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Therapeutic hypothermia (TH) significantly reduces mortality and morbidities in neonates with 
Neonatal Encephalopathy (NE). NE may result in neonatal death and multisystem organ impairment, 
including acute kidney injury (AKI). Our study aimed to utilize machine learning (ML) methods 
to predict the outcome of TH-treated NE neonates developing AKI and death during TH. In this 
retrospective multinational study, 1149 TH-treated NE neonates and 801 controls were included. AKI 
was classified using KDIGO neonatal criteria based on serum creatinine measurements. The ML model 
incorporated gestational age, birth weight, postnatal age, and serum creatinine values. The algorithm 
used all these covariates to predict one of five outcomes: survival with/without AKI, mortality with/
without AKI, and hospitalized non-NE controls. The XGBoost model achieved an AUC of 95% and an 
accuracy of 75.08% in predicting AKI and survival, surpassing other ML classifiers that demonstrated 
accuracy levels ranging from 54% to 65%. To our knowledge this is the first ML model trained on 
multicenter, multinational data specifically aimed at predicting neonates’ AKI, death, and survival 
within the first three days. Our ML scoring systems’ code and user interface are freely available ( h t t p s :  / 
/ g i t h  u b . c o m  / N U B a g  c i L a b  / T h e r a  p e u t i c  - H y p o t  h e r m i  a - O u t c  o m e - C l  a s s i fi    c a t i o n,  h t t p s : / / t h p r e d i c t i o n . s t r e 
a m l i t . a p p /     ) . This tool has potential to support neonatologists to personalize therapies, and to optimize 
pharmacotherapy for renally cleared drugs.
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Birth asphyxia is characterized by a lack of oxygen with reduced brain blood flow around the time of birth, 
which can lead to Neonatal Encephalopathy (NE)1. NE is a clinical syndrome of neurologic dysfunction that 
encompasses a broad spectrum of symptoms and severity, from mild irritability and feeding difficulties to coma 
and seizures. The global prevalence of NE ranges from 1 to 3.5 per 1000 live births in high-income countries 
(HICs) to 26 per 1,000 in low- and middle-income countries (LMICs)2,3. In HICs, therapeutic hypothermia 
(TH) is an effective intervention that significantly reduces mortality and morbidities in neonates with moderate 
to severe NE4. However, NE is a multiorgan condition affecting more than just the central nervous system5–7.

The kidneys are highly vulnerable to oxygen deprivation, with acute kidney injury (AKI) occurring commonly 
(30–60%) as part of the “perinatal asphyxia syndrome,” now classified under the new kidney disease: Improving 
Global Outcomes (KDIGO) definition8–12. Growing evidence suggests that AKI is a significant risk factor for 
adverse long-term neurocognitive outcomes and increased mortality, longer hospitalization, and increased 
duration of mechanical ventilation8,11,13. Prompt diagnosis of AKI in TH-treated NE neonates is important 
both for renal management and to help identifying neonates who are most likely to have poor outcomes8,14. 
The neonatal modified KDIGO definition is currently the standard used in research and clinical practice. This 
definition is based on an increase in serum creatinine (sCr) or a reduction in urine output (UOP) (Table 1)12. 
However, the KDIGO criteria are difficult to apply in neonates because at birth sCr reflects maternal sCr and is 
already elevated. The typical physiological changes after birth involve fall in sCr over the first few weeks of life. 
The precise measurement of UOP can also be difficult and it is frequently low on the first day of life. Moreover, 
oliguria is not always present in neonates with AKI15–17. The definition of neonatal AKI is expected to evolve 
in the future. In our prior studies, we established the baseline serum creatinine values and changes in GFR and 
serum creatinine concentrations during TH for TH-treated NE neonates18,19. However, there is still an unmet 
clinical need to predict the clinical outcome of TH-treated NE neonates, including survival and AKI status.

TH has been utilized to mitigate ischemic injury in kidney transplantation and after cardiopulmonary 
resuscitation but its impact on renal outcomes in neonates with NE is not well understood when NE has affected 
the kidney. The results of a meta-analysis of six TH trials of AKI in neonates with NE were inconclusive. A meta-
analysis of six TH trials assessing the impact of TH on renal impairment did not find a statistically significant 
difference in the rate of renal impairment in cooled versus non-cooled neonates4. However, these studies were 
completed before the adoption of the KDIGO AKI classification for neonates, and the definitions of renal 
impairment varied among the studies15. A single center randomized controlled trial involving 120 term neonates 
with NE suggests that TH may reduce the risk of AKI (32% vs. 60%, p < 0.05)20.

Further research has assessed the effects of NE and TH on the glomerular filtration rate (GFR) and drug 
clearance related to GFR. Renal clearance was reduced by 25–40% and up to 60% as measured by mannitol 
clearance21,22. Except for one dataset on gentamicin clearance, most data have concentrated on the time when 
TH was being used (the first three days of life), with less evidence on later times. Thorough literature review 
revealed that increases in serum creatinine in this specific subpopulation were open to interpretation for the 
remainder of the first week of postnatal life16. It is also unlikely that additional studies comparing neonates with 
moderate to severe NE with and without TH would be conducted because TH has become the standard of care 
for NE treatment8. Supportive care should continue during TH, and further understanding drug clearance in 
neonates with NE is crucial because most medications, including antibiotics, inotropes, and antiepileptic drugs, 
are renally excreted16,18,23.

The overall goal of our study was to predict the outcome of TH-treated NE neonates regarding survival and 
AKI based on their gestational age (GA), birth weight, postnatal age (PNA), and serum creatinine measurements 
within the initial 10 days of life. In this study we therefore propose a new machine learning (ML) method to 
predict TH-treated NE neonates’ clinical outcome, including survival and associated AKI status during TH after 
postnatal day 1. Figure 1 shows our overall framework, utilizing an input with four parameters, and outcome 
prediction as the output.

Results
All ML classifiers performed with an overall accuracy score (across all labels) of 54%–65% except for XGBoost, 
which predicted an outcome with 73% accuracy, which is why this classifier was selected to be further optimized 
(Table 2 and supplements).

The single classifier approach demonstrated superior precision and recall compared to the hierarchical 
classification approach, particularly for surviving neonates (Classes 1, 2 and 5) (Table 3).

In the hierarchical classification approach, precision scores ranged from 0.508 to 0.828, with lower precision 
for TH-treated NE neonates who died without AKI. Recall varied from 0.619 to 0.798, with TH-treated NE 

AKI stage Serum creatinine (sCr) criteria Urine output criteria (hourly rate)

0 No significant change in sCr or rise < 0.3 mg/dL ≥ 0.5 ml/kg/h

1 sCr rise by ≥ 0.3 mg/dL within 48 h or sCr rise ≥ 1.5-1.9x baseline sCra < 0.5 ml/kg/h x 6–12 h

2 sCr rise ≥ 2.0-2.9 x baseline sCra < 0.5 ml/kg/h for > 12 h

3 sCr rise ≥ 3 x baseline sCra or sCr ≥ 2.5 mg/dLb or Kidney support therapy utilization < 0.3 mL/kg/h for ≥24 h or Anuria for ≥ 12 h

Table 1. Modified neonatal kidney disease: improving global outcomes (KDIGO) criteria. aBaseline sCr 
defined as the lowest previous sCr value. bsCr value of 2.5 mg/dL represents GFR < 10mL/min/1.73 m2. sCr 
serum creatinine, h hours. Adapted from KDIGO Acute Kidney Injury Workgroup12.
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neonates who survived without AKI having the highest recall, F1-scores reflect a generally balanced performance 
(Table 3).

The single classifier strategy demonstrated a stronger precision relative to the hierarchical method, achieving 
a precision of 0.835 for TH-treated NE neonates who survived and had AKI. Recall varied between 0.505 and 
0.803, with lower recall for TH-treated NE neonates who died without AKI. The F1-scores show that TH-treated 
NE neonates who survived and had AKI (0.809) exhibited the highest classification performance (Table 3). This 
single classifier provided the highest predictive capability, reiterated by precision, recall and F1 score (Table 3).

The first classifier in the hierarchical model struggled to predict TH treated NE neonates who died with or 
without AKI with recall, precision and F1 scores of the death cases ranging from 48%–56%, while in the single 

Employed models Explanation

Accuracy 
score 
(%)

Logistic regression Linear ML algorithm for probabilistic classification51. StandardScalar52 was used to ensure features on the same scale, a high maximum 
iteration parameter for convergence, and a random state for accuracy reproducibility 54

Random forest It is based on decision tree algorithms, creating a ‘forest’ of trees where each tree makes its predictions when trained on a random subset of 
data53. These predictions are aggregated by a majority vote of the trees to decide the final output. Its ensemble nature helps avoid overfitting 63

Support vector 
classifier (SVC)

It works well in high dimensional spaces and is versatile because kernel functions transform feature space to fit different data distributions54. 
StandardScalar52 is used to scale the features and estimate the probabilities, which will use more internal cross validation52 58

Extreme gradient 
boosting (XGBoost)

Optimized distributed gradient boosting library that builds decision trees one at a time, with each new tree correcting the errors of the 
previous one in a greedy manner36. To assess classifier training loss, this implementation added an evaluation metric 73

Gradient boosting 
classifier SciKit-Learn ensemble method that builds one tree. A random state is also used55 65

Adaptive boosting 
(AdaBoost)

Another ensemble method that fits a classifier on the dataset and then fits other classifiers on the dataset, adjusting the weights of incorrectly 
classified instances56 52

K-nearest neighbors 
(KNN)

The instance-based algorithm that stores all neonates and classifies new neonates by K-nearest neighbors57. StandardScalar52 was needed for 
feature scaling since KNN is distance-based 59

The decision tree A nonparametric supervised learning method for classification and regression. Nodes are features, branches are decision rules, and leaves are 
outcomes. They tend to be overfit, but Random Forest and Extra Trees try to fix this55 56

Extra trees Extremely Randomized Trees add a layer of randomness to bagging55,58. Extra trees can lead to a high variance and low bias model, which is 
beneficial for specific tasks 58

The multi-layer 
perceptron (MLP) 
neural network

A feed forward neural network59. They can capture complex relationships in data using multiple layers and nonlinear activation functions 60

Table 2. Machine learning classifiers and their explanations.

 

Fig. 1. Graphical abstract of the newly developed model. Our algorithm was built on using four types of 
data: gestational age, birth weight, postnatal age, and serum creatinine observations during TH as input and 
predicting one of five classes as an outcome: (1) TH-treated NE neonates who survived, did not have AKI, (2) 
TH-treated NE neonates who survived and had AKI, (3) TH-treated NE neonates who died, did not have AKI; 
(4) TH-treated NE neonates who died and had AKI, (5) neonates without NE who did not need TH.
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classifier model, they ranged between 51%–58% (Table 3). The only notable decrease observed with the single 
classifier model compared to the hierarchical model was in the ‘TH-treated NE neonates who died without AKI’ 
label, which had about a 12% decline in recall score. Despite this, the overall performance showed significant 
improvements. The classification performance improved across multiple labels, with some showing minor gains 
and others significant enhancements, leading to an overall increase in accuracy, precision, recall, and F1 scores 
(Table 3).

The classification of neonates who died without AKI had the lowest performance in both approaches, 
highlighting challenges to correctly identify this group. By contrast, TH-treated NE neonates who survived and 
had AKI had the best classification results across both approaches. Hospitalized (Control-non-NE) neonates 
were classified with relatively high scores in both models (Table 3; Figs. 2 and 3, Supplement).

Beyond accuracy, precision, recall and F1 scores, our model demonstrated excellent classification with a 
mean AUC of 0.95 ± 0.01 across 10-fold cross-validation. This indicates that the model has a high probability 
of correctly distinguishing between different outcomes in TH treated NE neonates (Fig. 4). The model becomes 
slightly more accurate as folds of cross-validation increase, indicating a continuous model improvement with an 
increase in training data, while simultaneously confirming the model’s generalizability. From 5, 10, to 20 folds of 
cross-validation, we observed 74.2%, 75.1%, and 75.1% accuracy, respectively. All the curves are close together 
and have high AUCs, which means the model performed consistently (Fig. 4). The calibration curve for the 
single classifier model showed good performance, except for class 4 (infants who died with AKI).

Fig. 2. Calibration curve of our single classifier approach model. This plot shows the calibration of the 
predicted probabilities across five classes (Class 1 to Class 5). The x-axis represents the mean predicted 
probability, while the y-axis represents the fraction of positives (observed frequency). Each line corresponds 
to a different class, with the dashed diagonal line (“Perfectly calibrated”) indicating an ideal calibration 
where predicted probabilities perfectly match the observed outcomes. Deviation from the diagonal suggests 
miscalibration, where probabilities either underestimate or overestimate the actual outcomes.

 

TH-treated NE neonates who 
survived without AKI (Class 1)

TH-treated NE neonates who 
survived and had AKI (Class 
2)

TH-treated NE neonates who 
died without AKI (Class 3)

TH-treated NE neonates who 
died and had AKI (Class 4)

Hospitalized 
(control-non NE) 
neonates (Class 
5)

Hierarchical classification approach

 Precision 0.757 0.828 0.508 0.685 0.708

 Recall 0.798 0.671 0.625 0.619 0.712

 F1 0.777 0.740 0.560 0.647 0.737

Single classifier approach

 Precision 0.764 0.835 0.578 0.710 0.745

 Recall 0.803 0.785 0.505 0.718 0.715

 F1 0.783 0.809 0.537 0.708 0.729

Table 3. Performance metrics of hierarchical classification approach.
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Our newly developed model demonstrates promising potential for predicting outcomes in TH treated NE 
neonates as evidenced by the confusion matrix, the model exhibits high accuracy in predicting survival with and 
without AKI and death with AKI. The matrix also highlights areas for improvement, particularly in predicting 
outcomes for TH treated NE neonates died without AKI. It originated from class imbalance (Fig. 3).

To further assess the model’s performance, the Matthews correlation coefficient (MCC) was calculated based 
on the confusion matrix. For our five-class classification, the overall MCC is 0.656, indicating a moderately 
strong positive correlation between the predicted and actual class labels (Table 4). Classes 2 and 4 which refer to 

Fig. 4. ROC of our model predicting clinical outcome in TH-treated neonates. ROC graphs for our model, 
cross-validated using ten-fold validation. During each of the ten folds, the model undergoes training and 
testing, and the Area Under the Curve (AUC) is computed for each iteration. The ten AUC values are 
combined to yield a singular performance metric through averaging. The model’s mean AUC of 95% over all 10 
folds demonstrates its constant and excellent performance in accurately differentiating between classes.

 

Fig. 3. Confusion matrix of our developed model. The confusion matrix illustrates the percentage of cases 
correctly predicted by our model. The y-axis represents the true labels, while the x-axis represents the predicted 
labels. The bold boxes highlight the percentage of true labeled patients correctly predicted by the model. For 
instance, the model correctly predicted “TH-treated NE neonates survived without AKI” in 80.65% of cases.
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TH-treated NE neonates survived with AKI and TH-treated NE neonates who died with AKI) have high MCC 
values (0.797 and 0.786). This suggests that the model is remarkably effective at identifying neonates with AKI 
compared to all other outcomes. Class 1 (TH-treated NE neonates who survived without AKI) had a lower MCC 
(0.502), and Class 3 (TH treated NE neonates who died without AKI) had a moderate MCC (0.571). Class 5, 
the control group (hospitalized neonates, non-NE), showed an MCC of 0.614, which is moderate. This result 
suggests the model is performing effectively, accurately classifying many instances across all classes.

We then examined the creatinine trends to understand the explainability of our models. On the first day, all 
TH-treated neonates had very similar sCr values. However, in the following days, these values diverged, reflecting 
different outcomes. Interestingly, the serum creatinine trends for TH-treated NE neonates who survived without 
AKI closely mirrored those of hospitalized control neonates until day 3 (Figs. 5 and 6).

Next, we analyzed the serum creatinine trends for TH-treated NE neonates with AKI, irrespective of survival 
status, along with TH-treated neonates without AKI and hospitalized control neonates (Fig. 5). The graph shows 
two distinct trend lines for serum creatinine: higher creatinine, stable trend and lower creatinine, decreasing 
trend. In the AKI groups, serum creatinine concentrations started higher and remained relatively stable over the 
10-day period. This suggests persistent kidney injury in this group. In neonates without AKI, serum creatinine 
concentrations started lower and gradually decreased over time, indicating improving kidney function (Figs. 5 
and 6). The divergence of these two trends was apparent early on, suggesting that serum creatinine concentrations 
are a valuable early indicator of AKI in NE neonates (Figs. 5 and 6).

We closely examined serum creatinine trends in the non-AKI groups and showed that serum creatinine 
trends overlapped during their NICU stay (Fig. 7). We also closely examined neonates who deceased and those 
who survived. The trend lines show that surviving neonates had lower serum creatinine concentrations as 
compared to those who passed away (Fig. 8).

Consistent with our previous research19 we report serum creatinine centile lines for all our data including 
TH treated NE neonates and hospitalized non-NE neonates (Fig. 9). To understand the model’s decision-making 
black box nature, we undertook feature importance analysis for both hierarchical and single classifier models 
for each class. Serum creatinine, and postnatal age interaction with serum creatinine play important roles in 
the hierarchical algorithmic decision-making (Fig. 10). Feature importance in single classifier model revealed 

Fig. 5. Serum Creatinine concentrations for different patient groups in our model. The graph displays the 
simplified median trend lines creatinine (sCr) observations for each label in our model over a period of 10 
days. These are actual values from the model. The baseline sCr values for each labeled group are shown, along 
with their trends over time.

 

Overall single classifier models’ MCC 0.656

Class 1 (TH treated NE neonates survived without AKI) 0.502

Class 2 (TH treated NE neonates survived with AKI) 0.797

Class 3 (TH treated NE neonates died without AKI) 0.571

Class 4 (TH treated NE neonates died with AKI) 0.786

Class 5 (Hospitalized control neonates, non NE) 0.614

Table 4. Matthews correlation coefficient (MCC) values for single classifier model and all 5 classes.
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serum creatinine and gestational age–creatinine interaction in decision making (Fig. 11). Our analysis revealed 
no linear relationship between the input variables. Instead, the models capture complex, nonlinear interactions 
that are critical for accurate predictions. These interactions are essential for the decision-making mechanism of 
the models, as they reflect the complex nature of physiological processes in neonates.

Discussion
AKI has been associated with worse outcomes in previous studies, including increased mortality, prolonged 
length of stay, increased need for mechanical ventilation, and more adverse neurocognitive outcomes8,16,24. It 

Fig. 7. Serum creatinine concentrations for all TH-treated NE neonates and control neonates. The graph 
shows the median creatinine (sCr) trend lines for neonates who did not have AKI, divided into three groups. 
The creatinine trends for these groups overlapped during their NICU stay, and the median creatinine values 
were close to each other. This illustrates the difficulty in differentiating between these groups based solely on 
creatinine values.

 

Fig. 6. Serum creatinine concentrations of neonates with AKI and without AKI. The graph illustrates the 
median creatinine (sCr) trends of neonates with AKI (both those who survived and those who died) and 
neonates without AKI. The neonates without AKI are further divided into three groups: hospitalized non-NE 
neonates, neonates who died, and neonates who survived.
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is still difficult to rapidly assess renal function in this high-risk group in order to detect AKI and start suitable 
treatment promptly. Neonatologists focus on detecting AKI based on the sCr concentrations, urine output, urine 
biomarkers, and noninvasive near-infrared spectroscopy (NIRS) monitoring8. A study in of 53 neonates using 
blood biomarkers from the beginning of TH achieved AUC by 0.61 in 2 h of life for serum NGAL (neutrophil 
gelatinase-associated lipocalin) suggesting this has acceptable accuracy to identify developing AKI25. Another 
study of 110 NE neonates combined serum and urine biomarkers to predict AKI from the 24 h of life. Among 
those markers a urinary NGAL achieved an AUC of 0.86 to predict AKI26. Urine biomarkers were collected 
within the 12, 24, 48, and 72 h of life in 64 TH treated NE neonates27. In this study urine KIM-1 (Kidney Injury 
Molecule-1) had an AUC of 0.79 at 48 h of life. Renal oxygen saturations were higher in the AKI group than non-
AKI NE neonates, and renal saturation > 75% achieved an AUC of 0.76 within the 48 h of life28. However, these 
methods are not practical or clinically adapted for early detection of AKI and other outcomes8. Our algorithm 

Fig. 9. Percentiles of serum creatinine concentrations based on postnatal age on the study dataset. The graph 
shows the percentiles of serum creatinine (sCr) concentrations based on postnatal age for the entire study 
dataset. The median centile lines illustrate the sCr values for both NE neonates and hospitalized non-NE 
neonates.

 

Fig. 8. Serum creatinine concentrations for all TH-treated NE neonates who survived and who died in the 
dataset. The graph illustrates the median creatinine (sCr) levels for neonates who survived and those who died. 
The trend lines show that survived neonates had lower creatinine levels compared to those who died.
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predicts AKI and death in TH-treated NE neonates with an AUC of 95% and an accuracy of 75.08% for AKI and 
survival, outperforming urine and blood biomarkers in predictive accuracy26,27.

The present study highlights that diagnosing AKI in neonates requires a comprehensive approach that 
cannot solely rely on serum creatinine concentrations. Meticulous clinical monitoring can significantly enhance 
detection accuracy. Integrating diagnostic tools with clinical decision-making enables healthcare professionals 
to more effectively identify AKI, facilitating timely interventions that can improve patient outcomes. Given the 
limited availability of urine and blood biomarkers in practice in the NICU, our approach would not only ensure 
accurate diagnosis but also help guide evidence-based treatment decisions, ultimately enhancing patient care 
and improving outcomes.

Fig. 11. Features’ importance of the single classifier model approach. Ranking the importance of features in 
predicting outcomes using a “single classifier model”. The relationship between creatinine and gestational age is 
crucial in the decision-making process of algorithms.

 

Fig. 10. Features’ importance of each classifier in the hierarchical classification model. The ranking of features 
(variables) plays a crucial role in predicting outcomes for a hierarchical classification model. Pink, green, 
pastel orange, and purple lines represent each of the outcome predictions. Input variables interact with each 
other for the outcome prediction. Creatinine, postnatal age interaction, and creatinine play important roles in 
algorithmic decision-making.
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At present, there are only two alternative neonatal and pediatric calculators to estimate risk of AKI, using 
Logistic regression methods, which are the Baby NINJA29 and STARZ30 calculator. Those two calculators use 
electronic health records (EHR). Baby NINJA is a warning system to decrease nephrotoxic events based on the 
EHR29. The STARZ-Neonatal AKI risk stratification uses 10 predictors to predict the onset of AKI. STARZ was 
designed using 744 neonates’ data, including postnatal age at NICU, serum creatinine, sepsis, use of PPV (positive 
pressure ventilation), inotropes, urine output, furosemide use, the status of cardiac disease, gestational age and 
nephrotoxic drugs30,31. Neither were developed to predict AKI in TH-treated NE neonates. Advancements in 
neonatal care have decreased the mortality of TH-treated NE neonates. However, the daily management of the 
multiorgan failure of these neonates, especially during the first days of life, remains important to help limit other 
morbidities. We expect that our tool will help physicians reduce the morbidities of TH-treated NE neonates. Our 
user interface will be available for the public and for research use to help predict clinical outcomes. Based on 
“gestational age, birth weight, postnatal day (within the first three days) and serum creatinine value (within the 
first three days)”, the system will give the potential clinical outcomes with probabilities.

Although the present algorithm achieved 95% of AUC, the reader should consider some limitations. Most 
recent developments in artificial intelligence rely on deep learning, which has become a game changer for many 
research fields, from computer science to healthcare32. The dataset defines which model could be suitable for the 
algorithm32. Deep learning typically requires much larger datasets, even if our dataset is the largest multicenter 
dataset described to date in this context32,33. Our output is categorical, and the number of variables for each 
patient is limited for evaluating classifier performance in unbalanced datasets, traditional metrics like accuracy 
can be misleading. Instead, metrics such as precision, recall, F1-score, and confusion matrices provide a clearer 
picture of model effectiveness by considering both false positives and false negatives. Ensuring robust model 
evaluation is essential for developing reliable classification systems in clinical settings32,34. Although the overall 
accuracy of 73% may appear modest, it must be interpreted in the context of complex, multi-class clinical 
outcomes. The inclusion of sensitivity, specificity, precision, and related metrics provides a nuanced evaluation 
and helps establish clinically acceptable thresholds. The Matthews correlation coefficient (MCC) offers a more 
comprehensive evaluation by accounting for all aspects of classification errors, providing a more robust and 
clinically meaningful interpretation of model performance35.

Our model performed well in terms of Matthews correlation coefficient. No previous study has used any 
biomarker or predictive tool to obtain these outcomes with these specific metrics. For survivors without AKI 
(Class 1), the model achieves a high F1-score (0.783), reflecting strong precision and recall. However, the 
Matthews correlation coefficient (MCC) is notably lower (0.502), suggesting that while the model identifies 
many true positives, it may also misclassify a substantial number of non-Class 1 cases. This discrepancy indicates 
that F1 may overestimate performance in this scenario, as it does not account for true negatives (Tables 3 and 4).

In contrast, for survivors with AKI (Class 2), the alignment between F1 (0.809) and MCC (0.797) suggests 
a well-balanced classification with minimal misclassification errors. This consistency indicates that the model 
effectively identifies this outcome without introducing systematic bias toward a particular class (Tables 3 and 4). 
For neonates who died without AKI (Class 3), both F1 (0.537) and MCC (0.571) indicate moderate classification 
performance. While precision and recall remain suboptimal, the slightly higher MCC suggests a more favorable 
overall error distribution when considering the complete confusion matrix (Tables 3 and 4).

For neonates who died with AKI (Class 4), F1 (0.708) is moderate; however, MCC (0.786) is substantially 
higher. This indicates that although direct detection performance is reasonable, the overall classification—
accounting for true negatives and error distribution—is stronger. In a clinical context, where distinguishing 
high-risk cases is critical, this robustness is particularly relevant (Tables 3 and 4).

For hospitalized control neonates (Class 5), F1 (0.729) exceeds MCC (0.614), suggesting that while precision 
and recall are favorable, the model’s overall classification performance diminishes when true negatives are 
considered. This again highlights the tendency of F1 to overestimate performance by underrepresenting 
misclassified negative cases (Tables 3 and 4).

These observations underscore the importance of using MCC alongside the F1-score for medical classification 
tasks. The discrepancies, particularly in Class 1 and Class 5, suggest that models may overestimate performance 
when evaluated solely on F1. Conversely, the alignment of MCC and F1 in Class 2 supports confidence that the 
model is providing balanced performance. In high-risk cases such as Class 4, the high MCC suggests that the 
model effectively differentiates these outcomes from others, even when precision and recall are only moderate.

Our current approach accounts for temporal trends through strategic data partitioning. However, it does 
not fully leverage the sequential nature of time-series data. Variables such as serum creatinine and postnatal age 
exhibit dynamic fluctuations that may be more effectively captured using sequential deep learning architectures, 
including recurrent neural networks, long short-term memory networks, or temporal convolutional networks. 
While dataset size precluded the implementation of these methods in the present study, future research 
should explore their potential to enhance temporal modeling and improve predictive performance in clinical 
applications.

A decline in performance between the hierarchical and single classifiers was observed in TH-treated NE 
neonates who died without AKI. This may be attributed to overlapping clinical features among subgroups and 
inherent model limitations in detecting subtle biomarker variations. Additional inputs, clinical variables may 
be necessary to enhance subgroup distinction and improve model performance. These lower numbers may 
indicate that the features used to characterize neonates without AKI—whether they survived or died—are less 
distinctive or more overlapping with those of other classes. Even though hospitalized non-NE controls share 
some similarities with certain NE groups in baseline clinical characteristics, making the classification task more 
challenging.

We encountered a data imbalance problem during algorithm development. We have started to develop a 
hierarchical model of four XGBoost36 classifiers that make binary classification decisions in cascading order. 
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To increase model performance, further oversampling methods and interaction factors were introduced. 
However, the model’s performance was not comparable or superior. Due to multiple attempts and combinations 
of methodologies, this model may not be improved. Data imbalance is a common issue in clinical machine 
learning that can negatively impact classification performance37–40. Addressing this challenge requires tailored 
approaches, including data-level, algorithmic, and ensemble methods37–40. Data-level techniques such as under-
sampling and over-sampling, including SMOTE, help balance datasets, while hybrid methods combine these 
strategies for improved representation. In clinical applications, where datasets often contain healthier individuals 
than affected cases, these strategies improve detection in disease diagnosis. Integrating sampling techniques 
with algorithmic adjustments yields optimal results, though deep learning approaches require substantial 
computational resources. Future research should refine these strategies to enhance model generalizability in 
medical classification tasks.

There are also different methods to handle data imbalance problems, but their selection should be optimized 
according to the dataset and clinical scenario. In our predictive algorithm to address clinical questions, we used 
known predictors and aimed to fit them into a statistically viable algorithm. This has never been done before. 
Since we are already limited to certain predictors, we tried to utilize them to explore non-linear relationships 
between the variables, and to predict the patient outcome based on this non-linear relation. Different classifiers, 
even the same classifiers with different kernels (such SVM examples), the classifiers will behave differently. Based 
on what we observe in the behavior, we optimized all selected classifiers.

To address class imbalance, we applied a random oversampling technique; however, we acknowledge that this 
manual oversampling may not generalize across different clinical datasets. Moreover, our feature set—limited 
to gestational age, birth weight, postnatal age, and serum creatinine—may not capture the full complexity of 
neonatal outcomes. Additional factors, such as markers of hypoxic-ischemic encephalopathy (HIE) severity, 
inflammatory biomarkers, and resuscitation details, could further enhance model performance. Future studies 
should aim to incorporate these variables and explore more sophisticated oversampling or augmentation 
techniques.

Our input selection was guided by the availability and established clinical relevance of gestational age, birth 
weight, postnatal age, and serum creatinine. We acknowledge that additional factors—such as the severity of 
hypoxic-ischemic encephalopathy (HIE), the presence of PPHN, sepsis, neonatal resuscitation details, and other 
biomarkers—may significantly impact outcomes. These variables could not be used in the present analysis due 
to missing data. Future studies should integrate these predictors to enhance model performance and clinical 
applicability.

The serum creatinine centile trends were very similar, making it challenging to distinguish among these three 
groups based solely on creatinine values. This suggests that serum creatinine alone may not be the most reliable 
predictor of outcomes in these specific groups of neonates (Figs. 3 and 5).

Artificial intelligence implementations in pediatrics and neonatology have drawn attention to decision-
making and clinical support systems32. Here, we performed an ML analysis on a multicenter international 
retrospective cohort of TH-treated NE neonates. Due to the data scarcity in pediatrics and neonatology32, a 
natural difficulty in such fields, we put our effort to train and test our algorithm on the largest dataset ever. We 
followed statistical evaluation paradigms (cross validation) to avoid any bias in evaluations. For reproducibility 
and generalizability, we share our code in GitHub and user interface publicly.

Further research is needed to evaluate the prospective use of our model. It is highly likely that its performance 
could be enhanced by incorporating additional variables and larger datasets.

Although sCr has its limitations as a biomarker of kidney function and injury, serial measures of sCr over 
the first week of life can help establish a pattern of renal function. We used the neonatal KDIGO definition to 
diagnose AKI, neonatal KDIGO is the most used standard definition for AKI. Our dataset consists of neonates 
from 1999 to 2021. The use of TH has likely improved over time and includes both selective head cooling to 
total body cooling. The dataset does not include details on demographics and pharmacotherapy during NICU.

As a collaborative team of neonatologists and AI scientists, we emphasize the critical role of clinical decision 
support systems and the importance of ‘human-in-the-loop’ approaches in medical applications. Tools like our 
prediction model offer clinicians valuable, objective data on AKI and survival status, while preserving clinician 
autonomy in the final decision-making process. As clinical decision support systems become more integral to 
medical practice, our tool addresses a crucial gap, particularly during the critical first 72 h of life for neonates 
undergoing TH.

We developed our model based on the first 10 days of life. With our supervised ML model, the model was 
able to predict clinical outcomes within the first 3 days with an AUC of 95%. In addition to careful monitoring of 
clinical parameters, this clinical decision tool might tailor future physiologically based therapeutic approaches or 
support precision medicine decisions. By providing insights into potential organ injury, our model encourages 
timely consideration of AKI and survival outcomes, potentially enabling earlier renal-protective interventions 
like methylxanthines41 and improving survival rates for affected neonates.

Methods
This study reanalyzed previously reported pooled datasets on sCr18,19 (Tables 5 and 6). The initial study protocol 
was approved by the Ethics Committee Research of UZ /KU Leuven (S63365). Informed written consent was 
hereby waived. We confirm that all research was performed in accordance with relevant guidelines/regulations.

Datasets in TH-treated NE neonates and non-TH-treated, non-NE control neonates
Data from 8 TH-treated NE cohorts were combined19 (Table 5). The first ten days of PNA were analyzed to assess 
recovery of kidney function over time. Day 1 was hereby defined as the date of delivery (from birth until 24 h). 
AKI detection was based on the KDIGO definition (any AKI): sCr↑ ≥0.3 mg/dL within 48 h or sCr↑ ≥1.5 fold 
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versus the lowest prior sCr within 10 days, irrespective of urine output. Data on NE severity, fluid management, 
perinatal pharmacotherapy, comorbidity, or urine output were not available. sCr observations in controls were 
extracted from an already published sCr population model as a time-dependent covariate in neonates14,19,28,42–48. 
The covariates collected in both datasets were restricted to birth weight, GA, survival (neonatal death, day 1–28, 
yes/no), and sCr values (day 1–10) to facilitate pooling. We have 1149 TH treated NE neonates with 5526 sCr 
observations within the first 10 days. Information on included cohorts of TH-treated NE neonates is provided 
in Table 5.

Cohort
Time 
interval Characteristics Observations

Count of 
creatinine 
observations

Leuven 2007–2011
This cohort included 1080 neonates admitted to NICU (24–42 weeks of GA) over the first 6 weeks of PNA48

GA ≥ 36 weeks neonates included
Diverse clinical indications (including suspected infections, respiratory conditions, congenital anomalies)
TH-treated NE neonates were excluded

801 controls
2881 sCr observations 
during the first 10 days
Assay: enzymatic

1–16

Table 6. Description of the control cohort of hospitalized neonates included in the pooled study48.

 

Cohort
Time 
interval Characteristics Observations

Count of 
creatinine 
observations Therapeutic hypothermia criteria

Leuven 2010–
2020

TH-treated NE neonates 
in whom amikacin 
pharmacokinetics (Leuven, 
Amsterdam) were reported 
were included43

87 neonates
355 sCr
assay: Jaffe, to enzymatic

1–10 In the first 6 h, and (i) gestational age (GA) ≥ 36 weeks, (ii) at least one 
asphyxia condition: Apgar5min ≤ 5, or need for resuscitation or respiratory 
support in the first 10 min, or umbilical cord pH < 7.0 with a base deficit 
≥ − 16 mmol/L, or lactate > 10 mmol/L within the first hour, and (iii) signs 
of NE (Thompson ≥ 7, or amplitude-integrated electroencephalography, 
aEEG)42,44

This cohort was extended to 
all TH-treated NE neonates 
admitted to Leuven unit 
during the time interval

13 Neonates
82 sCr assay: enzymatic 2–8

CoolCap 1999–
2002

The objective of the 
CoolCap study was to 
determine whether 72 h 
mild TH provided by 
selective head cooling, 
started within 6 h, 
improved survival and 
neurodevelopmental 
outcome at 18 months in 
neonates with moderate 
or severe NE45. Only TH-
treated NE neonates were 
included

111 neonates
439 sCr assay: both, but 
unknown, center-specific

1–9

(i) GA ≥ 36 weeks, (ii) at least one asphyxia condition: Apgar5min ≤ 5, or 
continued need for resuscitation or respiratory support at 10 min after 
birth, or umbilical cord pH < 7.0 or a base deficit >− 16 mmol/L, or in an 
arterial/venous sample within the first hour, and (iii) moderate to severe 
NE consisting of altered state of consciousness (shown by lethargy, stupor, 
or coma) AND at least one or more of the following: hypotonia, abnormal 
reflexes, absent or weak suck, clinical seizures, and (iv) abnormal 
background aEEG (20 min)45

Zekai 
Tahir 
Burak

2011–
2014

In a prospective nested 
case-control study, data in 
TH-treated NE neonates 
were provided46

40 neonates
80 sCr assay: Jaffe 2 TH initiation was based on the Total Body TH for Perinatal Asphyxia 

(TOBY) criteria46

Ankara

2015–
2021 Koru Hospital19 82 neonates

493 sCr assay: Jaffe 3–12 Asphyxia was defined by (i) Apgar5/10min ≤5; (ii) cord blood pH < 7.00 
or BE of ≥-16 mmol/L, further confirmed by (ii) imaging evidence of 
NE-compatible brain injury or multiorgan failure60. Neonates (GA ≥ 36 
weeks) with perinatal asphyxia were eligible within 6 h if they had NE 
(Thompson > 5, Sarnat Stage 2 or 3, discontinuous regular voltage pattern 
or worse on aEEG, or convulsions. Neonates with known congenital 
deformities or disorders were excluded. For patients who did not meet all 
diagnostic criteria (neonates 34–35 weeks GA, patients with a cord blood 
gas pH > 7 and a BE between − 12 and − 16), TH initiation was discussed 
with the consultant60

2013–
2021 Gazi University Hospital19 54 neonates

488 sCr assay: Jaffe 3–26

Montreal 2008–
2021

sCr observations reported 
(n = 202, 2009–2015)61 were 
further extended

439 neonates
2171 sCr assay: enzymatic 1–31

TH criteria were (i) GA ≥ 36 weeks and birth weight ≥ 1800 g, (ii) evidence 
of fetal distress, i.e. history of an acute perinatal event, cord pH < 7.0 or 
base deficit >− 16 mEq/L, (iii) evidence of neonatal distress, such as an 
Apgar10min ≤ 5, postnatal blood gas pH obtained within the first hour ≤ 7.0 
or base deficit >-16 mEq/L or continued need for ventilation initiated at 
birth and continued for at least 10 min, and (iv) evidence of moderate to 
severe NE indicated by abnormal neurological exam and/or aEEG61

Stanford Various Pooling of 3 previously 
reported studies14,28,47

63 neonates
457 sCr assay: both (study 
specific)

1–16
≥ 36 weeks GA diagnosed with moderate or severe NE underwent TH. 
TH criteria were as outlined in the National Institute of Child Health and 
Human Development (NICHD) TH study62

Utrecht 2008–
2021

Data extraction from the 
medical files in all TH-
treated NE neonates19

260 neonates
961 sCr assay: enzymatic 1–11

TH inclusion criteria in the first 6 h were (i) GA ≥ 36 weeks, (ii) at least 
one asphyxia condition: Apgar5min ≤ 5, or need for resuscitation or 
respiratory support in the first 10 min, or cord blood pH < 7.0 with a base 
deficit >− 16 mmol/L, or lactate > 10 mmol/L within the first hour, and (iii) 
clinical signs of NE (Thompson ≥ 7) or aEEG background abnormalities 
(discontinuous normal voltage with a baseline below 5 µV) or seizures44

Table 5. Description of the cohorts of TH-treated NE neonates included in the pooled study19.
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We analyzed serum creatinine (sCr) data from 801 control neonates with a GA of ≥ 36 weeks and postnatal 
age (PNA) of 1–10 days, collected from the neonatal intensive care unit of the University Hospitals Leuven 
(2007–2011) (Table 6). Neonates treated for infections, respiratory adaptation, and congenital malformations 
were included, excluding those receiving therapeutic hypothermia. The dataset yielded 2,881 sCr measurements 
within the first 10 days and relevant covariates (birth weight, GA).

The descriptive statistics of covariates for TH-treated NE neonates and control neonates are presented in 
Tables 7 and 8. The sCr values obtained by the Jaffe assay were converted to values equivalent to ones obtained 
by an isotope dilution mass spectrometry (IDMS) traceable enzymatic assay using the following Eq. (1): sCrIDMS 
= 1.003 × sCrJaffe + 0.057, (conversion, 1 mg/dL = 88.4 µmol/L).

Machine learning (ML)
The general basis of the ML model was to use the four types of neonatal data available in our multicenter 
international pooled dataset (GA, birth weight, PNA, and creatinine values) as input and to determine one of 
the five classes of outcomes that were described in our dataset, which are:

 (1) TH-treated NE neonates who survived without AKI.
 (2) TH-treated NE neonates who survived with AKI.
 (3) TH-treated NE neonates who died without AKI.
 (4) TH-treated NE neonates who died and had AKI.
 (5) Hospitalized neonates who did not need TH.

As the outcome of the prediction is categorical, a classification model would be ideal for our needs. Different 
classifiers were experimented to figure out the most capable model to engineer and yield the most optimal 
results49 (Table 1 and Supplements). These models include Logistic Regression, Random Forest, Support Vector 
Classifier (SVC), Extreme Gradient Boosting (XGBoost), Gradient Boosting, Adaptive Boosting (AdaBoost), 
K-Nearest Neighbors (KNN), Decision Tree Classifier, Extra Trees Classifier, and a neural network49.

In this study, a hierarchical model of four XGBoost classifiers was proposed as a simplification in the decision-
making process of the classifier, as each classifier would be responsible for binary classification, and decisions 
would be made in cascading order, from the broadest decision to the eventual selection of a label, in a similar 
fashion to a decision tree. This model was further optimized using parameter optimization through GridSearch, 
interaction features derived from the input data, and oversampling of the classes where TH resulted in mortality 
since there was a large imbalance between survived and death cases of treatment. Oversampling was handled 
using the RandomOverSampler from the imbalance learning package (imblearn)50. Although the oversampling 
did improve the classification of predicting neonatal deaths from day 1 remained the model’s overall weakness.

We take considerable steps to prevent data leaking and ensure that our model’s performance is accurate and 
applicable to new data.

Groups and clinical variables Minimum Maximum Median Mean

TH-treated NE neonates

 Body weight (g) 1750 6230 3340 3347.81

 Postnatal age (days) 1 10 3 3.36

 Creatinine (mg/dL) 0.08 4.1 0.74 0.84

 Gestational age (weeks) 34 43 39 39.03

Control neonates

 Body weight (g) 1280 6000 3167.5 3154.34

 Postnatal age (days) 1 10 4 4.34

 Creatinine (mg/dL) 0.18 4.13 0.57 0.62

 Gestational age (weeks) 35 42 38 38.27

Table 8. Patient characteristics of NE and control neonates.

 

Patient status Number of observations

TH-treated NE neonates survived without AKI 4099

TH-treated NE neonates survived with AKI 699

TH-treated NE neonates died without AKI 519

TH-treated NE neonates died with AKI 209

Hospitalized (control neonates, non-NE) 2881

Total 8407

Table 7. Neonates’ number for each group in dataset.
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Patient-level splitting
During the cross-validation procedure, we separated data from each patient. All data points (serum creatinine 
values) from a single patient were assigned to either the training or test set, never both. This ensures that the 
model does not “learn” from the same patient’s data in both sets by accident.

We used a method called stratified K-fold (StratifiedKFold) cross-validation, which ensures that the balance 
of groups is kept in each split.

Despite all this model tuning, an overall accuracy of no more than 73.5% was obtained. This is due to an 
expected drop-off in accuracy, even after tuning, when faced with cascading decision processes. Furthermore, 
the model was severely limited as the first and broadest classifier in the model, which predicted between alive or 
dead neonates, suffered the lowest accuracy due to data imbalance, which is survived neonates’ number are more 
than dead neonates (Table 7), ultimately capping the model’s performance at the level of its weakest classifier.

A reversion to a single XGBoost classifier predicting all five labels was made to negate this phenomenon 
of cascading error. Interaction features and GridSearch were also applied with slightly different parameters to 
account for differences in the model. Oversampling was programmed once again using RandomOverSampler, 
which functions manually this time by selecting the minority labels, specifying the desired sample count for 
the minority labels, then continuously randomly sampling from the minority classes until the ideal amount 
is reached and concatenating that set to the dataset for training. This was done since techniques such as the 
Synthetic Minority Oversampling Technique (SMOTE) yielded mediocre results. Patient-Level Splitting and 
Stratified Cross-Validation (StratifiedKFold) were once again used for testing. We employed a double cross-
validation, wherein the model underwent k-fold cross-validation. Additionally, the dataset utilized comprised 
one of five stratified datasets, each with its corresponding test set, which was entirely excluded from the training 
process. After testing the respective training sets with their corresponding test sets, the results were averaged to 
obtain the current accuracy. This approach offers greater protection against bias for the model than traditional 
cross-validation methods. The model achieved an overall accuracy score of 75.1%. In evaluating classification 
performance, key metrics such as accuracy, precision, recall, F1-score, and AUC provide essential insights, each 
with distinct strengths and limitations (Table 9).

Accuracy quantifies the proportion of correctly classified instances across all predictions but can be misleading 
in imbalanced datasets, where a model may achieve high accuracy by predicting only the majority class while 
failing to detect minority cases. Where true positives (TP) and true negatives (TN) represent correctly classified 
instances, while false positives (FP) and false negatives (FN) denote misclassified cases (Table 9).

While accuracy is intuitive, it has notable limitations, particularly in imbalanced datasets where one class 
significantly outweighs another. A model could achieve high accuracy simply by predicting the majority class 
while failing to detect the minority class altogether. In such scenarios, additional metrics like precision, recall, 
F1-score, and ROC-AUC are essential to provide a more comprehensive evaluation of model performance 
(Table 9).

‘Overall accuracy score’ is defined as the proportion of correctly predicted cases relative to the total number 
of cases. This metric provides an initial measure of model performance across all outcome classes, although 
its limitations in the context of imbalanced data are acknowledged. Accuracy indicates the overall proportion 
of correct predictions; AUC measures the model’s discriminative ability; MCC offers a balanced performance 
measure even with imbalanced classes; and precision, recall, and F1-scores provide insight into the true positive 
rates and error margins.

F1 Score is the harmonic mean of precision and recall. Detailed definitions were given below (Table 9).
AUC (Area Under the Curve) evaluates the classifier’s ability to distinguish between classes, with higher values 

indicating better discrimination. It remains useful even in imbalanced datasets, as it considers performance 
across varying decision thresholds.

A combination of these metrics is essential for a robust evaluation, particularly in medical classification tasks 
where both false positives and false negatives carry significant consequences.

MCC (Matthews Correlation Coefficient), in a one-vs‐all setting, incorporates all four elements of the 
confusion matrix (TP, TN, FP, FN). It is therefore more balanced, especially when there is an uneven distribution 
of negatives versus positives. MCC values range from − 1 to + 1, where + 1 represents perfect prediction, 0 reflects 
random prediction, and − 1 signifies complete disagreement between predictions and actual outcomes.

We also looked at the calibration curves of our single classifier models (Fig. 9). To assess our model’s 
performance on the imbalanced dataset, we calculated the Matthews correlation coefficient (MCC)35. Recent 
research and applications highlight the robustness of MCC in multi-class problems, particularly in domains 
where class distributions are highly skewed. Studies suggest that MCC provides more reliable insights than 
metrics that may disproportionately favor the majority class.

Accuracy = T P +T N
T P +T N+F P +F N

F1 = 2 × Precision× Recall
Precision+Recall

Precision = T P
T P +F P

Recall = T P
T P +F N

Table 9. Evaluation metrics in machine learning.
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This methodology benefited our model incorporating post-natal age (PNA) as a variable and utilizing 
multiple measurements per patient enabled the model to analyze the temporal variations of creatinine levels in 
relation to other clinical factors. We also inserted the creatinine percentiles within first ten days.

Comprehensive evaluation of classification performance
Our models were trained using four input variables: gestational age (GA), birth weight (BW), post-natal age 
(PNA), and creatinine values (Cr). The feature analysis was conducted to enhance the explainability of our 
models and to understand the interaction among these variables. We employed feature importance techniques 
and interaction bars to illustrate how these variables contribute to the model’s predictions.

User interface for practical application
We developed an intuitive user interface integrated with the final version of the trained ML model (XGBoost); 
code was made publicly available too ( h t t p s :  / / g i t h  u b . c o m  / N U B a g  c i L a b  / Th  e r a  p e u t i c  - H y p o t  h e r m i  a - O u t c  o m e - C l  
a s s i fi   c a t i o n). The model takes input from all the metrics it was trained on (gestational age, birth weight, postnatal 
age, and creatinine level), with the option to choose between mg/dL and µmol/L for creatinine levels. When the 
“Predict” button is pressed, the model receives the input, which is used to predict the outcome TH  (   h t t p s : / / t h 
p r e d i c t i o n . s t r e a m l i t . a p p /     ) . It prints out one of five outputs, each message representing one of the five possible 
outcomes, followed by a confidence interval (probabilistic score). A confidence interval was implemented within 
the prediction model, which will provide us with a plausible range of an estimate to express the uncertainty of 
said estimate. This implementation involved a 100 bootstrap sample dataset to calculate the mean probability of 
the predicted outcome. Then, the standard deviation of the samples is computed to measure the variability in 
predictions, and the confidence interval is calculated using the 95% CI formula, where 95% of data lies within 
1.96 standard deviations of the mean.

Odds ratios were also calculated to measure the association between exposure and an outcome, specifically 
the relative odds of death given the presence of AKI. This was calculated by first finding the odds of death in the 
case of infants with AKI and then the odds of death without AKI. The odds ratio is the ratio of these two odds, 
comparing the likelihood of death in patients with AKI against those without AKI (Figures in Supplements).

Data availability
User interface and code are freely and publicly available ( h t t p s :   /  / g i t h u  b . c o  m / N U B a  g c i L  a  b / Th  e r  a p e u t   i c - H y p  o t h 
e r   m i a - O u  t c  o m e  - C l a s s  i fi  c a t i o n, https://thprediction.streamlit.app/). Dataset is available from the corresponding 
author upon reasonable request.
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