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Abstract: The members of the Nesterenkonia genus have been isolated from various habitats, like
saline soil, salt lake, sponge-associated and the human gut, some of which are even located in polar
areas. To identify their stress resistance mechanisms and draw a genomic profile across this genus, we
isolated four Nesterenkonia strains from the lakes in the Tibetan Plateau, referred to as the third pole,
and compared them with all other 30 high-quality Nesterenkonia genomes that are deposited in NCBI.
The Heaps’ law model estimated that the pan-genome of this genus is open and the number of core,
shell, cloud, and singleton genes were 993 (6.61%), 2782 (18.52%), 4117 (27.40%), and 7132 (47.47%),
respectively. Phylogenomic and ANI/AAI analysis indicated that all genomes can be divided into
three main clades, named NES-1, NES-2, and NES-3. The strains isolated from lakes in the Tibetan
Plateau were clustered with four strains from different sources in the Antarctic and formed a subclade
within NES-2, described as NES-AT. Genome features of this subclade, including GC (guanine +
cytosine) content, tRNA number, carbon/nitrogen atoms per residue side chain (C/N-ARSC), and
amino acid composition, in NES-AT individuals were significantly different from other strains,
indicating genomic adaptation to cold, nutrient-limited, osmotic, and ultraviolet conditions in polar
areas. Functional analysis revealed the enrichment of specific genes involved in bacteriorhodopsin
synthesis, biofilm formation, and more diverse nutrient substance metabolism genes in the NES-AT
clade, suggesting potential adaptation strategies for energy metabolism in polar environments. This
study provides a comprehensive profile of the genomic features of the Nesterenkonia genus and reveals
the possible mechanism for the survival of Nesterenkonia isolates in polar areas.

Keywords: microbial adaptation; comparative genome; polar environments; Nesterenkonia

1. Introduction

The Qinghai-Tibet Plateau (QTP) is referred to as the third pole of the world because
it shares many characteristics with the Arctic and Antarctic regions. The common harsh
conditions include low temperature, limited nutrient availability, and strong ultraviolet
radiation [1]. In addition, lakes in these regions also suffer from a wide range of salinity
and pH, which together contribute to them becoming research hotspots for studies of
extremophiles adaption [2–4]. Microbial community structures in the Antarctic, Arctic,
and Tibetan lakes have been investigated alone and it has been found that the main
impact factors include light, temperature, and physicochemical conditions, including the
availability of organic carbon and nutrients [5–7]. The bacterial diversity and community
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composition in lakes from the three polar regions were found to also share some common
microbial taxa [8]. However, this traditional amplicon sequencing method cannot capture
the specific genomic and functional differentiations below the species level. The higher-
precision method should be applied to clarify mechanisms by which the bacteria have
evolved to survive in these harsh conditions.

Bacterial strains isolated from the polar region have shown many molecular mech-
anisms for adaptation to extreme conditions. For instance, Marisediminicola antarctica
ZS314T, isolated from intertidal sediments in East Antarctica, has reddish-orange pigments
synthesis capacity at low temperatures [9]. This carotenoid product may contribute to
the regulation of membrane fluidity and can also protect cells against UV radiation [10].
Antarctic Streptomyces and Kribbella strains harbor biosynthetic gene clusters that encodes
lipopeptide biosurfactant molecules, the primary ecological role of which is accelerating
nutrient flow [11]. The psychrophilic Arthrobacter isolate contains more copies of nucleic
acid-binding cold-shock proteins (CSPs) and, also, the homologs of the CspA-like cold
acclimation protein. These proteins can show different expression patterns to a sudden tem-
perature transition and can help to stabilize DNA and RNA secondary structures during
growth under low conditions [12].

Nesterenkonia, is a genus within the Micrococcaceae family, consisting of many mesophilic
moderate haloalkaliphiles from various sources. Members of this group possess high
genomic G + C content (64%–72%) and are generally aerobic, gram-positive, and chemo-
organotrophic. They have been found in diverse environmental habitats, like hypersaline
and saline lakes [13–15], cotton pulp mills [16], and the human gut [17,18]. Members
belonging to this genus are also isolated from the Antarctic and Arctic [19,20], suggesting
that Nesterenkonia spp. might have specific adaptation mechanisms to the polar environ-
ment. Previous research about the strain Act20 from the high-altitude-Andean-lake in
Argentina found that is has multi-resistance, especially towards UV radiation, drought, and
copper [21]. Transcriptional analysis of the Antarctic strain AN1 showed that genes related
to antioxidants-coding, cold stress, and the glyoxylate cycle were significantly upregulated
during cold growth [20]. However, the systematic analysis of genomic features across all
genomes within this genus was absent, which can be resolved by pan-genome analyses.
This method can encompass the entire gene pool of target species and offer a framework
for genomic diversity estimation [22]. By dividing the full gene repertoire into a few parts
(core, shell, cloud, and singleton gene), many important scientific projects can be studied,
such as environmental adaptation [23,24], speciation mechanisms [25], and pathogenic
drug resistance [26].

In this study, we isolated and sequenced four Nesterenkonia strains from different
Tibetan lakes and attempted to draw the genomic profile to extreme niche adaptation using
the comparative genomic method with all readily published and available genomes of
Nesterenkonia species in the public National Center for Biotechnology Information (NCBI)
database. Among the four strains and other strains from the Arctic and Antarctic regions,
we observed some genomic adaptation to cold, nutrient-limited, osmotic, and ultraviolet
conditions, as well as energy metabolism adaptation to polar environments.

2. Materials and Methods
2.1. Sampling, Isolation, and Physiological Measurement

Large-scaled samplings from Tibetan lakes and bacterial isolation were conducted in
August of 2015 and 2016. The samples from freshwater and saline lakes were cultivated
in Luria–Bertani (LB, 4% NaCl) and CM medium (0.5% NaCl) [27], respectively. Water
samples were gradient diluted and plated directly, while the sediment samples were
dissolved in the NaCl solution first. The NaCl concentration of the solution was adjusted
according to the salinity of its source lake. The taxonomy of the selected colony was
confirmed by PCR reaction, which amplified the 16s rRNA with primer pair 27F-1492R. The
obtained sequence was blast searching against the EZBioCloud database to find the closest
related taxa [28]. Finally, four isolates, which have 99.86% identity with Nesterenkonia
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aurantiaca, were selected to perform further analysis. The strain LB17, AY15, YGD6, and
DZ6 are from samples in Lubu Cuo water, Ayong Cuo sediment, Yagedong Cuo water, and
Daze Cuo sediment, respectively. The conductivity, pH, water temperature (Temp), and
dissolved oxygen (DO) concentration measurements were conducted in the field using a
multi-parameter water quality sonde (YSI 6600, Yellow Springs, Greene, OH, USA). Other
environment parameters, including total phosphorus, total nitrogen, ammonium, nitrate,
nitrite, and phosphate, were analyzed using the standard methods [29].

2.2. Whole Genome Sequencing, Assembly, and Reference Genomes Collection

Bacterial genomic DNA was extracted using the SDS method [30]. After evaluating
the DNA quality and quantity using NanoDrop 2000 (Thermo Scientific, Waltham, MA,
USA), the sequencing libraries were generated using the NEBNext® Ultra™ DNA Library
Prep Kit for Illumina (New England Biolabs, MA, USA). Finally, the sequencing process
was conducted using Illumina NovaSeq PE150 at the Beijing Novogene Bioinformatics
Technology Co., Ltd. The adapter sequence of raw reads was detected using BBmap
v37.0 [31] and then removed using Trimmomatic v0.33 [32]. The resulting high-quality
reads were assembled to the scaffolds using SPAdes v3.9 [33]. The genome data obtained in
this study have been deposited at NCBI under the BioProject number PRJNA786453. The
genomes of all Nesterenkonia isolates in the Genbank and Neomicrococcus aestuarii strain B18
were downloaded using the ncbi-genome-download script (https://github.com/kblin/
ncbi-genome-download, accessed on 7 Octobor 2021). In all genomes, only the scaffold
with longer than 1000-bp length was kept for downstream analysis.

2.3. Genome Quality Estimation, Gene Annotation, and Phylogenetic Analysis

The completeness and contamination of each genome were evaluated using CheckM
v1.1.3 [34]. Only the genome with >95% completeness and <5% contamination was selected
for downstream analysis. Other genomic statistic parameters were calculated by seqkit
v0.16.1 [35]. Gene calling for each genome was performed using PROKKA v1.14.5 [36]. The
tRNAscan was used to predict the tRNA [37]. All protein-coding genes were annotated by
searching the KEGG KOfam [38] and COGs (Clusters of Orthologous Groups) databases [39]
using HMMER v3.3.2 [40]. The 16s rRNA sequences of all genomes were exacted and
aligned using mafft v7.474 [41] with the “-auto” command. The maximum likelihood
phylogenomic tree was constructed using IQ-TREE v1.6.12 [42] by default parameters. For
species-tree building, protein-coding genes were first clustered into orthologous groups
(OG) using OrthoFinder v2.2.1 [43]. The sequences in each shared single-copy OG were
aligned and trimmed using mafft v7.474 and trimAl v1.2 [44], respectively. The no-gap
alignments were concatenated and used as the input to construct a maximum likelihood
phylogenomic tree using IQ-TREE v1.6.12.

2.4. Comparative Genomic Analysis

The pairwise average nucleotide identity (ANI) analysis of all genomes was performed
using FastANI [45]. Amino acid identity (AAI) between each proteome pair was estimated
by the online tool AAI-Matrix [46]. The amino acid (AA) composition and average ni-
trogen and carbon content of each proteome were calculated by a homemade script. All
descriptive statistical analysis and difference significance tests were conducted in R (R
Core Team, 2020) [47]. Pan-genome analysis and visualization were conducted on the
anvi’o platform [48]. Briefly, the pangenome of all 34 Nesterenkonia genomes was computed
using ‘anvi-pan-genome’ with default –mcl-inflation 2, which uses the Markov Cluster algo-
rithm [49] to cluster the annotating genes into groups. Pan-genome openness was estimated
using the ‘micropan’ R package [50] with 100 permutations. The map for pan-genome, core,
and accessory gene distribution was performed by the PanGP program with a distance
guide (DG) subsampling algorithm [51]. Combined with the KO and COG annotation,
clade-specific functions were identified by the ‘anvi-compute-functional-enrichment-in-pan’
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command. Only genes with a <0.05 ‘adjusted q-value’, which represents the false-discovery
rate adjusted p-value corrected for multiple testing, were considered.

3. Results and Discussion
3.1. Tibetan Isolates Show High Similarities with Antarctic Isolates

A total of 6041 orthologous groups common to all Nesterenkonia isolates were identified.
Phylogenetic analysis based on 304 single-copy OG showed that the whole genus contains
three major clades, named herein NES-1, NES-2, and NES-3 (Figure 1, Table 1). The four
Tibetan isolates and four Antarctic isolates were found to form a separate subclade (NES-AT)
within the major clade NES-2, which may indicate a close evolutionary relationship among
these isolates. Phylogenetic analysis based on 16S rRNA gene sequences also indicated
the grouping of the eight isolates from the Tibetan and Antarctic regions (Figure S1). The
isolates within NES-AT subclade shared 1923 single-copy OGs, which were extracted to
build the evolutionary tree. According to the tree topology, Tibetan and Antarctic isolates
generate their respective cluster, together with the internal subcluster division, indicating
potential local adaptions. For Tibetan clusters, environmental salinity seems to be more
important than habitat type for microbial divergence. This is because the strains from saline
and freshwater lake samples were clustered separately, whether they were isolated from
water or sediment. For the Antarctic cluster, the sponge-associated strain E16_7 and E16_10
as well as the soil-derived strain AN1 and DSM 2737 formed two subclusters respectively,
which is consistent with the previous results [52]. ANI and AAI analysis also showed
similar results (Figure 2). ANI analysis based on whole-genome comparison showed that
NES-AT clade strains shared 93.5% of their identity between them, and below 80% of their
identity with all Nesterenkonia genomes. These results suggest the evolution of bacteria
affiliated with NES-AT clade towards the polar environment. The annual mean temperature
in the Tibetan Plateau is lower than 10 ◦C because of the high elevation (>4000 m) [53],
while even in the warmest January, the average air temperature in the Antarctic region
was only 2.5 ± 0.49 ◦C [54]. The cold weather and serious UV radiation in both regions
limit the growth of organisms and lead to low productivity [55]. On the other hand, this
high similarity can also provide some supports for the hypothesis about the geological
history of the two regions. More specifically, Tibet originated from the Gondwanaland
plate including India and these eight isolates may come from the common ancestor [56].
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Figure 1. Phylogenetic tree of 34 high-quality Nesterenkonia strains. Colored bars and circles/tringles
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Table 1. Genomes information of the strains within the genus Nesterenkonia.

Strain Name Accession
Number

Scaffold
Number

Geneome
Size (M)

Gene
Number GC% rRNA

Number
tRNA

Number Completeness Contamination

Nesterenkonia sp. AY15 JAJOYV000000000 20 2,801,805 2574 67.24 5 234 99.01 0.46

Nesterenkonia sp. DZ6 JAJOYW000000000 9 2,869,920 2614 67.2 5 360 99.01 0.57

Nesterenkonia sp. F GCA_000220985.2 134 2,809,541 2514 71.49 3 93 98.59 0.52

Nesterenkonia alba
DSM 19423 GCA_000421745.1 36 2,591,866 2384 63.75 6 140 98.38 0

Nesterenkonia
massiliensis NP1 GCA_000455245.1 19 2,672,431 2550 62.16 3 261 97.73 0.46

Nesterenkonia sp. AN1 GCA_000582475.1 42 3,040,130 2932 67.42 3 167 97.15 0.69

Nesterenkonia jeotgali strain
CD08_7 GCA_001483765.1 8 2,925,195 2715 67.63 3 364 98.51 0.98

Nesterenkonia sp. PF2B19 GCA_001758425.2 134 3,696,919 3701 69.49 5 91 96.95 0.07

Nesterenkonia sandarakina
strain CG 35 GCA_003003175.1 56 3,224,976 3001 67.46 9 124 99.39 0.46

Nesterenkonia natronophila
strain M8 GCA_003595215.1 5 2,520,774 2363 61.82 3 402 98.34 0.07

Nesterenkonia muleiensis
strain RB2 GCA_003600155.1 57 3,676,111 3493 63.55 2 95 97.79 0.86

Nesterenkonia salmonea
strain GY074 GCA_005771525.1 110 3,267,177 3175 61.13 3 114 99.16 0.34
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Table 1. Cont.

Strain Name Accession
Number

Scaffold
Number

Geneome
Size (M)

Gene
Number GC% rRNA

Number
tRNA

Number Completeness Contamination

Nesterenkonia sphaerica
strain GY239 GCA_005771565.1 52 2,770,794 2633 64.28 4 143 99.03 1.41

Nesterenkonia sp. NBAIMH1 GCA_007922635.1 1 2,691,978 2605 66.41 6 1128 97.94 0.18

Nesterenkonia populi strain
DSM 27959 GCA_007994735.1 2 2,551,278 2414 66.85 6 1177 98.17 0.88

Nesterenkonia sp. MD2 GCA_008711175.1 41 3,733,063 3593 63.15 5 142 98.41 1.41

Nesterenkonia alkaliphila
strain F10 GCA_009758175.1 103 3,318,774 3105 64.83 2 66 98.85 1.43

Nesterenkonia haasae strain
Hz 6-5 GCA_010119385.1 29 3,422,101 3258 60.8 7 193 99.16 1.21

Nesterenkonia sp. MY13 GCA_012641515.1 41 3,101,056 2965 63.07 3 144 98.8 1.68

Nesterenkonia sandarakina
strain DSM 15664 GCA_013410215.1 2 3,017,448 2780 67.51 6 1128 98.58 1.05

Nesterenkonia xinjiangensis
strain DSM 15475 GCA_013410745.1 1 3,569,370 3182 68.81 6 1225 99.77 0.61

Nesterenkonia jeotgali strain
DSM 19081 GCA_014138825.1 1 3,002,985 2767 67.44 6 1275 98.51 3.28

Nesterenkonia alkaliphila
CGMCC 1 GCA_014639295.1 81 3,386,621 3181 64.79 4 103 98.85 1.43

Nesterenkonia cremea
CGMCC 1 GCA_014642675.1 37 3,082,200 2850 66.86 5 167 99.56 0.88

Nesterenkonia lutea strain
DSM 15666 GCA_014873955.1 2 2,958,123 2702 66.73 6 1128 99.54 0.07

Nesterenkonia halotolerans
strain DSM 15474 GCA_014874065.1 3 2,966,101 2742 66.24 6 648 99.16 1.28

Nesterenkonia sp. E16_7 GCA_017347075.1 82 3,294,162 3074 67.28 3 111 98.88 1.44

Nesterenkonia sp. E16_10 GCA_017347085.1 49 3,295,232 3071 67.28 3 122 98.42 1.44

Nesterenkonia
lacusekhoensis strain

DSM 12544
GCA_017876395.1 2 2,742,649 2662 66.68 6 1486 100 0.99

Nesterenkonia sp. Act20 GCA_019173455.1 2 2,930,097 2732 65.93 7 697 99.58 0.75

Nesterenkonia massiliensis
MGYG-HGUT-01450 GCA_902375145.1 19 2,672,431 2550 62.16 3 261 97.73 0.46

Nesterenkonia sp. LB17 JAJOYX000000000 10 2,819,602 2569 67.19 4 297 99.01 0

Nesterenkonia aurantiaca
strain DSM 27373 GCA_004364585.1 25 2,948,026 2704 67.58 4 186 99.11 0

Nesterenkonia sp. YGD6 JAJOYY000000000 11 2,853,887 2592 67.12 3 250 99.01 0
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3.2. Comparative Genomic Analysis

The pan-genome analysis found a total of 15,024 gene clusters across the 34 high-
quality Nesterenkonia genomes (Figure 3), which include 30 reference genomes from NCBI
and also the strains that we isolated. Gene clusters were defined as core (present in each
genome) and accessory (non-core genes) types. The latter was then classified into “shell”
(present in 99%-15% genomes), “cloud” (found in less than 15% single genome), and
“singleton” (found in only one genome). The number of core, shell, cloud and singleton
genes were 993 (6.61%), 2782 (18.52%), 4117 (27.40%), and 7132 (47.47%), respectively. Heaps
law model parameter α estimation was equal to 0.3976, less than the threshold of 1.00 [57].
In addition, the gene accumulation curves of the pan-genome show that the power trend
line has not arrived at the platform stage (Figure 4). Both results suggest that this genus
has an open pan-genome and the sequenced genomes cannot contain the complete gene
repertoire. As more Nesterenkonia strains are sequenced, more novel genes will be found,
leading to a larger pan-genome. This openness indicates that isolates within this genus
have great potential to integrate exogenous genetic material and broaden genetic diversity
by other evolutionary mechanisms, like recombination and mutation. Nesterenkonia strains
can thus adapt to diverse habitats by accessory genes acquisition and loss and have a very
large and flexible gene pool [58].
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We then compared the COG functional categories distribution between the core and
accessory genes (Figure 5). As expected, the COG functional categories of some highly con-
served and low evolution rate biological processes, such as COG-J (translation, ribosomal
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structure, and biogenesis), COG-L (replication, recombination, and repair), COG-O (post-
translational modification, protein turnover, chaperones), COG-U (intracellular trafficking,
secretion, and vesicular transport), and COG-F (nucleotide transport and metabolism)
concentrated more in the core genome but were low in the accessory genes. Instead, COG-V
(defense mechanisms), COG-X (mobilome: prophages, transposons), and COG-K (transcrip-
tion) enrich more in accessory genes, indicating that strains from different sources possess
the distinct capacity of genetic material processing [59] and diverse transcription mecha-
nisms to deal with the changing ecological conditions. COG categories corresponding to
amino acid (COG-E) and coenzyme (COG-H) transport and metabolism are dominant in
the entire genomes but overrepresented in core genes, while the secondary (COG-Q) and
carbohydrate metabolism (COG-G) functions have the opposite distribution. This finding
is in line with the high secondary metabolites biosynthetic diversity and polysaccharide
degradation ability in the Actinobacteria phylum, which are often present in the flexible
genome and are varied below the genus level. Finally, genes within COG-S (unknown
function), COG-R (general function prediction only) categories, as well as genes without
any COG annotation (NO-HIT), were abundant across the pan-genome and had higher
proportions in accessory genes.
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3.3. Genomic Feature Comparison between NES-AT Isolates and Other Nesterenkonia Isolates

Since the bacteria that lived in similar niches shared more genomic features, we
calculated some genome characteristic parameters and compared them between NES-AT
clade and other isolates (Figure 6).

Genome size (Figure 6a) and GC content (Figure 6b): GC (guanine + cytosine) content,
as an important indicator of microbial evolution, is often thought to be positive relative
to the genome size [60]. Although the difference in genome size is not significant, the
GC content in the NES-AT clade is higher than that in other Nesterenkonia strains (t-test,
p < 0.01). Previous studies found that increased GC content often accompanies high rates
of genetic damage in the manner of a double-strand break [61], which is often caused by
severe ultraviolet radiation [62]. This base composition tendency probably implies the
adaptation to serious UV exposure, due to the ozone depletion in the Antarctic and high
elevation in Tibetan areas [63,64].



Microorganisms 2022, 10, 233 10 of 19
Microorganisms 2022, 10, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 6. Genomic feature comparisons between NES-AT clades and other references Nesterenkonia, 
marked as NES-AT and other, respectively. (a) genome size (Mb), (b) GC content (%), (c) tRNA 
number, (d) tRNA GC content (%), (e) C-ARSC and (f) N-ARSC C-ARSC and N-ARSC represent the 
number of carbon and nitrogen atoms per residue side chain, respectively. (NS: not significant; **: p 
< 0.01; ***: p < 0.001). The dot represents the outliers. 

Genome size (Figure 6a) and GC content (Figure 6b): GC (guanine + cytosine) content, 
as an important indicator of microbial evolution, is often thought to be positive relative to 
the genome size [60]. Although the difference in genome size is not significant, the GC 
content in the NES-AT clade is higher than that in other Nesterenkonia strains (t-test, p < 
0.01). Previous studies found that increased GC content often accompanies high rates of 
genetic damage in the manner of a double-strand break [61], which is often caused by 
severe ultraviolet radiation [62]. This base composition tendency probably implies the ad-
aptation to serious UV exposure, due to the ozone depletion in the Antarctic and high 
elevation in Tibetan areas [63,64]. 

tRNA: Transfer RNAs (tRNA), as an adaptor molecule that participates in the peptide 
chain synthesis [65], also have an important role in gene expression regulation and cell 
membrane modification [66]. In addition, yeast can change the tRNA gene abundance 
(Figure 6c) during stressful conditions, which also reflects its essential function in survival 
[67]. In Nesterenkonia genomes, a higher number of tRNA genes was found in the NES-AT 

Figure 6. Genomic feature comparisons between NES-AT clades and other references Nesterenkonia,
marked as NES-AT and other, respectively. (a) genome size (Mb), (b) GC content (%), (c) tRNA
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the number of carbon and nitrogen atoms per residue side chain, respectively. (NS: not significant;
**: p < 0.01; ***: p < 0.001). The dot represents the outliers.

tRNA: Transfer RNAs (tRNA), as an adaptor molecule that participates in the pep-
tide chain synthesis [65], also have an important role in gene expression regulation and
cell membrane modification [66]. In addition, yeast can change the tRNA gene abun-
dance (Figure 6c) during stressful conditions, which also reflects its essential function in
survival [67]. In Nesterenkonia genomes, a higher number of tRNA genes was found in
the NES-AT clade (t-test, p < 0.01, p = 0.0067), which showed an opposite tendency in
thermophiles [68]. Due to the positive relations between tRNA genes and their relative con-
centration [69], more tRNA genes may increase the tRNA amount. Higher tRNA numbers
can accelerate the transcription/translation speed and make up for the low diffusion rate
and metabolic activity in polar environments [70]. Since significant correlations between
tRNA abundance and growth rate/optimal growth temperature have been reported in
other prokaryotes [68], more tRNA allows organisms to grow fast in the cold. Similar results
were also found in other psychrophilic isolates [71]. Mean GC contents of tRNA genes
(Figure 6d) for all Nesterenkonia genomes were calculated and NES-AT isolates showed
significantly higher (t-test, p < 0.001, p = 0.00043) values than others. Similar high tRNA
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GC% has only been found in hyperthermophiles, the RNA stability of which is needed in
high temperatures [72].

C-ARSC (Figure 6e) and N-ARSC (Figure 6f): We also calculated the nitrogen content
of protein-coding sequences (N-ARSC) and the numbers of carbon atoms per residue side
chain (C-ARSC) in all genomes. These indexes can reflect the nutrient availabilities in the
environment, as the comparison studies between epipelagic and mesopelagic Marinimicro-
bia genomic modalities [73]. Only a reduced use of carbon in the AA sequences was found
in the NES-AT clade genomes, indicating that carbon-limited conditions in polar regions
are likely an important factor influencing the evolution of Nesterenkonia [74]. Harsh condi-
tions often limit plant growth, which provides a primary source of organic carbon. Thus,
microbes in the polar region usually face the challenge of carbon-poor adaptation [75–77].

AA composition: Due to the prevalence of amino acid (AA) preference in microbial
cold adaption, AA usage of each proteome was calculated. Since charged polar AA will
lead to a stable protein structure by formatting the salt bridge on the protein surface [78],
psychrophilic organisms often adjust the AA composition for cold adaption. In NES-AT
clade, isolates tend to harbor more nonpolar AA and less polar AA, which includes pos-
itively charged histidine, negatively charged aspartate, and glutamine, and uncharged
tyrosine and glutamine. The different AA preferences in NES-AT isolates may contribute
to the protein flexibility improvement at low temperatures [79]. In addition, the substitu-
tion of alanine to glutamine was also found in a psychroactive Antarctic salt-lake archaea
Halorubrum lacusprofundi [80], which could explain the higher alanine and lower glutamine
proportion in NES-AT isolates. Researches about cold-adapted bacterial lipase and cell
surface proteins showed remarkably lower aromatic residues [81,82], which is consistent
with less tyrosine and tryptophan in the NES-AT clade. Similar results were also found
in other prokaryotes groups, like marine Shewanella spp. [83] and subzero-growing Arc-
tic permafrost bacteria [84]. A striking feature is a significant leucine preference in the
NES-AT clade, which is unfavorable for helical structure flexibility. Leucine, one of the
widely used nutrient sources [85], its accumulation might enhance survival in oligotrophic
conditions. After all, genome AA composition can also be impacted by environmental
concentration [86]. Cystine, another preferred AA that is common to many psychrophiles,
is shown in low abundance in NES-AT isolates. Cysteine can form disulfide bonds to
assist the cell envelope proteins folding and stability [87]. Reduced content is possibly
beneficial to loose protein structure. The third contrary result is shown on phenylalanine,
which is nonpolar but capable of cation-π interactions formation [88], whose enrichment
is likely to relate with other stress, such as UV defense. This is because phenylalanine is
the precursor of mycosporines and mycosporines-like amino acids, which can be used
as sunscreen compounds to protect against severe UV damage [89]. Some disagreements
with previous studies [90] may arise from species specificity, as there is huge divergence
between proteobacteria and actinobacteria phylum.

3.4. Functional Genes Related to the “Polar” Environmental Adaption

We first classified all 34 isolates into the “NES-AT” and “Other” clades and compared
the COG category difference between them using a student’s t-test. We found that the
NES-AT clade has significantly more genes in COG-I (lipid transport and metabolism,
p < 0.001), COG-C (energy production and conversion, p < 0.001), COG-B (chromatin
structure and dynamics, p < 0.001), COG-T (signal transduction mechanisms, p < 0.001)
and COG-D (cell cycle control, cell division, chromosome partitioning, p < 0.01). Lipid
is the main component of the cellular membrane and its content and composition can
influence membrane fluidity. Bacteria often change the lipid composition of cell walls and
membranes for adaptation to cold and oligotrophic conditions. For example, Antarctic
Pseudoalteromonas isolates PhTAC125 showed better performance in cold adaptation than
the closely related strain PspTB41, which contains fewer COG-I genes [91]. COG-C and
COG-T classes have been proved to harbor a high number of cold-adapted proteins, which
can be helpful for energy acquisition and maintenance under low-temperature stress [92].
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Previous transcriptomic analysis of Nesterenkonia sp. AN1 in cold response showed that
COG-B and COG-D genes were significantly upregulated [20]. This might be consistent
with the change of growth cycle and speed when the isolates survive in cold conditions [93].
The same trend is also present in the COG-S category (p < 0.01), reflecting the genes with
unique and unexplored functions in complex and extreme niches. In contrast, COG-N (Cell
motility), COG-p (Inorganic ion transport and metabolism, p < 0.05), COG-E (p < 0.01), and
COG-F (p < 0.05) related genes have significantly decreased proportions among the NES-AT
clade isolates. Oligotrophic bacteria contained fewer genes involved in COG-N because of
their lower demand for the transient microscale nutrient sources in the environment [94].
The decreased gene amount of other nutrients (amino acid, nucleotide, and inorganic
ion) transporter and metabolism can also be an indication of the adaptive evolution to
nutrient-limiting habitats.

Following this, the more specific function enrichment analysis was performed using
KOfam and COG annotation results. Some KOfam and COG functions are found to be
overrepresented and only the items with an adjusted q value < 0.01 were shown (Table 2).
Bacteriorhodopsin (COG5524), also called the actinorhodopsin in previous researches, was
a putative light-activated proton pump [95]. Its appearance provides NES-AT isolates
the potential for the phototrophy lifestyle and improves survival during the nutrient star-
vation situation, which is similar to the rhodopsin in Pelagibacter [96]. Both COG3049
(penicillin V acylase or related amidase from Ntn superfamily) and COG4978 (GyrI-like
small molecule binding domain) can act as the transcriptional regulators that control the
biofilm formation [97,98], which is a widespread mechanism for bacterial survival under
adverse environments. Cellulase/cellobiase (COG5297), most likely the endoglucanase,
can give NES-AT isolates the capacity of plant cell wall degradation. Increasing the car-
bohydrate metabolism diversity can be helpful to energy starvation [99,100]. The glucose
they produced can further become the nucleotide sugar precursors (UDP-glucose) and
participate in the synthesis of cell surface polysaccharides with the help of O-antigen ligase
(COG3307, K16567) [101], which was only enriched in NES-AT isolates. These structures
can contribute to diverse biological functions, like nutrient gathering, cold defense, and
motility, which protect cells against abiotic and biotic stress [102,103].

Table 2. KOfam and COG functions enrichment summary.

Function Class COG Function Enrichment
Score

Adjusted q
Value

Enriched
Groups Accession

Energy production Bacteriorhodopsin 37 0 AT COG5524

Transcriptional
regulators

Penicillin V acylase or related amidase,
Ntn superfamily (YxeI) 37 0 AT COG3049

GyrI-like small molecule binding domain
(BltR2) 31.7525 0 AT COG4978

HD superfamily phosphodieaserase,
includes HD domain of RNase Y (RnaY) 16.3079 0.0061 AT COG1418

Polysaccharides
metabolism

Cellulase/cellobiase CelA1 (CelA1) 27.5549 0.0001 AT COG5297

O-antigen ligase (RfaL) 24.1298 0.0004 AT COG3307

Phosphoglycerol transferase
MdoB/OpgB, AlkP superfamily (MdoB) 14.9693 0.0089 AT COG1368

Glycolysis
Phosphoenolpyruvate

synthase/pyruvate phosphate dikinase
(PpsA)

18.8444 0.0024 AT COG0574

Lysine metabolism Saccharopine dehydrogenase,
NADP-dependent (Lys9) 18.8444 0.0024 AT COG1748
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Table 2. Cont.

Function Class COG Function Enrichment
Score

Adjusted q
Value

Enriched
Groups Accession

Ion transporters
H+/Cl− antiporter ClcA (ClcA) 18.8444 0.0024 AT COG0038

Mg2+ and Co2+ transporter CorA (CorA) 14.9693 0.0089 AT COG0598

Electron transfer chain

Flavodoxin (FldA) 18.8444 0.0024 AT COG0716

Flavodoxin/ferredoxin-NADP
reductase (Fpr) 18.8444 0.0024 AT COG1018

Fe-S cluster carrier ATPase,
Mrp/ApbC/NBP35 family (Mrp) 14.9693 0.0089 AT COG0489

Cell motility Flagellar motor protein MotB (MotB) 18.8444 0.0024 other COG1360

Cell surface structure

Sialic acid synthase SpsE, contains
C-terminal SAF domain (SpsE) 14.9693 0.0089 other COG2089

CDP-glycerol glycerophosphotransferase,
TagB/SpsB family 14.9693 0.0089 other COG1887

Murein tripeptide amidase
MpaA (MpaA) 17.1582 0.0054 AT COG2866

Thiol:disulfide interchange protein
DsbD (DsbD) 16.7683 0.0058 AT COG4232

Unknown

Uncharacterized conserved protein YchJ,
contains N- and C-terminal SEC-C

domains (YchJ)
14.9693 0.0089 AT COG3012

Uncharacterized membrane protein YccF,
DUF307 family (YccF) 14.9693 0.0089 AT COG3304

Predicted peptidase 16.7683 0.0058 AT COG4099

Function Class KOfam Enrichment
Score

Adjusted q
Value

Enriched
Groups Accession

Polysaccharides
metabolism

exopolysaccharide production
protein ExoQ 31.7525 0 AT K16567

Lysine metabolism saccharopine dehydrogenase (NAD+,
L-lysine forming) 31.7525 0 AT K00290

Glycolysis pyruvate, water dikinase 21.2667 0.0012 AT K01007

Solute transporter

solute: Na+ symporter, SSS family 24.1298 0.0006 other K03307

ethanolamine permease 14.9693 0.0095 AT K16238

putative amide transporter protein 18.8444 0.0029 AT K22112

Dimethylamine
oxidation

dimethylamine monooxygenase
subunit B 21.2667 0.0012 AT K22343

dimethylamine monooxygenase
subunit C 21.2667 0.0012 AT K22344

dimethylamine monooxygenase
subunit A 21.2667 0.0012 AT K22342

Cell surface structure

prokaryotic ubiquitin-like protein Pup 20.925 0.0012 other K13570

3-deoxy-manno-octulosonate
cytidylyltransferase (CMP-KDO

synthetase)
14.9693 0.0095 other K00979

N5-(carboxyethyl)ornithine synthase 14.9693 0.0095 AT K00298

phosphoglycerol transferase 14.9693 0.0095 AT K01002
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Table 2. Cont.

Function Class KOfam Enrichment
Score

Adjusted q
Value

Enriched
Groups Accession

Stress defense glyoxylase I family protein 18.8444 0.0029 AT K08234

Rhamnose metabolism rhamnulokinase 16.7683 0.0073 other K00848

Methionine
biosynthesis

5-methyltetrahydropteroyltriglutamate-
homocysteinmethyltransferase 16.7683 0.0073 other K00549

Methanogenesis formylmethanofuran dehydrogenase
subunit E 16.2576 0.0088 AT K11261

Antibiotic resistance fluoroquinolone resistance protein 14.9693 0.0095 AT K18555

Transcriptional
regulators

MarR family transcriptional regulator,
lower aerobic nicotinate degradation

pathway regulator
14.9693 0.0095 AT K22296

Lipid metabolism

mitochondrial enoyl-[acyl-carrier
protein] reductase/trans-2-enoyl-CoA

reductase
14.9693 0.0095 AT K07512

4′-phosphopantetheinyl transferase 14.9693 0.0095 AT K06133

sterol 3beta-glucosyltransferase 14.9693 0.0095 AT K05841

Unknown SEC-C motif domain protein 14.9693 0.0095 AT K09858

NES-AT isolates additionally contain the genes that encoded the NADP-dependent
saccharopine dehydrogenase (COG1748, K00290). It can mediate the biosynthesis alpha-
aminoadipate pathway of lysine, whose accumulation is a common strategy to block the
negative effects of many stress conditions like high salinity [104]. Members of the NES-AT
clade also harbor the phosphoenolpyruvate (PEP) synthase (COG0574, K01007) that is
capable of catalyzing the PEP to pyruvate with the dependence of AMP and phosphate.
As the essential enzyme in glycolysis of the modified Embden-Meyerhof pathway, its
appearance would be helpful for energy flux stabilization in energy and ADP-limited
environments [105]. More abundant carbon metabolism capacity in the NES-AT clade also
reflected on the enrichment of the dimethylamine (DMA) monooxygenase gene cluster
(dmmABC, K22342-K22344). This enzyme is required for bacterial growth using DMA,
the oxidation product of trimethylamine oxide [106]. On the contrary, the abundance of
the gene that encoded the SSS family solute: Na+ symporter (K03307) in other strains is
significantly higher than in the NES-AT clade. The solutes carried include many nutrients,
like carbohydrates, osmolytes, and cofactors [106]. The above results suggested that in the
way of nutrient acquirement, non-polar isolates prefer to absorb from the environments,
whereas NES-AT strains tend to broaden the metabolic capacity of alternative carbon
substances.

4. Conclusions

In this study, four Nesterenkonia strains from the lakes on Tibetan Plateau were
isolated and sequenced to identify their stress resistance mechanisms in comparison with
all other 30 high-quality Nesterenkonia genomes deposited in the NCBI. The results showed
that Tibetan isolates have a close evolutionary relationship with four Antarctic strains and
form a subclade NES-AT. Genomes within this clade showed similar genomic properties
with other psychrophilic bacteria, such as higher GC content and increased number of tRNA.
The reduced use of carbon in the amino acid sequence of NES-AT members is consistent
with the nutrient-limited conditions in polar regions. Similar patterns are also present in
the results of functional genes enrichment. That is, Tibetan and Antarctic genomes contain
more genes that are involved in diverse carbohydrate metabolism and biofilm formation,
which can be helpful to stress defense. This study improved our knowledge about how
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Nesterenkonia strains from Tibetan and Antarctic regions changed their genomic properties
and gene content towards adaptation of polar extreme conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10020233/s1, Figure S1: Phylogenetic tree based
on 16S rRNA gene sequences of genus Nesterenkonia.
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