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BACKGROUND The diagnosis of heart failure with preserved ejection fraction (HFpEF) in the clinical setting remains

challenging, especially in patients with obesity.

OBJECTIVES This study aimed to identify novel predictors of HFpEF well suited for patients with obesity.

METHODS We performed a retrospective analysis of a well-characterized cohort of patients with obesity with HFpEF

(n ¼ 404; mean body mass index [BMI] 36.6 kg/m2) and controls (n ¼ 67). We used the machine learning algorithm

Gradient Boosting Machine to analyze the association of various parameters with the diagnosis of HFpEF and subse-

quently created a multivariate logistic model for the diagnosis.

RESULTS Gradient Boosting Machine identified BMI, estimated glomerular filtration rate, left ventricular mass index,

and left atrial to left ventricular volume ratio as the strongest predictors of HFpEF. These variables were used to build a

model that identified HFpEF with a sensitivity of 0.83, a specificity of 0.82, and an area under the curve (AUC) of 0.88.

Internal validation of the model with optimism-adjusted AUC showed an AUC of 0.87. Within the studied cohort, the

novel score outperformed the H2FPEF score (AUC: 0.88 vs 0.74; P < 0.001).

CONCLUSIONS In a HFpEF cohort with obesity, BMI, estimated glomerular filtration rate, left ventricular mass index, and

left atrial to left ventricular volume ratio most correlated with the identification of HFpEF, and a score based on these

variables (HFpEF-JH score) outperformed the currently usedH2PEF score. Further validation of this novel score is warranted,

as it may facilitate improved diagnostic accuracy of HFpEF, particularly in patients with obesity. (JACC Adv 2024;3:101040)

© 2024 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
H eart failure with preserved ejection fraction
(HFpEF) is a clinical syndrome character-
ized by signs and symptoms of heart failure
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ABBR EV I A T I ON S

AND ACRONYMS

AUC = area under the curve

BMI = body mass index

E/e’ = early mitral inflow

velocity-mitral annulus velocity

ratio

eGFR = estimated glomerular

filtration rate

GBM = Gradient Boosting

Machine

HFpEF = heart failure with

preserved ejection fraction

JH = Johns Hopkins

LA = left atrial

LA/LVr = left atrial to left

volumes ratio

LV = left ventricle

LVEF = left ventricular ejection

fraction

LVMi = left ventricular mass

index

ROC = receiver operating

characteristic
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especially in the significant proportion of
HFpEF patients who are obese.3

Scoring algorithms have been developed
to help rule in or out the diagnosis of HFpEF
in the clinical setting.2 These include the
H2FPEF and the HFA-PEFF scores. The
H2FPEF score utilizes clinical and echocar-
diographic variables,4 while the HFA-PEFF
score utilizes biomarkers and echocardio-
graphic parameters.5-7 Both scores have good
specificity but limited sensitivity, as many
patients fall in the intermediate scoring
range.2 Further diagnostic testing (eg, dia-
stolic stress testing with exercise echocardi-
ography or invasive exercise hemodynamic
testing) is recommended for patients with
scores within the intermediate range. These
specialized forms of testing are not
widely available, leaving a potentially large
proportion of HFpEF undiagnosed or
misdiagnosed.2

Given the limitations of these scoring
systems, we applied machine learning tech-
niques to analyze a contemporary, well-
characterized cohort of obese patients with HFpEF,
and controls, with the ultimate goal of identifying
novel predictors of HFpEF well suited for obese
patients.

METHODS

PATIENT SELECTION. We performed a retrospective
analysis of previously characterized patients with
HFpEF, merging 2 cohorts of HFpEF patients with
elevated body mass index (BMI).8,9 The first cohort
was created by gathering data at Northwestern Uni-
versity and Johns Hopkins University HFpEF Clinic
between 2016 and 2019 as part of a prospective
American Heart Association-funded study. This
cohort was composed of 113 HFpEF and 44 control
patients. The second cohort included 363 patients
retrospectively enrolled in the Johns Hopkins Hospi-
tal HFpEF registry between 2014 and 2022, and 28
controls (together referred to as the JHU cohort). Both
cohorts have been previously published.8,9 In both
cohorts, the diagnosis of HFpEF was based on the
Framingham criteria for heart failure10 and at least
2 of the following: 1) structural heart disease as evi-
denced by left ventricular (LV) hypertrophy or left
atrial enlargement; 2) N terminal pro-brain natriuretic
peptide $100 pg/mL; or 3) elevated pulmonary
capillary wedge pressure on hemodynamic
assessment ($15 mm Hg at rest or $25 mm Hg with
exercise). Exclusion criteria included history of any
prior echocardiogram with LVEF <40%, infiltrative or
restrictive cardiomyopathy, hypertrophic cardiomy-
opathy, active myocarditis, constrictive pericarditis,
congenital heart disease, isolated pulmonary
arterial HTN, clinically significant valvular regurgita-
tion or stenosis, systolic blood pressure <100 mm Hg,
current use of intravenous inotropic medication or
need for mechanical circulatory support, and current
pregnancy or breastfeeding. The control group for
both cohorts consisted of carefully screened patients
who did not present with any symptoms of heart
failure or cardiovascular disease and who had no
detectable abnormalities on echocardiography that
would suggest underlying cardiac pathology, such as
valvular disease, hypertrophic cardiomyopathy, or
other structural abnormalities.

PATIENT DATA. Clinical variables were gathered in
the context of dedicated study protocols. The echo-
cardiographic assessment was performed in accor-
dance with the American Society of Echocardiography
guidelines.11 For the purpose of this study, the bio-
logical sex of participants was ascertained by self-
report, with individuals indicating their sex as
either male or female based on their biolog-
ical attributes.

STATISTICAL ANALYSIS. Clinical characteristics
were compared between HFpEF and control groups
using a t-test and chi-square, as appropriate. As an
initial evaluation, we ran Gradient Boosting Machine
(GBM) algorithm12 to explore the variables that were
most associated with a diagnosis of HFpEF. GBM is a
machine learning algorithm that iteratively in-
vestigates the association between variables of in-
terest and produces a ranking of their association.12

Variables with more than 50% missing values were
excluded from the GBM analysis (Supplemental
Table 1). We analyzed associations of HFpEF diag-
nosis with the following clinical variables, echocar-
diography parameters, and laboratory values: age,
sex, ethnicity, race, number of antihypertensive
medications, history of myocardial infarction, atrial
fibrillation, diabetes, BMI, LVEF, interventricular
septum diastolic thickness, LV mass index (LVMi),
left atrial to LV volume ratio (LA/LVr), LV volume,
estimated glomerular filtration rate (eGFR) measured
by the Chronic Kidney Disease Epidemiology Collab-
oration creatinine equation, presence of concomitant
conditions such as hypertension, diabetes, and
hyperlipidemia. The initial GBM analysis was
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generated with 1,000 trees, an interaction depth of 3,
a shrinkage rate of 0.01, and 5-fold cross-validation.
Data preprocessing involved standardization of
continuous variables (centering and scaling) and
imputation of missing values using k-nearest neigh-
bors, with k ¼ 2.

The variables with the highest relative contribu-
tion to the HFpEF phenotype as assessed by GBM
were used to build a multivariate logistic regression
model. Before proceeding, a correlation matrix was
made to assess if the variables meet the criteria for a
multivariate logistic regression model, the correlation
was calculated using Pearson’s correlation. In addi-
tion, to minimize the overfitting, patients with
missing values in such variables in the original data
were excluded.

Using the predictors from the logistic model, an
empirical receiver operating characteristic (ROC)
curve was generated, and the maximum Youden in-
dex was calculated based on the true positive rate and
the false positive rate across various cutoff values. In
addition, optimism-adjusted area under the curve
(AUC) was calculated with 1,000 bootstraps resam-
ples13 to validate the findings. Finally, a comparison
of the performance of the score developed and the
H2FPEF score was made with a DeLong test. Data
analysis was completed with R (version 4.1.1), and the
ROC curves were generated using the ROCit and
pROC. The overall structure of our study is summa-
rized in Figure 1.

Finally, to gain further insight into the clinical
value of the tool generated, we sought to compare
the performance of the new score to the performance
of an established HFpEF clinical score. The H2FPEF
score was recently shown to outperform another
established score (HFA-PEFF) in terms of diagnostic
ability,4,7 and therefore, we selected it as our
benchmark. This comparison utilized the DeLong
test, applied to the entire cohort as well as specific
subsets of obese (BMI >30 kg/m2) and nonobese
(BMI <30 kg/m2) patients.

The study complies with the Declaration of Hel-
sinki. The study was approved by the Johns Hopkins
Medicine and Northwestern Institutional Review
Boards.

RESULTS

CLINICAL CHARACTERISTICS OF THE STUDY SAMPLE.

The demographics of the patients from our study
cohort are reported in Table 1. Overall, HFpEF pa-
tients and controls had similar characteristics in
terms of age and sex. The median age in the HFpEF
cohort was 66.6 years and the median age in the
controls was 62.8 years (P ¼ 0.29). Sixty-five percent
of HFpEF patients and 48% of controls were female
(P ¼ 0.11). As compared to controls, individuals with
HFpEF had a higher prevalence of hypertension (94%
vs 58%; P < 0.01), atrial fibrillation (31% vs 14%;
P ¼ 0.01), and diabetes (49% vs 17%; P < 0.01), as well
as higher BMI (mean 36.6 vs 26.9 kg/m2; P < 0.01) and
higher body surface area (mean 2.1 vs 1.9 m2;
P < 0.01). On echocardiography, HFpEF patients had
increased interventricular septum (mean 1.2 vs
1.08 cm; P < 0.01), higher LA/LVr (mean 0.72 vs 0.61;
P < 0.01), and higher LA volume (mean 61.5 vs 55 ml;
P < 0.01). Additionally, compared to control patients,
HFpEF patients had worse renal function (higher
creatinine: mean 1.2 vs 0.9 mg/dL; P ¼ 0.02; lower
eGFR: mean 56 vs 75 mL/min/1.73 m2;
P < 0.01) Table 1.

DERIVATION OF A NOVEL CLINICAL PREDICTION

TOOL TO PREDICT HFpEF BASED ON BMI, GFR, LVMi,

AND LA/LVr. GBM analysis highlighted BMI, eGFR,
LVMi, and LA/LVr as the top variables predictive of
HFpEF. The relative contribution of these variables
was 22.96% for BMI, 17.05% for LVMi, 16.03% for
eGFR, and 15.16% for LA/LVr (Figure 2, Table 2). Based
on these results, we built a multivariable logistic
regression model to quantify the relationship be-
tween these variables and HFpEF. Patients with
missing values in these 4 variables were excluded
leaving a cohort of 359 patients (Figure 1, Table 3).
BMI showed the strongest association with HFpEF
(P ¼ 9.26E-09; z-value 5.74), followed by eGFR
(P ¼ 6.49E-06; z-value ¼ �4.5), LVMi (P ¼ 2.61E-05;
z-value ¼ �4.2), and LA/LVr (P ¼ 0.002;
z-value ¼ 3.09), Table 4 shows the correlation matrix
of these 4 variables. We used the regression model to
define a clinical prediction rule (ie score) to predict
the presence of HFpEF based on the values of these 4
variables. The formula for this novel score, named
HFpEF-JH score, is reported in Figure 3A.

The ROC curve showed an AUC of 0.88 (Figure 3B).
The optimal cutoff for the model was determined as
the maximum value of the empirical true positive
rate-false positive rate for each fitted value as the
cutoff. The optimal value was found to be 0.83. Using
this cutoff, we calculated the sensitivity and speci-
ficity of the model for the diagnosis of HFpEF as 0.83
and 0.82, respectively (Figure 3B). The calculated
optimism-adjusted AUC with 1,000 resamples was
0.87 (Figure 3C). A sensitivity analysis in the subset of
patients with elevated pulmonary capillary wedge
pressure ($15 resting and $25 with physical activity)
also showed a sensitivity of 0.83 which suggests that
the score had the same performance in patients in



FIGURE 1 Consort Diagram for the Identification of Novel Clinical Predictors of HFpEF in Obese Patients and Definition of Novel Clinical

Prediction Rule to Detect HFpEF

Two different cohorts of HFpEF patients were merged into a single study cohort. Since the JH HFpEF cohort does not include controls, this

cohort was integrated with data from 28 control patients gathered at johns hopkins hospital. Potential predictors of HFpEF were then

explored using gradient boosting machine (GBM). Next, the variables identified with GBM were used to generate a logistic regression model to

detect HFpEF. To reduce bias, before this step patients missing values in key variables previously associated with HFpEF were removed,

leaving a cohort of 359 patients for analysis via multiparametric regression. The performance of this model was validated internally by

optimism-adjusted AUC, and finally, the performance of the new score was compared with that of the H2FPEF Score. AUC ¼ area under the

curve; HFpEF ¼ heart failure with preserved ejection fraction.
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TABLE 1 Clinical and Demographic Characteristics of Patients in the Study Cohort

Control
(n ¼ 67)

HFpEF
(n ¼ 404) P Value

Demographics

Age, y 62.82 (56.83-71.71) 66.60 (57.98-73.00) 0.147a

Female (%) 32 (48) 261 (65) 0.012b

Ethnicity (%)

Non-Hispanic/Latino 62 (94) 398 (99) 0.03b

Race (%)

Asian 6 (10) 4 (<1)

Black or African American 18 (29) 103 (50)

White 38 (60) 187 (47)

Other 6 (10) 4 (<1) <0.001b

Body composition

Height, m 1.70 (1.58-1.78) 1.65 (1.58-1.73) 0.152c

Weight, kg 78.70 (63.28-94.40) 102.6 (84.18-121.65) <0.001c

BMI, kg/m2 26.99 (23.65-31.72) 36.6 (29.8-44.1) <0.001a

BSA, m2 1.89 (1.69-2.10) 2.14 (1.93-2.33) <0.001c

Comorbidities (%)

Hypertension 38 (58) 377 (94) <0.001b

Hyperlipidemia 29 (44) 238 (59) 0.03b

History of MI 10 (15) 28 (7) 0.045b

Atrial fibrillation 9 (14) 123 (31) 0.006b

Diabetes 11 (17) 198 (49) <0.001b

Number of HTN meds (%)

0-1 52 (78) 195 (48)

2-3 14 (21) 206 (51)

>4 1 (1) 3 (1) <0.001b

Echocardiography

LV ejection fraction, % 62.29 (57.38-65.72) 65 (60-70) <0.001c

LVEDD, cm 4.43 (4-4.86) 4.56 (4.15-5) 0.114c

IVS, diastolic thickness, cm 1.08 (0.96-1.2) 1.2 (1-1.4) 0.002a

LVPW, diastolic thickness, cm 0.97 (0.9-1.08) 1.09 (0.93-1.21) <0.001a

LVM, g 186.5 (150.63-310) 190.38 (150.13-231.43) 0.32c

LVMi, g/m2 99.9 (76.33-152.75) 88.5 (71.3-109.3) 0.306a

E/A 1 (0.8-1.29) 1 (0.77-1.4) <0.001a

E/e’ 10.37 (7.12-12.98) 13.17 (9.7-17.03) 0.720a

LA/LVr 0.61 (0.5-0.73) 0.72 (0.54-0.95) 0.002a

LA volume, ml 55 (44-67.75) 61.5 (47-77.88) 0.002c

LV volume, ml 91 (74-107.75) 82 (67-102) 0.371c

Laboratory studies

BUN, mg/dL 17 (13-22.5) 23 (16-31) <0.001a

Creatinine, mg/dL 0.9 (0.72-1.1) 1.2 (0.97-1.62) <0.001a

eGFR, mL/min/1.73 m2 75 (61-93) 56 (39-71) <0.001c

Troponin I, ng/mL 0.01 (0-0.06) 0 (0-0.04) 0.012a

Ferritin, ng/mL 173.15 (56.15-554.75) 94 (49.5-203) 0.053a

TIBC, mg/dL 240 (195.25-317.25) 318.5 (279-366.5) 0.005c

Hemoglobin, g/dL 12.1 (9.25-13.8) 12.3 (11-13.3) 0.306a

Scores

H2FPEF score 2 (1-4) 4 (3-5) <0.001c

HFpEF-JH score 0.6 (0.39-0.78) 0.94 (0.87-0.98) <0.001c

Values are median (IQR: 0.25-0.75) or n (%). P values reported are based on Wilcoxona for non-normal
distributed continuous variables, chi-square for categorical variablesb, and t-testc for normal continuous
variables.

BMI ¼ body mass index; BSA ¼ body surface area; BUN ¼ blood urea nitrogen; E/A ¼ early and late mitral
inflow velocities during diastole; E/e’ ¼ early mitral inflow velocity-mitral annulus velocity ratio;
eGFR ¼ estimated glomerular filtration rate; HTN ¼ hypertension; IVS ¼ interventricular septum; LA ¼ left atrial;
LA/LVr ¼ left atrial to left volumes ratio; LV ¼ left ventricle; LVEDD ¼ left ventricular end diastolic diameter;
LVM ¼ left ventricular mass; LVMi ¼ left ventricular mass index; LVPW ¼ left ventricular posterior wall;
MI ¼ myocardial infraction; TIBC ¼ total iron binding capacity.
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which the diagnosis of HFpEF was confirmed by
invasive hemodynamics.

THE HFpEF-JH SCORE OUTPERFORMS THE H2FPEF

SCORE. We decided to compare the performance of
the HFpEF-JH score to that of the H2FPEF score. As
shown in Figure 4A, in our study cohort, the H2FPEF
score had a sensitivity of 0.19, a specificity of 0.98,
with a positive predictive value of 0.98 at the cutoff
of 6, with an AUC of 0.74 for the diagnosis of HFpEF.
In contrast, HFpEF-JH score had a sensitivity of 0.83,
and specificity of 0.82, with a positive predictive
value of 0.96 at the 0.83 cutoff (Figure 4B). The uni-
directional DeLong’s test showed a P value of 8.136e-
06, indicating a statistically significant difference
between the 2 scores. When focusing on obese (BMI
>30 kg/m2; 227 HFpEF patients and 21 controls) vs
nonobese (BMI <30 kg/m2; 75 HFpEF patients and
36 controls) patients, the HFpEF-JH score had better
discriminatory power than the H2FPEF score in obese
patients (DeLong’s test in patient with BMI >30 kg/m2;
P < 0.001) but not in nonobese patients (DeLong’s test
in patient with BMI <30 kg/m2, P ¼ 0.118). Figure 4C
shows that overall the H2FPEF score performed well
in terms of ruling out HFpEF in controls. However,
it demonstrated low sensitivity in identifying
HFpEF, with a large proportion of patients with
HFpEF having an intermediate score using the
HF2PEF scoring method. Figure 4D shows that the
HFpEF-JH score had very high sensitivity and
good specificity.

DISCUSSION

We studied a large cohort of well-characterized,
mostly obese HFpEF patients and controls. Using a
machine learning algorithm, we identified BMI, eGFR,
LVMi, and LA/LVr as the clinical and echocardio-
graphic variables with the strongest association with
HFpEF in obese patients. Through multivariable lo-
gistic regression, we developed a novel score (HFpEF-
JH score) using these 4 clinical variables to identify
patients with HFpEF with a sensitivity of 0.83 and a
specificity of 0.82. This score outperformed
the H2FPEF score, especially in patients with BMI>30
kg/m2 (Central Illustration).

The gold standard diagnosis of HFpEF is made by
invasive exercise hemodynamic testing. This is not
always practical in the clinical setting as hemody-
namic testing, particularly with exercise, is generally
available only in specialized centers. Diastolic stress
testing with exercise echocardiography can also help
make the diagnosis, but it, too, is not widely avail-
able. Therefore, in routine clinical practice, HFpEF



FIGURE 2 Barplot of the Association of Different Variables With HFpEF Diagnosis As Determined by the Multinomial Gradient Boosting

Machine Model

The gradient boosting machine model was trained with 1,000 trees, an interaction depth of 3, a shrinkage rate of 0.01, and 5-fold

cross-validation. The barplot shows the relative influence of the top 12 predictor variables in the model, with the most important variable at

the top. Body mass index (BMI), left ventricular mass indexed (LVMi), estimated glomerular filtration rate (eGFR), and left atrial to left

ventricular ratio (LA/LVr) were identified as the 4 top correlates of HFpEF. HTN ¼ hypertension; MI ¼ myocardial infraction; other

abbreviations as in Figure 1.
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remains mostly a diagnosis that involves the use of
signs and symptoms of HF, natriuretic peptides, and
resting echocardiography which can lead to underdi-
agnosis or misdiagnosis. Current expert consensus
guidelines suggest using existing clinical prediction
tools (H2FPEF or HFA-PEFF) to help identify HFpEF
patients.2,14 However, these scores have significant
limitations. First, both scores rely on Doppler
TABLE 2 Relative Contribution of Variables in a Gradient

Boosting Machine Model for Predicting HFpEF Diagnosis

Relative Influence

Body mass index 22.96

LV mass index 17.05

eGFR 16.03

LA/LVr 15.16

Age 9.14

Hypertension 8.38

Number of HTN medications 4.35

Hyperlipidemia 1.66

Diabetes 1.43

Atrial fibrillation/flutter 1.40

Sex 1.24

History of MI 1.21

The relative contribution is expressed in base 100. The top 4 variables were
selected and included in the logistic regression model.

Abbreviations as in Table 1.
echocardiographic parameters, which can be difficult
to measure properly in a large proportion of HFpEF
patients, particularly those with obesity, and echo-
cardiography is an imperfect tool for the estimation of
elevated LV filling pressures.15 In addition, both
scores are based on univariate predictors, and there-
fore, the presence of a variable does not affect the
“weight” of the other variables. This artificially sim-
plifies the complexity of the HFpEF syndrome.16 Our
HFpEF-JH score was derived from a cohort of HFpEF
patients with especially high BMI. It was derived via
machine learning to account for the interaction be-
tween variables, and it was intentionally designed to
use routinely measured continuous variables. This
produced a score that relies on variables that can be
easily assessed with basic laboratory testing, a phys-
ical exam, and a standard echocardiographic assess-
ment and yet is arguably better poised to capture the
complexity of HFpEF, given our use of multivariable
modeling in score development as opposed to simply
adding together univariate predictors.

In our machine learning analysis that led to the
development of the HFpEF-JH score, higher BMI
showed the strongest association with HFpEF. This is
in line with the findings of several prior studies,17,18

and BMI is incorporated in the HF2PEF score.5 In
addition, our study revealed a strong association be-
tween HFpEF and higher LVMi, which is a key



TABLE 3 Clinical and Demographic Characteristics of Patients in the Regression

Model Cohort

Control
(n ¼ 57)

HFpEF
(n ¼ 302) P Value

Demographics

Age, y 62.82 (57.76-72) 65.7 (57.98-72.08) 0.291a

Female (%) 31 (54) 202 (66) 0.11b

Ethnicity (%)

Non-Hispanic/Latino 52 (93) 300 (99) 0.011b

Race (%)

Asian 5 (9) 2 (<1)

Black or African American 18 (34) 160 (53)

White 29 (55) 137 (45)

Other 1 (2) 3 (1) <0.001b

Body composition

Height, m 1.68 (1.58-1.77) 1.65 (1.57-1.76) 0.303a

Weight, kg 76.2 (61.68-93.89) 103.53 (83.91-121.53) <0.001a

BMI, kg/m2 26.53 (23.07-32) 36.62 (29.95-43.65) <0.001c

BSA, m2 1.88 (1.64-2.09) 2.13 (1.91-2.33) <0.001a

Comorbidities (%)

Hypertension 34 (60) 284 (94) <0.001b

Hyperlipidemia 25 (44) 175 (58) 0.073b

History of MI 8 (14) 23 (8) 0.19b

Atrial fibrillation 8 (14) 91 (30) 0.019b

Diabetes 9 (16) 146 (48) <0.001b

Number of HTN meds (%)

0-1 46 (81) 145 (48)

2-3 10 (17) 156 (51)

>4 1 (2) 3 (1) <0.001a

Echocardiography

LV ejection fraction, % 62.5 (57.5-66.44) 65 (60-69.41) 0.003a

LVEDD, cm 4.4 (4-4.87) 4.5 (4.14-4.98) 0.138a

IVS, diastolic thickness, cm 1.06 (0.94-1.2) 1.2 (1-1.38) <0.001c

LVPW, diastolic thickness, cm 0.97 (0.9-1.08) 1.09 (0.93-1.2) <0.001a

LVM, g 203 (150.72-315) 193.5 (151.74-229.93) 0.122c

LVMi, g/m2 105.3 (80.21-158) 89.3 (72.19-110.3) <0.001c

E/A 1 (0.8-1.29) 1 (0.77-1.4) 0.795c

E/e’ 10.37 (7.12-12.98) 13.17 (9.7-17.03) <0.001c

LA/LVr 0.61 (0.49-0.74) 0.72 (0.54-0.95) 0.003c

LA volume, ml 52 (42-72.5) 62 (48-79) <0.001a

LV volume, ml 84.5 (74-106) 83.75 (67-102.88) 0.955a

Laboratory studies

BUN, mg/dL 17 (13-23) 23 (16-30) <0.001c

Creatinine, mg/dL 0.9 (0.71-1.1) 1.2 (1-1.6) <0.001c

eGFR, mL/min/1.73 m2 76 (62-94) 56 (39-71) <0.001a

Troponin I, ng/mL 0.01 (0-0.07) 0 (0-0.04) 0.024c

Ferritin, ng/mL 163.6 (53.9-571.5) 97 (47.5-201) 0.071c

TIBC, mg/dL 235 (191.5-317.5) 316.5 (275.75-355) 0.009a

Hemoglobin, g/dL 11.9 (8.85-13.6) 12.2 (11.0-13.2) 0.148c

Scores

H2FPEF score 2 (1-3) 4 (3-5) <0.001a

HFpEF-JH score 0.6 (0.39-0.78) 0.94 (0.87-0.98) <0.001a

Values are median (IQR: 0.25-0.75) or n (%). P values reported are based on a t-testa for normal continuous
variables, chi-square for categorical variablesb, and Wilcoxonc for non-normal distributed continuous variables.

Abbreviations as in Table 1.
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component of the HFA-PEFF score.6 Interestingly, we
also found that lower eGFR and higher LA/LVr had a
strong association with HFpEF, stronger than many
other variables classically associated with HFpEF
such as E/e0 or atrial fibrillation.9 The association
between low eGFR and risk of HFpEF is not surprising
in light of prior data indicating a correlation between
eGFR and abnormalities in indices of cardiac me-
chanics. In a prospective analysis of patients with
early-stage chronic kidney disease (mean serum
creatinine 1.43 mg/dL), low eGFR was associated with
alterations in echocardiographic strain parameters.19

In a similar population, eGFR was found to be
inversely correlated with LA volume index, pulmo-
nary artery systolic pressure, and E/e0 ratio.20 In pa-
tients with HFpEF, lower eGFR correlated with lower
global longitudinal strain as well as a higher risk of
cardiovascular hospitalization or death.21 Further-
more, there is evidence of an association between
CKD and new-onset HFpEF independent of echocar-
diographic parameters.22 The specific association be-
tween increased LA/LVr and HFpEF that we describe
has not been reported before but is also not unex-
pected. In fact, Melenovsky et al23 reported previ-
ously that LA enlargement is characteristic of HFpEF
patients, not only as compared to controls but also as
compared to patients with hypertension without
HFpEF. Moreover, alterations in the LA/LVr have
been shown to correlate with alterations in the LA to
LV hemodynamic relationship.24,25 HFpEF is often
characterized by abnormal LA function, which results
in the inability of the LA to fill and empty properly,
leading to underfilling of the LV. The result is pro-
gressive LA enlargement and progressive LV size
reduction, leading to an increased LA/LVr.

Interestingly, in our study, age, number of anti-
hypertensive medications, history of atrial fibrillation
or pulmonary hypertension, and E/e’ were not among
the strongest predictors of HFpEF, despite the fact
that all of these variables are used in the H2FPEF
score. This likely reflects the fact that GBM identified
BMI, eGFR, LVMi, and LA/LVr as variables that
together have a stronger association with HFpEF and,
after adjusting for BMI, eGFR, LVMi, and LA/LVr, the
correlation between the variables included in the
H2FPEF score and HFpEF was greatly diminished.
Age is incorporated into eGFR, the number of anti-
hypertensive medications is likely related to LVMi,
and LA/LVr incorporates atrial fibrillation and E/e0

ratio (patients with atrial fibrillation and elevated E/e0

ratio would be expected to have higher LA/LVr and



TABLE 4 Correlation Matrix of the Variables Used for the

Multivariate Logistic Regression Model

eGFR LA/LVr LVMi BMI

eGFR 1.00 �0.1305 �0.1337 0.01901

LA/LVr �0.1305 1.00 �0.0429 �0.1091

LVMi �0.1337 �0.0429 1.00 �0.1802

BMI 0.01901 �0.1091 �0.1802 1.00

The values in the matrix represent Pearson’s correlation coefficient of each
interaction.

Abbreviations as in Table 1.
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the LA/LVr is likely also a better reflector of the
chronic burden of atrial fibrillation and increased LV
filling pressures than a binary history of atrial fibril-
lation variable or a single time point measurement of
E/e0). Lastly, natriuretic peptides, which are included
in the HFA-PEFF score and often used for the diag-
nosis of HFpEF, also did not make it into the final
FIGURE 3 Multivariable Logistic Regression Model Built With the To

(A) Formula of the regression model defined using the 4 variables selecte

model in the studied cohort. The plot displays the sensitivity and specific

the new score (HFpEF-JH). The box plot on the left represents an estima

resample; the box plot on the right represents the AUC obtained from e

model was generated. The analysis was done with 1,000 bootstrap resam

model. The red line represents the adjusted AUC and the blue line is th

GBM ¼ Gradient Boosting Machine; TPR ¼ true positive rate; other abb
score, but this too is not surprising given the insen-
sitivity of natriuretic peptide as a diagnostic test for
HFpEF in obese patients and the high prevalence of
natriuretic peptide deficiency in HFpEF patients.26

It bears emphasis that our new score outperformed
the H2FPEF score in patients with BMI>30 kg/m2 but
not in patients with BMI <30 kg/m2. This likely re-
flects the fact that the median BMI of HFpEF patients
in our study cohort (36.6) was higher than in the
study cohort used to derive the H2FPEF score (33.0),
and it suggests that the new score might be especially
valuable in identifying HFpEF in obese patients.

STUDY LIMITATIONS. Our study has several strengths,
including the size and level of characterization of the
cohort analyzed (including data on patients from 2
institutions), the inclusion of patients with high BMI,
the identification of novel predictors of HFpEF, and
the fact that we produced a score that, in the studied
p 4 Variables Identified via GBM

d based on the GBM output. (B) ROC curve of the logistic regression

ity of the model at a cutoff of 0.83. (C) Optimism-adjusted AUC for

tion of the performance by calculating the AUC from each bootstrap

ach model generated, tested in the original data subset where the

ples and the adjusted AUC was 0.87 versus 0.88 from the original

e AUC from the original model. FPR ¼ false positive rateother;

reviations as in Figure 1.



FIGURE 4 Comparison of the H2FPEF Score and HFpEF-JH Score

A and B show the ROC curves of the H2FPEF and the HFpEF-JH scores in the regression cohort, respectively. The sensitivity, specificity, and

AUC of the model at a cutoff of 6 (for the H2FPEF Score) and 0.83 (for the HFpEF-JH Score) are displayed. C and D show the density plots

showing the distribution of HFpEF Patients and controls assessed with the H2FPEF score and HFpEF-JH score, respectively. The dashed lines

on the density plots indicate the cutoff value of each score, 6 for the H2FPEF score and 0.83 for the HFpEF-JH score. A significant proportion

of the HFpEF patients’ H2FPEF score is distributed below the cutoff value of 6, mostly in the 3 to 6 range, while most of them score above

the cutoff value (0.83) With the HFpEF-JH. Abbreviations as in Figures 1 and 3.
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cohort, outperforms the current leading clinical pre-
diction rule to detect HFpEF. However, our study is
not without limitations. Firstly, while our data were
validated internally using the bootstrap method, our
findings were not validated in an independent cohort
and, therefore, should be viewed as preliminary,
given the need for external validation to be able to
determine the utility of a diagnostic test. Although
the HFpEF-JH score outperformed the H2FPEF score
in our study, such a result could be expected since the
HFpEF-JH score was derived in our study sample.
Second, the study used previously collected data
from prospective cohort studies, and therefore,
candidate variables for the final score were limited to
those available in the data sets used for score deri-
vation. In the clinical setting, scores for the diagnosis
of HFpEF are typically used when clinicians are un-
sure about the diagnosis, not in asymptomatic pa-
tients. Since the controls used to develop our score
were asymptomatic patients, it is unclear how the
score will perform in a real-life clinical scenario when
the diagnosis of HFpEF is suspected due to the pres-
ence of symptoms or other clinical, laboratory, or
imaging findings Finally, our controls had a median
BMI of 26.99, considerably lower than the HFpEF
patients included in the study.



CENTRAL ILLUSTRATION Development of a Novel Score to Diagnose HFpEF in the Clin-
ical Setting

Bermea KC, et al. JACC Adv. 2024;3(7):101040.

1) A diverse cohort of well-characterized obese HFpEF patients and controls was created merging 2 existing cohorts of HFpEF patients. 2) The

cohort was analyzed via machine learning to identify predictors of HFpEF diagnosis. 3) eGFR, BMI, LVMi, and LA/LV ratio emerged as the

variables with the strongest association with the HFpEF diagnosis. 4) These variables were used to generate a regression model, and 5) the

regression model was used to generate the HFpEF-JH Score, a novel score to help diagnose HFpEF in the clinical setting. BMI ¼ body mass

index; eGFR ¼ estimated glomerular filtration rate; LA/LVr ¼ left atrial to left volumes ratio; LVMi ¼ left ventricular mass index; other

abbreviation as in Figure 1.
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CONCLUSIONS

We identified BMI, eGFR, LVMi, and LA/LVr as the
strongest predictors of HFpEF in an obese HFpEF
cohort, and we used these variables to develop a
novel score to detect HFpEF. The HFpEF-JH score is
based on variables easily measurable with a standard
echocardiogram, basic laboratory testing, and a
physical exam. We provide an online form to calcu-
late this score on any patient of interest with sus-
pected HFpEF. This score points to novel and
previously unappreciated predictors of HFpEF and, in
our study cohort, identified HFpEF with higher
sensitivity and overall discriminatory power than the
leading score currently used to explore a potential
diagnosis of HFpEF. The HFpEF-JH score (used in
addition, or alternative to existing clinical decision
tools) warrants external validation as the score could
help improve diagnostic accuracy in the identification
of HFpEF, particularly in obese patients, and espe-
cially when gold standard hemodynamic testing is not
readily available.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: HFpEF is a

debilitating condition and its diagnosis remains challenging. Us-

ing machine learning, we found that BMI, eGFR, LVMi, and LA/

LVr are strongly associated with HFpEF. While the LA/LVr is not

commonly reported, it can be easily calculated by having the LA

and LV volumes which are usually part of the echocardiography

report. We built a new score to identify HFpEF that incorporates

these variables and outperformed existing scores for the diag-

nosis of HFpEF, especially in obese patients. This new score,

named HFpEF-JH, could significantly facilitate the detection of

HFpEF in the clinical setting. However, further validation of our

findings in independent cohorts is needed before widespread use

of this new score in the clinical setting.

TRANSLATIONAL OUTLOOK: The identification of BMI,

eGFR, LVMi, and LA/LVr as the variables with the strongest as-

sociation with HFpEF points to these parameters as promising

clinical tools to detect and possibly monitor HFpEF patients. The

HFpEF-JH score built using these variables could become a

useful tool to screen patients for inclusion in clinical trials.
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