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Abstract

Intraguild predation (IGP) occurs when one predator species attacks another predator species with which it competes for a
shared prey species. Despite the apparent omnipresence of intraguild interactions in natural and managed ecosystems, very
few studies have quantified rates of IGP in various taxa under field conditions. We used molecular analyses of gut contents
to assess the nature and incidence of IGP among four species of coccinellid predators in soybean fields. Over half of the 368
predator individuals collected in soybean contained the DNA of other coccinellid species indicating that IGP was very
common at our field site. Furthermore, 13.2% of the sampled individuals contained two and even three other coccinellid
species in their gut. The interaction was reciprocal, as each of the four coccinellid species has the capacity to feed on the
others. To our knowledge, this study represents the most convincing field evidence of a high prevalence of IGP among
predatory arthropods. The finding has important implications for conservation biology and biological control.
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Introduction

Contemporary ecologists struggle with complexity. Communi-

ties involve thousands of species interacting in many diverse ways

within the spatial and temporal variability of natural ecosystems

[1]. In the late 1980’s it became apparent that models based on

functional trophic levels were not sufficiently universal to

understand the dynamics and structure of communities [2]. The

necessity of integrating non-trophic and indirect relationships has

prompted theoretical and empirical work aimed at examining the

role of omnivores. One form of omnivory is intraguild predation

(IGP), where one predator species attacks another predator species

with which it also competes for a shared prey species [3].

Following the pioneering field study of Polis and McCormick

[4] on species of desert scorpions that feed on each other, a fertile

and rapidly growing literature on IGP has led to a reconsideration

of several classical topics in ecology such as stability and diversity

of communities, trophic cascades in food webs, niche shift and

species exclusion, as well as the effects of ecosystem productivity on

species interactions [3,5–8]. IGP also rapidly became relevant to

aspects of applied ecology such as biological control, management

of endangered species and the establishment of exotic invasive

predators [9–11]. IGP is now considered to be ubiquitous in

aquatic and terrestrial ecosystems, occurring in a great diversity of

taxa from bacteria to mammals [3]. According to an analysis

conducted by Arim and Marquet [12] using 113 food webs, 58–

87% of animal species are involved in IGP interactions.

Despite this apparent ubiquity of intraguild interactions in both

natural and managed ecosystems, and despite the importance of

these interactions in structuring communities, very few studies

have quantified rates of IGP in various taxa under field conditions.

This is especially true for predatory arthropods, most likely

because of the perceived difficulty of performing field observations

of predation events [13]. Intraguild interactions among arthropod

species have traditionally been studied in Petri dishes [14], or in

field cage experiments [15–18]. Although important for identifying

potential functional trophic and guild links among species, these

approaches are inadequate for predicting the full complexity of

both direct and indirect interactions [13,19]. Consequently, results

from experiments conducted in experimental arenas that have a

limited number of interacting species and are conducted for short

periods of time have led to skepticism about the actual occurrence

and significance of IGP in nature [20].

Some studies have examined IGP in more natural settings using

different methodological techniques and are important in

complementing the less natural enclosure-based experiments.

First, a number of semi-quantitative food-web studies document-

ing the existence (presence/absence) of trophic linkages between

omnivores have shown that predators also include predatory

species in their diet [4]. Second, purely observational field studies

have quantified predator-predator interactions [21]. Third,

experimental studies have been conducted in which the full,

natural community of predators and prey were retained, and there

was little if any constraint imposed on predator foraging [22].

Finally, a range of biochemical and molecular techniques have

been developed to analyze gut contents and assess the diet of

predatory arthropods under field conditions [23].

In this study we assess the nature and incidence of IGP among

four species of coccinellid predators (Coleoptera: Coccinellidae) in

soybean fields under natural conditions. This system has several
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favourable attributes for the study of IGP. Coccinellids are

generalist predators, voracious both during their larval and adult

stages. In soybean fields of Québec, Canada, they can be

abundant and naturally play a role in aphid control [24]. They

show an aggregative response to prey density [25–27], thereby

increasing encounter rates with conspecific or heterospecific

coccinellids. Furthermore, a number of laboratory or exclusion

cage experiments have shown that IGP is potentially a common

interaction among coccinellids [14,28] and have identified major

ecological determinants of IGP such as relative size of the

protagonists, mobility and aggressiveness, feeding specificity and

aphid density [14,29].

A second advantage for using coccinellids as a model system is

that we have developed molecular gut-content analyses to assess

levels of IGP [30]. This approach uncovers predation events

without interfering with the behavior of predators and prey and

without disrupting ecosystem processes [31,32]. Gut-contents

analysis using the polymerase chain reaction (PCR) has recently

been applied to the study of IGP between predator species [33]

and between predators and parasitoids [17,34].

Methods

Ethics statements
No specific permits were required for the described field studies

and it did not involve endangered or protected species. Permission

to sample invertebrates in the fields was obtained by each grower.

The study system
We studied the community of coccinellids associated with the

soybean aphid, Aphis glycines Matsumura (Homoptera: Aphididae),

a recent invasive pest in North America [35]. The four dominant

species in soybean fields in the province of Québec are: Coccinella

septempunctata Linnaeus, Propylea quatuordecimpunctata Linnaeus,

Harmonia axyridis (Pallas) and Coleomegilla maculata lengi Timberlake,

the only native species in this system [36]. These four coccinellid

species are sympatric and present throughout the season, with H.

axyridis arriving later than the others. Their abundance in soybean

is mostly correlated with aphid densities, as commonly observed in

agroecosystems [37].

Our primary objective was to estimate IGP levels within

coccinellid assemblages in soybean fields. For the purposes of this

paper, we define the IGP level as the proportion of a sample of a

given predator species that contains measurable amounts of DNA

of at least one different predator species in their guts. We do not

attempt to examine the multitude of ecological factors that can

promote the occurrence of IGP (predator and prey densities,

predator:prey ratio, predator stage structure, etc) across fields or

sampling dates; these analyses will be presented elsewhere.

However, to place the present study in context we provide general

information about aphid and coccinellid populations. Aphis glycines

populations were relatively high with seasonal means of 266 and

371 aphids per plant in 2004 and 2005, respectively (A.E. Gagnon,

unpublished data). The coccinellid community in 2004 was

dominated by H. axyridis and C. septempunctata (representing 48 %

and 41 %, respectively, of all four species) with a small proportion

of C. maculata (5 %) and P. quatuordecimpunctata (6 %). In 2005, the

proportions of each species were as followed: H. axyridis (59 %), C.

septempunctata (18 %), C. maculata (14 %) and P. quatuordecimpunctata

(9 %).

Coccinellids were sampled in soybean fields in 2004 and 2005

with sweep netting, put in an electric icebox at 4uC, and brought

to the laboratory. Specimens were frozen (220uC) and then

washed in 70% ethanol to prevent possible contamination

stemming from the time that predators had been held together

in the collecting bag [38,39]. In experiments done by Greenstone

et al. [40], vigorous beating of plants followed by aspiration of

insects into a common dry beaker led to incorrect assignment of

gut contents – presumably due to regurgitant or feces from non-

prey species contaminating the integument of predators. Contam-

ination in our case is expected to be much lower because insects

were immediately chilled rather than aspirated into a common

beaker [38,39]. Also, contamination in the Greenstone et al. study

was likely particularly high because the prey species they used

(larvae of the Colorado potato beetle, Leptotinarsa decemlineata) is

known to regurgitate readily and in large amounts, and is often

covered with secretions and feces that may be particularly prone to

generate contamination [40]. Finally, a substantial fraction of the

control animals in the Greenstone et al. experiment showed

contamination, which brings into question the validity of the study

(as the authors themselves noted). Samples were preserved in vials

with 70% ethanol at 4uC until DNA extraction. Coccinellids were

sampled in four different fields, located within the municipalities of

Maskinongé (46u129390, -73u029020), Hérouxville (46u399590,

-72u379270), Nicolet-Sud (46u129040, -72u369470) and Saint-

Augustin-de-Desmaures (46u449190, -71u289430) in the province

of Québec. A total of 188 and 180 coccinellid individuals were

sampled in 2004 and 2005, respectively (Figure 1 provides details

per species). Insects were sampled from mid-July to mid-

September. We only used fourth larval instars in our analyses

because they are more likely to be engaged in IGP than are other

stages [28].

DNA extraction and PCR cycles
DNA extraction and PCR protocols were modified from

Hoogendoorn and Heimpel [41]. DNA was extracted from whole

coccinellid larvae. Each insect was ground in a 1.5 ml micro-

centrifuge tube using sterile plastic pestles (Ultident Scientific inc.)

with 100 ml of grinding buffer [42]. PCR amplifications were done

separately for each primer pair (H. axyridis; C. septempunctata; C.

maculata; P. quatuordecimpunctata). Details of development and cross-

reactivity tests of PCR markers are presented in Gagnon et al. [30].

All predators were screened against the primers of all three

potential intraguild prey and against a universal primer (12Sai and

12Sbi, [43]). The screening against the universal primer pairs was

done to ensure that DNA could be successfully detected in all

specimens. Amplifications were performed in total volumes of

25 ml, composed of 20.25 ml of 16buffer (0.25 mM of each dNTP

and 1.5 mM of MgCl2), 2.5 ml of primer mix (20 mM), 0.25 ml of

Taq (i.e. 1.75 units) (Promega), and 2 ml DNA sample. The

thermocycling program consisted of an initial step of 30s at 94uC
(for H. axyridis, we used a hot start, i.e. addition of the Taq after the

first step), followed by 30 s at 94uC, 30 s at 52uC (H. axyridis =

55uC), and 30 s at 72uC. The three last steps were repeated 30

times and were followed by a step of 5 min at 72uC. All PCR

products (10 mL) were electrophoresed at 120V in 2% agarose gels

for approximately 1 h and then stained in ethidium bromide

solution for 20 min and then visualized using a UV light-

transilluminator. DNA is detectable at very low concentrations

(from 35.5 ng 6 1024 to 35.5 ng 6 1026 depending on species

primers) under optimal conditions (without heterospecific DNA).

Prey DNA detection success over time (DS50, the time after

which 50% of the predators of a cohort that fed at the same time

test positive for the presence of a species of prey using the PCR

assay) ranged between 5.2 h and 19.3 h among combinations of

interacting coccinellid species [30]. For this reason, corrected data

using DS50 values for each predator-prey combination need to be

used when comparing intensity of IGP between different

IGP among Coccinellids
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coccinellid species. Such a correction confers more importance to

a ‘‘rapidly digesting’’ species combination where probability of

detecting an intraguild prey is lower than for a ‘‘slowly digesting:’’

species combination [44–46]. DS50 values for each predator-prey

combination were weighted to obtain the DS50
weighted as follows:

the shortest DS50 was assigned a value of 1.0 and other weighted

DS50 values were obtained by placing this benchmark DS50 in the

numerator and each other DS50 value in the denominator. The

corrected predation value is calculated by multiplying the

proportion of field-collected predators found to contain prey

remains by their specific DS50
weighted. We did not attempt to

estimate amount eaten per predator because no strong relationship

had been found between the number of prey eaten and the

duration of DNA in gut-contents of coccinellids [29,41].

Results

Three novel results emerge from our study. First, levels of IGP

were extremely high with averages of 46.8% and 58.9% (non-

weighted data) of all coccinellids containing DNA of other

coccinellids in their gut in 2004 and 2005, respectively (Table 1).

The intensity of IGP for each coccinellid-coccinellid interaction,

expressed as the proportion of each species of IG prey detected in the

gut of IG predators is shown in Figure 1. Using the weighted DS50

values changed the ranking of predators in terms of IGP strength

quite drastically in 2004 but only slightly in 2005. In 2004, the

ranking using raw data was as follows: P. quatuordecimpunctata . C.

maculata . H. axyridis . C. septempunctata (Figure 2). Using weighted

DS50 values revealed the following ranking: H. axyridis . C.

septempunctata . P. quatuordecimpunctata . C. maculata (Figure 2). Thus,

using raw data leads to an underestimation of the relative importance

of IGP by H. axyridis and C. septempunctata. In 2005, relative IGP rates

were more similar among species. The ranking using raw was: C.

maculata . H. axyridis . C. septempunctata . P. quatuordecimpunctata

(Figure 2), which was almost unaltered when weighted DS50 values

were used, except that the relative strengths of IGP for C.

septempunctata and P. quatuordecimpunctata were the same (Figure 2).

Second, the results indicate that IGP is reciprocal with each of

the four coccinellid species feeding on each of the other three

species (Figure 1). However, although levels of IGP were high in

both years, the relative proportion of intraguild prey species varied

between years. In 2004, H. axyridis was strongly represented as an

intraguild prey species, whereas in 2005 P. quatuordecimpunctata and

C. septempunctata were the dominant intraguild prey species.

Third, we report multiple prey detection (Table 1). When results

from both years are combined, 11.8% of the intraguild predators

contained the DNA of two other coccinellid species in their gut,

and we detected three intraguild prey species simultaneously in the

guts of 1.4% of the sampled coccinellids. Consumption of two

intraguild prey species was most common in H. axyridis (48.1% of

all cases) and C. maculata (35.7%), whereas only H. axyridis was

feeding on three intraguild prey species.

Discussion

Our results indicate that IGP is very common among coccinellid

species in soybean fields. Levels of IGP were high, with 52.9% of

all sampled individuals containing the DNA of one, two and even

three other coccinellid species in their gut. The interaction is

reciprocal, as each of the four coccinellid species has the capacity

to feed on the other three species. To our knowledge, this study

represents the most convincing field evidence of the prevalence of

IGP among predatory arthropods.

Our demonstration reflects the reality of the field situation. We

used a sampling technique that entails no perturbation to the

ecosystem or to the members of the community. Coccinellids were

sampled in situ, without altering their behavior or distribution,
thereby reducing potential artifacts that invariably arise through

experimental manipulations conducted under laboratory condi-

tions or within field cages. Molecular analyses allow the detection

of minute amounts of prey material by PCR after DNA extraction.

Molecular gut-contents analyses led to a demonstration of complex

predation events between co-existing species and open the

opportunity to better understand the dynamics and structure of

communities. However, molecular gut-content analyses have their

limits as well [23]. First, it is very difficult or impossible to

determine the number of prey items a given predator has

consumed, even using quantitative PCR [37,47]. This is because

the size of prey items and the degree of digestion per prey item can

vary so widely. For this reason, the ecological significance of

intraguild predation can be difficult to determine because we

cannot compare the amount of intraguild prey eaten in relation to

the extraguild prey. However, using DS50 correction allowed a

Figure 1. Levels of intraguild predation among four species of
coccinellids measured by molecular gut content analysis in
soybean fields in Québec, Canada, in 2004 and 2005. Results are
expressed as the proportion of each species of intraguild prey detected
in the gut of intraguild predators. Ha = Harmonia axyridis, C7 =
Coccinella septempunctata, Cmac = Coleomegilla maculata, P14 =
Propylea quatuordecimpunctata. Numbers above histogram bars repre-
sent the number of individuals tested.
doi:10.1371/journal.pone.0028061.g001

IGP among Coccinellids
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comparison of intraguild predation rates between predator species

that have different digestion times [30,45,46]. Second, scavenging

or secondary predation (in which a predator eats another predator

species containing the prey of interest in its gut) cannot be

discriminated from true predation using PCR [48,49]. And lastly,

PCR detection of cannibalism is not achievable because

conspecific DNA cannot be discriminated from predator DNA.

Thus, we still lack a basic understanding of the relative importance

Figure 2. Relative strength of intraguild predation by each of the four coccinellid species measured by molecular gut content
analysis in soybean fields in Québec, Canada, in 2004 and 2005. Results are shown for raw and weighted data*. Ha = Harmonia axyridis, C7 =
Coccinella septempunctata, Cmac = Coleomegilla maculata, P14 = Propylea quatuordecimpunctata.
doi:10.1371/journal.pone.0028061.g002

Table 1. Number (N) of specimens tested and levels of intraguild predation (raw data) among four coccinellid species with
molecular gut-content detection of one to three different intraguild prey species in a same predator, in 2004 and 2005.

N One intraguild prey species Two intraguild prey species Three intraguild prey species Total IGP

n % n % n % n %

2004 188 72 38.30 14 7.45 2 1.06 88 46.81

2005 180 74 41.11 29 16.11 3 1.67 106 58.89

doi:10.1371/journal.pone.0028061.t001

IGP among Coccinellids
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of IGP and cannibalism, a common phenomenon in Coccinellidae

[50,51] for population dynamics. Monoclonal antibody-based

ELISA could be useful in detecting cannibalism because it can be

used to distinguish different life stages [52,53].

While IGP models of predator-predator interactions, as well as

the effects of omnivory on extraguild prey suppression have

recently received considerable attention from both empiricists and

theoreticians [2,6,7,19,54-57] very few studies have explicitly

measured levels of IGP in arthropods under field conditions. To

our knowledge only three other field studies using molecular

techniques have directly quantified levels of IGP in arthropods. In

the soybean agroecosystem, Harwood et al. [58] examined

predation between H. axyridis and the predatory bug Orius insidiosus

(Say) (Hemiptera: Anthocoridae) using molecular gut-content

analysis. Less than 2.5% of O. insidiosus tested positive for the

detection of H. axyridis. Chacon et al. [17] detected aphid parasitoid

DNA in two predator species using PCR in a study examining IGP

of released parasitoids of the soybean aphid. In this study,

percentages of predators testing positive for parasitoid DNA

ranged from 8 to 17. Hautier et al. [59] reported that 9 out of 28 H.

axyridis collected in potato fields had fed on heterospecific species

of coccinellids, based on alkaloid quantification by gas-chromato-

graph-mass spectroscopy (GC-MS). Although this latter technique

is promising, identification of prey species is only possible at the

genus level and this method has also been estimated to be more

expensive than other analyses of gut contents [60]. More

information about IGP levels measured under natural conditions

is available for larger predators from different taxa (see Table 2 for

selected examples), probably because predation events can be

more easily detected through different sampling techniques. The

first published study quantifying the incidence of IGP in nature

was conducted by Polis and McCormick [4] who observed

relatively high proportions of intraguild prey in the diet of desert

scorpions, from 8 to 21.9%, and up to 45% for the species

Paruroctonus mesaensis. Feeding information was easily collected on

scorpions through observation because they digest their prey

externally. Nevertheless, available data, both for arthropods and

other taxa containing predators, are still too sparse to suggest

patterns about the relative strength of IGP.

Several factors may contribute to the very high levels of IGP we

quantified in coccinellids. First, coccinellids respond numerically

to high aphid densities [24-27] a condition that may favour

encounters between predators; although high prey abundance may

also lead to predator satiation and thereby a reduction in

intraguild interactions. Second, by eating a heterospecific,

intraguild predators eliminate a competitor and thereby improve

access to the aphid resource. Third, aphids are a relatively low

quality prey resource [61], and coccinellids may benefit by

complementing their diet by feeding on other coccinellids. A

recent study also showed high levels of predation on coccinellid

eggs in soybean fields in Michigan, USA [18]. However we still

have a poor understanding of ecological factors that influence the

strength and direction of intraguild interactions, and there is a

need for more empirical studies that examine the effect of factors

such as seasonality, vegetation-structured complexity, habitat

productivity, extraguild prey density, as well as the behaviors

and life histories of protagonists.

Over the last 20 years, several models and experimental studies

have examined the nature and role of intraguild interactions in

both terrestrial and aquatic communities. Intraguild predation is

now considered to be ubiquitous in most species assemblages [12].

However, previous studies conducted in natural or managed

ecosystems have largely overlooked the prevalence of IGP among

top predators. Our results on coccinellids emphasize the

importance of quantifying IGP in the field. This basic information

is central for understanding the role of top predators in population

dynamics and community structure, and from a more applied

perspective, to predict their impact in programs devoted to the

biological control of pest species or the management of native

endangered or invasive exotic species.
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Table 2. Selected examples of intraguild predation under field conditions among different taxa.

IG predator IG prey Extraguild prey % IGP Method of detection Region Authors

White-tailed sea eagle
(Haliaeetus albicilla L.)

Mink (Mustela vison
Schreb.)

Fish and birds ,7% (for all mammal
species)

Behavioral observation Finland [62,63]

Cougar, wolf Coyote Small mammals 43–67% Radio-tracked animals Alaska, Idaho [64]

Lion, spotted hyena African wild dog 13–50% South Africa,
Tanzania

Red fox American marten 4% Ontario

Scorpion Paruroctonus
mesaensis

P. luteolus
H. arizonensis
V. confuses

Insects 8–22% (in some
months higher than
40%)

External digestion (direct
observation)

[4]

Eagle owl Tawny owl Mammals, birds,
fish, invertebrates

0.6% Pellets and prey remains
found under nests and
roost sites

Italy [65]

Dingo Feral cat
Red fox

NA 1.2–6.1% Dissection of gut-content Australia [66]

Many intertidal herbivores Many intertidal
herbivores

NA 0.37–10% Dissection of intestinal
content

Chile [67]

doi:10.1371/journal.pone.0028061.t002
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