression of aging and neurodegeneration caused by AD. A recent large cross-sectional study
of cognitively unimpaired elderly subjects also revealed that a not robust but statistically significant
increase in white matter degeneration (hyperintensity in MRI) was observed in subjects with decreased
cortical thickness regardless of cortical Aβ accumulation [82]. Serologically, lower levels of Aβ in
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cerebrospinal fluid and higher levels of plasma Aβ were shown to be associated with the presence
and progression of white matter hyperintensity in non-demented elderly individuals [83,84]. These
studies suggest that white matter degeneration may be an earlier manifestation of Aβ deposition
rather than the degeneration of gray matter. Taken together, white matter damage may be one of the
important characteristics of AD patients. Still, a comprehensive analysis of the affected areas within
the postmortem brain tissue from AD patients should be performed for pathological verification.

When white matter changes occur in AD patients, it is natural to think that oligodendrocyte
lineage cells are likely to be affected within that lesion. In fact, changes in oligodendrocytes were
confirmed in human AD brains and in mouse models. In postmortem human white matter tissue,
the population of Olig2-positive cells (immature oligodendrocytes) was decreased [85]. Observation of
the para-hippocampal white matter also revealed that the diameter of oligodendrocyte nuclei shortened
while the mean diameter of neuron nuclei was not affected [86]. On the other hand, one study reported
an increase of microtubule-associated protein-2 (MAP2)-positive myelinating oligodendrocytes near
the periventricular white matter lesions and a higher number of platelet-derived growth factor receptor
(PDGFR)-α-positive OPCs within the degenerated white matter [87]. Therefore, responses of OPCs
in AD brains may depend on the diseased conditions/states or brain regions. Analyses in AD mice
have also revealed significant functional changes in white matter oligodendrocytes. Compared to
wild-type (WT) mice, oligodendrocytes in PS1 knock-in mice were more susceptible to glutamate
and Aβ. In APP/PS1 mice (6–8 months old), OPCs were found to be increased compared to WT
mice [85,88]. These studies suggest that the abnormalities of oligodendrocyte lineage cells could
occur early in the disease course with the presence of presenilin-1 (PS1) mutation. In addition,
another study reported that triple transgenic mice (3xTg-AD; 6 months old) exhibited lower myelin
basic protein (MBP) expression and a smaller number of myelinating oligodendrocytes but a larger
number of non-myelinating oligodendrocytes [89], indicating that AD pathology may impair the
endogenous restorative responses in oligodendrocyte lineage cells. Even though neuritic plaques are
rarely found in the white matter, oligodendrocytes of the white matter are likely to be exposed to
soluble Aβ, which is known to increase in the white matter of AD patients [90]. So, how do Aβ and tau
affect oligodendrocytes? Previous studies showed that Aβ was toxic to oligodendrocytes [89,91–93].
In rat primary oligodendrocyte cultures, Aβ treatment induced oxidative stress, which then caused
mitochondrial DNA damage leading to oligodendrocyte death and dysfunction [94]. Tau protein is
toxic to neurons as it disturbs microtuble stabilization. Although severe tauopathy occurs mostly in
gray matter, calpain2 (an indicator for axonal loss) was found to be increased in the white matter of
AD brains in association with the increase of cortical phosphorylated tau and Aβ [80].

Although it is assumable that oligodendrocyte lineage cells are activated in response to
oligodendrocyte damage in AD brains, mechanisms of oligodendrocyte regeneration during the
course of AD pathology are still understudied. To the best of our knowledge, pharmacological
studies focusing on the remyelination of the white matter in AD patients/animal models is not
yet available. However, non-pharmacological therapeutic approaches towards AD have offered us
hints to consider effective strategies to promote oligodendrocyte regeneration and remyelination
in AD brains. For example, recent clinical data have shown that physical activity is inversely
associated with the progression of AD [95]. Also, in basic studies, AD model mice treated with forced
exercise showed an attenuation of disease-related pathology. These results were partly attributed
to the protection of the capillaries to secure enough blood supply for the white matter [96–100].
Since oligodendrocyte-endothelium interaction in the oligovascular niche is important to sustain
angiogenesis and oligodendrogenesis [101], non-pharmacological therapies such as exercise could be
novel candidate methods to boost the endogenous compensative responses of oligodendrocytes in
AD brains. Nonetheless, in-depth investigations into the underlying mechanisms of oligodendrocyte
damage and repair within the disease course of AD would be necessary in future experiments.
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3.3. Multiple Sclerosis (MS)

MS is characterized by an inflammatory reaction of various types of immune cells against myelin
sheaths and oligodendrocytes in the CNS. Eighty percent of MS patients initially develop a clinical
pattern with periodic relapses followed by remissions [102]. Since different anatomic areas are involved
when relapse occurs in most cases, clinical manifestations vary in each instance. Relapses are nearly
always followed by remission to some extent, although recovery to baseline status is often incomplete.
Corresponding with the recovery of clinical symptoms, the remyelination of demyelinated lesions
has been pathologically confirmed in human brains [103–105]. However, remyelination is usually
restricted to the lesion borders, and remyelinated internodes do not regain their original length and
thickness [106–108]. It is also reported that remyelination in acute demyelinated lesions is more
efficient than that in chronic lesions [104,109]. These sequences are considered to induce chronic
pathological loss of myelin and extensive axonal injury [110].

Attributable mechanisms for the incomplete (re)myelination in MS are predicted to be
related to the reduction of the recruitment/maturation of OPCs [111–113]. In experimental
autoimmune encephalomyelitis mice, NSPCs increased within the SVZ and migrated towards
demyelinated lesions for differentiation [114]. However, the failure of migration and the differentiation
of OPCs often occur under the conditions of MS, due to a number of inhibitory factors
in the lesion microenvironment [115,116]. While numerous mechanisms are involved in the
demyelination/remyelination of MS, several important mechanisms may be found in the cell-cell
interaction between oligodendrocyte lineage cells and neighboring cells. Under the condition of MS,
microglia would be repeatedly activated (polarized). Those activated microglia produce excessive
levels of toxic factors, including reactive oxygen species and inflammatory cytokines that exacerbate
oligodendrocyte damage [117,118]. In addition, the phagocytotic function of microglia would directly
cause oligodendrocyte loss. However, the role of microglia in oligodendrocyte function may not
be so simple. The removal of myelin debris by microglia is an important step for remyelination.
Also, under some conditions, the preservation of myelin homeostasis would be increased by M2
microglia which promotes OPC differentiation [119,120]. In addition, when exposed to tumor growth
factor β (TGFβ)/interferon γ (IFNγ), phenotype changing would occur in microglia to promote
oligodendrogenesis [121–123]. Similarly, reactive astrocytes may exhibit both detrimental and beneficial
effects to oligodendrocytes in MS. As mentioned in the above sections, astrocytes have positive roles
in OPC proliferation/differentiation under some conditions. However, in an lysophosphatidylcholine
(LPC)-injection white matter injury model, astrocyte-derived endothelin-1 (ET-1) was identified to
negatively regulate the differentiation and remyelination of OPCs by promoting Jagged1 expression,
which activates the Notch signal in OPCs [124]. While the underlying mechanisms remain to be fully
elucidated, the dual roles of microglia and astrocytes in oligodendrocyte regeneration in MS may
partly depend on the activation status (i.e., polarization conditions) and/or the distance of those cells
from the lesion site [125,126].

4. Conclusions

The damage of the white matter oligodendrocytes is one of the major characteristics of several
neurodegenerative diseases. Under the diseased conditions, multiple deleterious cascades are
predicted to be activated to cause the death of oligodendrocytes. Since the simultaneous blocking
of all of these cascades is virtually impossible, promoting oligodendrogenesis from OPCs/NSPCs
could be one of the effective ways to protect and restore the white matter from CNS diseases.
However, guiding OPCs/NSPCs towards efficient remyelination would not be easy. As discussed,
successful oligodendrogenesis cannot be achieved by oligodendrocyte lineage cells alone, and the
inclusion of many other types of neighboring cells is essential for the process. It should also be noted
that under such diseased conditions, those neighboring cells could in turn become deleterious for
oligodendrogenesis depending on the surrounding atmosphere (Figure 2). Ultimately, as the concept
of NVU originally emphasizes, the comprehension of oligodendrocyte-related cell-cell interaction is
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important to develop an effective therapy for white matter-related diseases. Further investigations
are warranted to examine how oligodendrocyte lineage cells interact with neighboring cells under
physiological and pathological conditions.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  9 of 15 
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