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Last year, in 2011, we argued that
biomedical informatics stands ready to
revolutionize human health and health-
care using large-scale measurements on
a large number of individuals.1 We antici-
pated that, with the coming changes in
the amount and diversity of datasets,
data-centric approaches that compute on
massive amounts of data (often called
‘Big Data’2 3) to discover patterns and to
make clinically relevant predictions would
be increasingly common in translational
bioinformatics.

Given these trends, we programmed the
2012 Summit on Translational Bioinfor-
matics to focus on research that takes us
from base pairs to the bedside,4 with
a particular emphasis on clinical implica-
tions of mining massive datasets, and
bridging the latest multimodal measure-
ment technologies with the large amounts
of electronic healthcare data that are
increasingly available.

The coming year did turn out to be the
year of Big Data for the Summit, with
multiple submissions on managing and
interpreting large datasets (figure 1).
Among the 35 full paper submissions to
the Summit, four stood out for their
innovation, and hence the authors were
invited to expand the work for this special
issue of JAMIAdadding to the growing
presence of translational bioinformatics in
the journal.5e9

Liu et al10 demonstrated how the
ability to predict adverse drug reactions
can be increased by integrating chemical,
biological, and phenotypic properties of
drugs. They demonstrated that prediction
accuracy increased from 0.9054 (when
only chemical structures were used) to
0.9524 (when chemical structures along
with biological and phenotypic features

were used). They conclude that data
fusion approaches are promising for large-
scale adverse drug reaction predictions in
both preclinical and post-marketing
phases.
Bhavnani et al11 assert that existing

methods to analyze ancestral informative
single-nucleotide polymorphisms (SNPs)
(ie, SNPs that have large differences in
genotype frequencies between two or
more ancestral populations) identify
a parsimonious set of SNPs that can
identify distinct population clusters.
However, existing methods do not directly
visualize which clusters of subjects are
related to which clusters of SNPs, or
allow visualization of the genotypes
that determine the cluster memberships.
In an attempt to reveal such hidden
relationships, they used three bipartite
analytical representations (a bipartite
network, a heat map with dendrograms,
and a Circos ideogram) to simultaneously
visualize clusters of subjects, SNPs, and
the attributes that cause them to cluster.
Seeking to maximize the utility of the

abundance of available genome-wide
association study (GWAS) data, Russu
et al12 introduced a novel Bayesian model
search algorithm, binary outcome
stochastic search, for model selection
when the number of predictors (eg, SNPs)
far exceeds the number of observations.
They propose an innovative stochastic
model search technique where the rela-
tionship between the observed responses
and the available predictors is described by
a latent variable model with a probit link.
They compare binary outcome stochastic
search with three established methods
(stepwise regression, logistic lasso, and
elastic net) in a simulated study and in
two real world studies to demonstrate
higher precision (while preserving recall)
in identifying SNPs associated with the
observed outcome than the one obtained
from established methods.
Morgan et al,13 recipient of the Marco

Ramoni Best Paper Award, constructed
genomic disease risk summaries for 55
common diseases using reported genee

disease associations in the research litera-
ture. They constructed risk profiles based
on the SNPs as well as on 187 whole-
genome sequences and show that risk
predictions derived from sequencing differ
substantially from those obtained from
the SNPs for several different non-mono-
genic diseases. When a large fraction of
associated variants for a given disease
is not covered by the genotyping array,
the overall risk predictions can vary
dramaticallydby as much as a factor of 20
times in some instances.
Beyond this year ’s conference papers, in

the larger informatics community,
researchers have demonstrated that
GWAS can now be performed by
leveraging large amounts of electronic
medical record (EMR) data. For example,
Kho et al showed that, by using
commonly available data from five
different EMRs, it is possible to accurately
identify type 2 diabetes cases and controls
for genetic study across multiple institu-
tions.14 In addition, genomic sequencing
has moved out of the research realm and
established itself in the clinic. For
example, at the Medical College of
Wisconsin, Dr Howard Jacob’s team used
genome sequencing to identify a novel
causal mutation that led to successful
treatment of a 6-year-old boy with an
extreme form of inflammatory bowel
disease.15 16

Currently, the discussion of Big Data in
translational informatics often connotes
next-generation sequencing data.3 17 18

However, this is beginning to change: in
2011, the use of large public datasets of
various kinds increased dramatically. The
research activity around data mining for
predicting adverse drug events (ADEs)
using public data is an excellent
example.19 Drug safety surveillance is
currently based on spontaneous reporting
systems, which contain reports of
suspected ADEs seen in clinical practice.
In the USA, the primary database for such
reports is the Adverse Event Reporting
System (AERS) database at the Food and
Drug Administration. This resource has
been successfully mined using ‘dispro-
portionality measures’, which quantify
the magnitude of difference between
observed and expected rates of particular
drugeADE pairs.20 21

Given the amount of data available in
AERS,22 researchers are developing
methods for detecting new or latent
multi-drug adverse events. Examples
include using side effect profiles from
AERS’ reports to infer the presence of
unreported adverse events,23e25 and
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creating a network of known drugeADE
relationships to predict as yet unknown
ADEs before they are found in post-
market evidence.26

Going beyond reported adverse events
and making use of molecular level data,
Pouliot et al27 generated logistic regression
models to correlate and predict post-
marketing ADEs based on screening data
from PubChem, a public database of
chemical structures of small organic
molecules along with information about
their biological activities. In a related
effort, Vilar et al28 devised a way to
enhance existing, data-mining algorithms
with chemical information using molec-
ular fingerprintsdwhich represent mole-
cules through a bit vector that codifies the
existence of particular structural features
or functional groupsdto enhance ADE
signals generated from adverse event
reports. There have been increasing efforts
to use other data sources, such as EMRs,
for the purpose of detecting ADEs29e31

and to discover multi-drug ADEs.32

Researchers have also used billing and
claims data for active drug safety
surveillance33e35 and applied literature
mining for drug safety.36 Recently, Chee
et al37 explored the use of online health
forums as a source of data to identify
drugs for further scrutiny. They aggregate
individuals’ opinions of drugs in roughly
12 million personal health messages using
natural language processing and are able
to identify drugs withdrawn from the
market based on messages discussing
them before their removal.

Looking ahead, we believe that Big Data
in biomedical informatics will be far more
than genome sequence data.38e40 We

argue that Big Data must be considered in
a comprehensive manner, including both
large amounts of ‘molecular measure-
ments’ on a person (eg, sequencing) and
small amounts of ‘routine measurements’
on a large number of people (eg, clinical
notes, laboratory measurements, claims
data and adverse event reports). In
contrast with the buzz around genomic-
data-in-the-clinic or adverse event
predictions, consider the example by
Frankovich et al.41 When the existing
literature and a survey of colleagues was
insufficient to guide the clinical care of
a patient, Frankovich et al applied trend
analysis to the EMR data from 98 patients
to ‘learn’ a data-driven guideline on how
to provide care for a 13-year-old girl with
systemic lupus erythematosus.41 Such
data-centric approaches are particularly
useful when derivation of a formal
guideline is not feasible from a practical
standpoint.
It is tantalizing to imagine how scien-

tific inquiry would be performed differ-
ently if we collect and share access to lots
of datadboth genomic and ‘routine’.
How will the kinds of questions we ask
change when we cross a certain data
threshold?42 43 For example, researchers at
Carnegie Mellon University built a scene
completion tool by scraping millions of
other images on the web from public
sources. After the system accumulated
a corpus of millions of photos, completed
scenes were indistinguishable to the naked
eye. The case for Big Data analytics has
already won over the legal domain in
at least one application, replacing armies
of lawyers with computer algorithms
designed for ‘e-discovery’dthat is,

retrieval of relevant materials for a legal
case.44 Even the liberal arts are embracing
Big Data: capitalizing on Google’s efforts
to digitize books, researchers in the
humanities are blazing new trails in
‘culturomics’ by examining language
based on the analysis of word combina-
tions occurring in millions of digitized
books through time.45

In 2013, we will have the sixth Summit
on Translational Bioinformatics and the
third year of the AMIA Joint Summits
on Translational Science. Translational
research has become integral to the
biomedical research enterprise, as
evidenced by the creation of a National
Center for Advancing Translational
Science at the NIH. The Joint Summits
continue to be a venue to facilitate
dramatic changes that are underway to
deliver quality, personalized healthcare in
the USA without increasing spending at
a rate exceeding the growth of the GDP.46

Reflecting this priority, the 2013 TBI
Summit will have new tracks that will
showcase the ways in which the trans-
lational sciences are having a significant
impact on the way clinical care, biomed-
ical research, and drug discovery are
performed.
We believe that the time is ripe for

medicine to embrace Big Data, to usher in
the age of data-driven medicinedand to
truly enable proactive, predictive, preven-
tive, participatory, and patient-centered
health.47 Data-driven medicine will enable
the discovery of new treatment options
based on the multi-model molecular
measurements on patients and learning
from the trends hidden among the diag-
noses, prescriptions, and discharge
summaries of millions of patient encoun-
ters logged by clinical practitioners.48 49

The increasing synergy between the
Translational Bioinformatics Summit and
the Clinical Research Informatics Summit
is an indication of this impending
convergence. This is an exciting time
when medicine begins utilizing massive
amounts of data to discover patterns and
trends and to make predictions in
a manner that is a mainstay of web-scale
computing.42
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Figure 1 A tag cloud generated from the title and abstracts of the submissions made to the AMIA
Translational Bioinformatics Summit 2012. The more frequently used the words are, the larger they
appear. ‘Data’ was the most commonly mentioned word across all submissions for 2012.
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