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Abstract
Ancestral allele information is useful for genetics studies. Previously, the identification of an-

cestral alleles was primarily based on sequence alignments between species. Alternative

ways to identify ancestral alleles were proposed in this study based on population sequenc-

ing data. The methods described here utilized the diversity between haplotypes harboring

ancestral and newly emerged alleles. Simulations showed that these methods were reliable

for identifying ancestral alleles when the variants had not aged too greatly. Application to

the human genome sequencing data suggested the role of indels in maintaining the GC

content in the human genome. The deletion-to-insertion ratios and GC proportions were

correlated depending on the sizes of insertions and deletions in the direction of increasing

GC content. There were GC-biased fixations in single base-pair insertions and AT-biased

fixations in single base-pair deletions in the results based on the proposed methods. In the

current study, GC-biased gene conversions in nucleotide substitutions were very slight or

insignificant. In the variants of several quantitative trait loci (QTLs), slight GC-biased gene

conversion was observed in nucleotide substitutions. For the QTL indels, insertions were

observed more often than deletions, and deletion-biased fixation was observed, providing

new insights into the evolution of functional genes.

Introduction
How genomes evolve is one of the major questions in biology [1, 2], and knowing which allele is
ancestral is important for understanding genome evolution. The actual direction of nucleotide
substitutions could provide valuable information on the formation of GC isochores, large DNA
segments with low variability in their GC content. Ancestral allele information would be crucial
for increasing accuracy when estimating allele ages and could provide a better understanding of
genomic signatures due to selection pressures. Knowing the ancestral alleles of variants could
also offer more specific explanations regarding the formation of linkage disequilibrium patterns
in the genome. In addition, ancestral allele information is also potentially helpful for under-
standing the rise and extinction of disease-causing variants and disease etiology [3–7].

In previous studies, several related species have been compared in order to identify ances-
tral alleles [8]. Advances in multiple sequence alignments have allowed up to 84.47%
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coverage of the human genome, enabling the genome-wide identification of ancestral alleles
in the 1000 Genomes Project [9–11]. The alignment is based on sequences from each species,
which contain variants and private mutations specific to individuals. At some variant or
mutation positions, the alignment may lead to misinterpretation of the ancestral allele. Alter-
native investigations would be particularly useful for validating insertions and deletions
(indels). Deletional biases are well-known features of most genomes [12, 13]. Ancestral allele
identification using sequence alignments produces more deletions than insertions due to
errors, and based on recent developments, deletional bias persists even after corrections fa-
voring deletions are made [14, 15]. Therefore, even with these enhancements in whole-
genome alignment methods, the identification of ancestral alleles still requires improved or
alternative methods.

Population genetics information can be used to identify ancestral alleles. The use of a simple
pairwise metric of haplotype homozygosity recently demonstrated that derived alleles exhibit
significantly higher mean homozygosities than ancestral alleles that were identified using mul-
tiple sequence alignments of the data from the International HapMap Project [16]. The Hap-
Map data were targeted for frequent polymorphisms to find tagging variants for the genome-
wide association studies (GWAS), and statistics based on allele frequency distributions were
not appropriate in the study [16]. When a mutation arises, the haplotype containing the mu-
tant allele is initially monomorphic. As the mutant allele increases in frequency, the haplotypes
containing the mutant allele begin to harbor variants due to mutation and recombination. The
variant diversity in the mutant haplotypes is usually much less than that in the original haplo-
types. The comparison of the population mutation parameters of each type of haplotype, with
and without the mutated allele, can reveal which allele is ancestral. Based on the diversity infor-
mation, two novel methods for identifying ancestral alleles were proposed in this study.

These population-based methods were applied to the human genome sequencing data from
the 1000 Genomes Project [17, 18]. The identified ancestral alleles were compared with ances-
tral alleles based on multiple sequence alignments, and the genome-wide properties of the an-
cestral alleles based on both methods were studied. Recently, genome-wide RNA sequencing
studies were conducted using the same cell lines in the 1000 Genomes Project [19, 20], one of
which provided quantitative trait loci (QTL) with high confidence [19]. The ancestral alleles of
the QTL were examined to look for any differences from the ancestral alleles in whole genome
data. In addition, from the catalog of published genome-wide association studies (GWASs), the
GWAS variants were examined for any differences compared with other variants.

Methods

Ancestral allele identification
For a variant in a population with N individuals, two types of haplotypes exist: a haplotype har-
boring a newly emerged allele and a haplotype harboring an ancestral allele. After an allele has
emerged and survived, the frequency of the haplotype harboring the newly emerged allele may
increase in the population over time. Originally, the haplotype containing the newly emerged
allele is monomorphic; over time, the haplotype diversity increases due to mutation and re-
combination. If the variant survives for a sufficiently long time, both haplotypes become indis-
tinguishable in terms of their diversities. Until then, the haplotype harboring the newly
emerged allele shows less diversity leading to a smaller population mutation parameter (θ),
than the original haplotype. Ancestral alleles can be identified by measuring the diversity of
each haplotype and comparing the results. Therefore, the procedure of identifying ancestral al-
leles is as follows: 1) estimate θ for each type of haplotypes; 2) compare θ estimates; and 3) des-
ignate the allele of the haplotype having the highest θ as an ancestral allele.
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In the current study, the θ estimates and simulations are based on the Wright-Fisher popula-
tion model of a fixed population size with a finite site. Therefore, other estimates that disobey
these assumptions were excluded in the current study. The easiest method of measuring diversi-
ty is to examine the number of polymorphisms in the haplotype. The measurement can be per-
formed for certain base pair ranges that are equal distances from the variant position. Based on
the formula presented below [2, 21], the population mutation parameter (4Nμ), theta (θ), is de-
rived for each haplotype, with and without the newly emerged allele. Among the two estimates
for a bi-allelic variant, a smaller theta indicates that the allele in the haplotype is newly emerged.

y1 ¼ logð1� PÞ = logðqÞ
where P represents the proportion of polymorphic sites on a haplotype with a specific allele and
q represents the smallest non-zero allele frequency of the haplotype sample.

Another method of measuring diversity is to use Wright's theoretical expression [22]. The
population mutation parameter (θ) can be derived from population sequencing data as indicat-
ed below, which has been previously described [23]. To determine each estimate, the former
theta is indicated as theta1 (θ1), and the latter theta is indicated as theta2 (θ2). Because recom-
bination introduces new variants into the haplotype, the estimates involve the slight influence
of recombination. If the range of measurement is as small as possible to estimate theta, howev-
er, the influence of recombination could be minimal.

y2 ¼
1

2

m� ð1�mÞ
v

� 1

� �

where m represents the mean of the beta distribution of allele frequencies for a type of haplo-
type with a specific allele and v represents the variance of the beta distribution for a type of
haplotype with a specific allele. Because the type of variants on the haplotye does not need to
be distinguishable, the beta distribution is fair in the current study. As with θ1 for a bi-allelic
variant, smaller estimates indicate that the allele in the haplotype is newly emerged. For a
multi-allelic variant, the order of allele emergence is determined depending on the theta esti-
mates of each type of haplotypes.

Simulations
Simulations were performed to examine the validity of the proposed methods, similar to a previ-
ous study [24] that was based on a theoretical study [25]. The simulations were conducted as-
suming constant mutation and recombination rates and a constant population size (N). Due to
the computing efficiency and availability, population sizes of 100 and 50 were examined, and the
mutation and recombination rates were 0.00001, which were much higher than the actual values
for the human genome. The total site was 30000 base pairs (bp), and the estimated range was
±2000 bp from the target variant unless otherwise specified. To begin at an equilibrium state, the
initial sequence contained variants based on a beta distribution with parameters of 4Nμ, and
randommating with constant mutation and recombination rates was performed for 8N genera-
tions. After the initial randommating, randommating for 1000 generations was conducted to
examine the diversity of derived and ancestral alleles of variants. The mean estimates of variants
at each generation (from 2 to 500) following the simulations are illustrated in Fig 1A and S1 Fig.

Because a sequence of 30000 bp did not have sufficient variants when the mutation and re-
combination rates were 0.0001, 20 sequences of 30000 bp were examined together using paral-
lel computing. When the mutation and recombination rates were 0.00001, 300 sequences of
30000 bp were analyzed together. For the sampling simulations, the same simulations for a
2000 bp sequence were performed up to the initial random mating for 8N generations, and
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samplings with replacement proceeded for different sample sizes. This procedure was repeated
1000 times in parallel, and the mean values and confidence intervals are plotted in S2 Fig.

Analyses of the human genome sequencing data
Low-coverage whole-genome sequencing data of 1092 individuals produced by the 1000 Ge-
nomes Project were used for the analyses [17, 18]. The integrated files of sequencing data of the
1000 Genomes Project contain the value of 0 or 1 as alleles with the information of reference
and alternative bases. The frequencies (f) of variants with the target allele are ordered and even-
ly assigned to either f or 1-f for a fair beta distribution. Considering the low mutation and re-
combination rates in the human genome, the ranges around the target variants were set to
±5,000 bp for both θ1 and θ2 estimates. The estimates required a sufficient number of variants
within the range. If the region near the target was not sufficiently covered (more than 3,000 bp
missing), the target variant was not included in the estimations. From the sampling simula-
tions, variants with both alleles having more than 10 allele counts (minor allele
frequency>0.0046) were included in the θ1 estimates, and variants with both alleles having
more than 20 allele counts (minor allele frequency>0.0092) were included in the θ2 estimates.

The data from the 1000 Genomes Project contain the ancestral allele information based on
multiple sequence alignments [9–11]. The ancestral sequences were inferred based on the EPO

Fig 1. A. Simulation results of diversity measurements for derived and ancestral alleles (N: 100, mutation rate of 1 base pair per generation: 0.0001,
recombination rate of 1 base pair per generation: 0.0001); B. Cumulative proportions of correct identification of ancestral alleles according to the generations
and derived allele frequencies.

doi:10.1371/journal.pone.0128186.g001
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(Enredo, Pecan, Ortheus) pipeline using four primate sequences (i.e., human, chimpanzee,
orangutan, and rhesus macaque) [9–11]. The calls of ancestral alleles were based on the sister
and the ancestral sequences. For accuracy, only ancestral alleles with high certainty based on
sequence alignments were included for analyses, which are indicated with uppercase letters.
The high certainty means the agreement of all three sequences, namely, the human-chimpan-
zee ancestral sequence, the chimpanzee sequence, and the human-chimpanzee-orangutan an-
cestral sequence (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/technical/reference/
ancestral_alignments/README). The analyzed variants are summarized in Table 1.

Analyses of the QTL and GWAS data
A recent study identified functional variants using the RNA sequencing of lymphoblastoid cell
lines from the same individuals in the 1000 Genomes Project [19]. Due to the intrinsic statisti-
cal properties, nearly all of the QTL had high minor allele frequencies; therefore, most of the
QTL variants had ancestral allele information from both the θ1 and θ2 estimates. The QTLs in
which duplicates in their positions were eliminated were used for the data analyses. The num-
ber of total variants that were examined is indicated in Table A in S1 File. There were two data
sets, EUR and YRI, and the allele frequencies of the corresponding populations in the 1000 Ge-
nomes Project were used to interpret the ancestral allele frequencies. The GWAS variants were
downloaded from the GWAS catalog (https://www.genome.gov/26525384). The GWAS vari-
ants had high minor allele frequencies due to the same intrinsic statistical property as the

Table 1. Numbers of analyzed variants andmean estimates of total haplotypes, including the derived and ancestral alleles, to identify the ancestral
alleles in the human genome.

Chr no Total variants Seq-alignment θ1 θ2 θ1 mean θ2 mean

chr1 3007196 2681889 1332369 1033442 0.00186 0.00101

chr2 3307592 2977486 1438337 1112386 0.00192 0.00101

chr3 2763454 2507316 1215693 945268 0.00195 0.00106

chr4 2736765 2446564 1238264 966329 0.00202 0.00116

chr5 2530217 2271068 1112596 858517 0.00196 0.00105

chr6 2424425 2144340 1109074 872262 0.00213 0.00158

chr7 2215231 1921144 1006225 780106 0.00200 0.00113

chr8 2183839 1943128 951217 739185 0.00225 0.00120

chr9 1652388 1474360 738226 572214 0.00206 0.00111

chr10 1882663 1666382 851449 664520 0.00201 0.00113

chr11 1894908 1634128 843353 654685 0.00200 0.00110

chr12 1828006 1608863 823997 640900 0.00192 0.00106

chr13 1373000 1238608 622262 484815 0.00195 0.00110

chr14 1258254 1104445 564434 440042 0.00195 0.00108

chr15 1130554 988861 505519 390422 0.00199 0.00109

chr16 1210619 1052238 534800 411785 0.00240 0.00130

chr17 1046733 892498 467423 363514 0.00189 0.00104

chr18 1088820 988151 488144 380519 0.00198 0.00110

chr19 816115 551602 393535 310703 0.00204 0.00127

chr20 855166 763634 380929 295964 0.00196 0.00107

chr21 518965 453443 239236 187792 0.00210 0.00123

chr22 494328 398600 235771 184880 0.00207 0.00124

Sum or Mean 38219238 33708748 17092853 13290250 0.00202 0.00114

doi:10.1371/journal.pone.0128186.t001
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QTLs. The number of total GWAS variants in which duplicates in their positions were elimi-
nated was 11910, and the total number of analyzed variants was 11833.

Results

Ancestral allele identification
The simulation studies confirmed the validity of methods for identifying ancestral alleles by
measuring haplotype diversity. Fig 1A shows the simulation results of the two estimates when
both the mutation and recombination rates were 0.0001 and the population size was 100. As a
variant became old, the diversity of haplotypes containing the derived allele increased, and the
estimates finally equaled the estimates of haplotypes containing ancestral alleles. The θ2 esti-
mates of all the haplotypes were almost 0.0004, which is the same as 4Nμ, where N is the popu-
lation size and μ is the mutation rate. However, θ1 estimates were usually slightly higher than
4Nμ for various mutation rates and population sizes, which was likely because of the assump-
tion of the infinite number of allelic states when deriving θ1 [21].

In Fig 1A, the diversities of both ancestral and derived haplotypes became indistinguishable
as the generation reached 300 when the population size was 100, which is shorter than the aver-
age time until fixation (4N) [21]. The estimates in Fig 1A were based on the diversity measure,
ranging from ±2000 bp around the target variant. The estimates of the total variants or variants
at equilibrium were nearly constant, with ranges of either ±1000 bp or ±2000 bp, as shown in
Fig 1A. However, the time until convergence between the estimates of derived and ancestral al-
leles was slightly longer when a smaller range (±1000 bp) was applied. Therefore, a smaller
range would produce more accurate identifications of ancestral alleles. The time until conver-
gence became longer as the population size increased or the mutation and recombination rates
decreased (S1 Fig). Therefore, a longer period of time would be expected for the convergence in
the human genome, meaning increased accuracy in identifying ancestral alleles for larger popu-
lation sizes, smaller mutation rates, and smaller recombination rates.

Fig 1B shows the proportions of correct identifications of ancestral alleles for the variants
with theta estimates. There were few variants having large generations or large derived allele
frequencies. Therefore, the proportions were cumulative according to increasing generations
and increasing derived allele frequencies, to examine the proportion of correctly identified an-
cestral alleles. All the cumulative percentages were above 80%; however, the individual propor-
tions of correct identifications approached approximately 0.5 as the generations approached
1000. As the derived allele frequencies approached 1, the individual proportions of correct
identifications dropped rapidly below 0.5, because the identifications are based on population
mutation parameters, which are proportional to the population size. However, simple correc-
tions based on allele frequencies are not appropriate in the current method because the identifi-
cation of ancestral alleles naturally depends on the history of the allele counts of the
corresponding alleles. In Fig 1B, the slightly lower proportions of correct identifications using
θ1 estimates for initial generations and small derived allele frequencies were most likely due to
the intrinsic bias of θ1 estimates for small population (or sample) sizes similarly shown in
sampling simulations.

The simulation results using θ1 estimates showed higher percentages of correct identifica-
tions than the simulation results using θ2 estimates. Under the simulation conditions in Fig 1A,
ancestral alleles were correctly identified for 84% of total variants aged up to 1000 generations
using θ1 estimates and for 83% of total variants using θ2 estimates. For smaller mutation and re-
combination rates of 0.00001, ancestral alleles were correctly identified for 87% of total variants
using θ1 and for 85% of total variants using θ2 estimates. Because the mutation and recombina-
tion rates are much smaller in the human genome, the percentage of correct identifications
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would be higher than 87% and 85% for θ1 and θ2 estimates, respectively. For a smaller popula-
tion size of 50, the accuracies decrease to 83% and 81% of total variants with θ1 and θ2 estimates,
respectively. Based on the θ2 estimates in Fig 1B when the mutation and recombination rates
were 0.00001, the cumulative proportions of correct identifications depending on derived allele
frequencies were initially smaller and became larger than the proportions when the mutation
and recombination rates were 0.0001 as derived allele frequencies increased. This observation
indicates that the proportions of correct identifications using θ2 estimates with smaller muta-
tion and recombination rates would be substantially high when derived alleles are major alleles.

In simulations, few variants persisted up to 1000 generations. The ages of most variants
were less than 200 generations (80% of total variants) when both the mutation and recombina-
tion rates were 0.0001 and the population size was 100 (S3 Fig). As the population size became
smaller, there were slightly fewer old variants. Conversely, as the mutation and recombination
rates decreased, the number of old variants increased slightly. The derived allele frequencies
were distributed densely in low frequencies and sparsely in higher frequencies (S3 Fig). As the
population size decreased and mutation and recombination rates increased, the proportion of
variants with high frequencies of derived alleles increased. If the mutation and recombination
rates were sufficiently large with a small population size, the derived allele frequencies would
be distributed almost uniformly, from 0 to 1.

Ancestral allele identification in the human genome
The proposed methods described above were applied to the human genome sequencing data
provided by the 1000 Genomes Project. To obtain accurate identifications considering sam-
pling biases, variants with both allele counts higher than 10 (minor allele frequency>0.0046)
were considered for θ1, and variants with both allele counts higher than 20 (minor allele
frequency>0.0092) were considered for θ2. Therefore, the coverage was smaller than that of an-
cestral allele identification using multiple sequence alignments (Table 1). As observed in the
simulations (S1 Fig), the mean of θ1 of the total (0.00202) was higher than that of θ2 (0.00114)
(Table 1). However, the difference was much larger than in the simulations, which was most
likely a result of differences in the effective population sizes as well as mutation and recombina-
tion rates, attributed to the theoretical difference. The θ1 and θ2 estimates were slightly higher
than those of a previous study using the same estimates of human gene loci [23], indicating
that fewer mutations might occur in gene regions.

The major advantage of sequence alignments is their applicability to even private polymor-
phisms. For variants having both allele counts more than 10, ancestral alleles were identified
for almost all of the variants through θ1 estimates (99.997% of the chromosomal average) com-
pared to identifications through sequence alignments (84.73%). For variants with both allele
counts more than 20, ancestral alleles were identified for 99.97% of the variants based on θ2
and 83.83% of the variants based on sequence alignments. The concordances between the two
different methods were examined for polymorphisms, for which both methods produced an-
cestral alleles. The concordances were as follows: 0.86 (number of concordant variants:
11454839) for θ1 and θ2; 0.89 (12869196) for θ1 and sequence alignment; and 0.85 (9516153)
for θ2 and sequence alignment. When all three methods were available, the concordance was
0.79 (number of concordant variants: 8877059). When more than any two methods identified
the ancestral allele, the coverage was 97% (number of corresponding variants: 16086070).
Therefore, the population genetic methods can complement existing methods when the ances-
tral allele from the sequence alignment is unavailable or uncertain.

The distributions of derived alleles in Fig 2 were presented to examine the overall accuracy
of each method. Because variants are identified in comparison to one reference sequence, it is

Ancestral Alleles in the Human Genome

PLOSONE | DOI:10.1371/journal.pone.0128186 May 28, 2015 7 / 18



natural to see a slight bump near 1 in the allele frequency distribution, due to certain homozy-
gotes of rare alleles in the reference sequence. The bump becomes smaller as the sample size in-
creases. Because 1092 individual genomes were sequenced in the 1000 Genomes Project, the
bump was very small, as shown in the original data presented in Fig 2. The distribution of
newly emerged alleles should not have a bump, similar to the distributions in the simulations
(S3 Fig). The derived allele distribution based on the sequence alignment and θ2 showed
bumps near 1 that should not be seen in the derived allele distributions. The derived allele dis-
tribution based on θ1 did not have an obvious bump. Considering that the actual mutation and
recombination rates in the human genome were much smaller than those in the simulations,
the derived allele distribution when all three methods agreed appeared to be approximately
correct. The frequency distribution of derived alleles that was at least concordant using more
than any two methods showed a slightly more dispersed shape.

The ancestral allele identification made it possible to examine the substitution directions be-
tween two bases, and confirmed a clear tendency of increases in A/T compared with G/C in the
human genome through nucleotide substitutions (Table 2). Substitutions from G/C to A/T
were 58–59% in all transitions (~68%) and 55–56% in all transversions between A/T and G/C.

Fig 2. Histograms of derived alleles based on variousmethods of ancestral allele identification (original data: allele frequency distribution from
the sequencing data of the 1000 Genomes Project; sequence-alignment: derived allele frequency distribution by sequence-alignment; θ1: the
derived allele frequency distribution by θ1 estimates; θ2: the derived allele frequency distribution by θ2 estimates; all: derived allele frequency
distribution for the variants with all three methods concordant; any: derived allele frequency distribution for the variants with more than any two
methods concordant).

doi:10.1371/journal.pone.0128186.g002
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The current methods rely on phased sequencing data. Therefore, the accuracy of phasing is
critical for these methods. Although the phase 1 integrated call data from the 1000 Genomes
Project were used for the analyses, SHAPEIT2 phased data in the 1000 Genomes Project [26]
were tested for comparison. The analyses were performed for chromosome 20 for θ2 using the
range ±10000 bp. The number of identified ancestral alleles was slightly lower in the results
using the SHAPEIT2 phased data: 295620 for θ2 in the phase 1 integrated call data versus
269576 in the SHAPEIT2 phased data. The concordance between the two datasets for the cal-
culated variants in both data sets was 0.981.

Insertions and deletions in the human genome
Deletional biases are well-known features of most genomes [12, 13]. Table 3 provides a sum-
mary of the numbers of derived alleles that represented insertions or deletions. Compared with
other methods and with the number of identified ancestral alleles in nucleotide substitutions
using sequence alignments, the sequence alignment method identified substantially fewer an-
cestral alleles for insertion/deletion variants. The number of identified ancestral indels in
whole chromosomes from the sequence alignments was only half of that from θ1 estimates
(Table 3). In addition, as shown in Table 3, the sequence alignments identified more deletions
than insertions compared to the θ1 and θ2 estimates.

Table 2. Number of nucleotide substitutions for each type in the human genome (Rate: ATmutation rate bias; Expected GC: expected GC propor-
tion from the ATmutation rate bias).

Methods(% Transitions)Rate/Expected GC Direction AG CT AC GT AT CG

Seq-align X! Y 4681715 6561124 1178641 1521824 1136407 1417275

(0.682) X Y 6586189 4674730 1531910 1174490 1137087 1412037

1.99/0.33 Total 11267904 11235854 2710551 2696314 2273494 2829312

θ1 X! Y 2206576 3162284 567220 708308 536149 674353

(0.684) X Y 3175293 2206561 714588 566844 538419 671601

2.01/0.33 Total 5381869 5368845 1281808 1275152 1074568 1345954

θ2 X! Y 1732983 2392367 443313 545528 416808 520360

(0.682) X Y 2399720 1732124 548508 442025 418021 519494

1.95/0.34 Total 4132703 4124491 991821 987553 834829 1039854

All X! Y 1176686 1684162 305448 386391 289539 367475

(0.680) X Y 1687828 1177402 389332 305098 289983 367192

2.01/0.33 Total 2864514 2861564 694780 691489 579522 734667

Any X! Y 2088389 3009224 540251 676928 509582 642936

(0.683) X Y 3020729 2088422 682527 539225 512084 641544

2.02/0.33 Total 5109118 5097646 1222778 1216153 1021666 1284480

doi:10.1371/journal.pone.0128186.t002

Table 3. Summary of insertions and deletions in the human genome (ratio: deletion/insertion).

Methods insertion deletion ratio inserted base deleted base ratio (base) % GC insertion % GC deletion

Seq-align 204282 491037 2.40 402554 1221722 3.03 0.349 0.365

θ1 534245 830413 1.55 2217770 23439382 10.57 0.372 0.399

θ2 463693 715306 1.54 3993462 14434339 3.61 0.403 0.398

All 125424 325099 2.59 251301 825430 3.28 0.347 0.364

Any 408917 725312 1.77 1245483 14295582 11.48 0.366 0.398

θ1&θ2 352473 596505 1.69 1138427 13981366 12.28 0.369 0.399

doi:10.1371/journal.pone.0128186.t003
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The number of deletions was at least 1.5-fold the number of insertions. When the derived al-
leles that were concordant in all three methods were examined, the number of deletions was
2.59-fold larger than the number of insertions, most likely due to the large deletion-to-insertion
ratio from the sequence alignment method (Table 3). Because the numbers of concordant in-
sertions and deletions in all three methods are limited to the numbers of insertions and dele-
tions based on multiple sequence alignments, the derived alleles that were concordant in θ1
and θ2 were examined as well, and this analysis resulted in a 1.69-fold deletion bias. These dele-
tion biases were much larger than a recent report based on the sequence alignment that could
correct errors favoring deletions, in which the deletion biases were only 1.11 for noncoding se-
quences (ancestral repeats) and 1.29 for coding sequences in the human genome [15].

The total bases in insertions and deletions are listed in Table 3; the number of deleted bases
was 3.28-fold larger than the number of inserted bases for the derived alleles that were concor-
dant using all three methods. For the derived alleles concordant using θ1 and θ2, the number of
deleted bases was increased to 12.28-fold the number of inserted bases. The increment seemed
to come from several long deletions. The GC content of indels (0.35~0.40) was slightly lower
than the GC content of the human genome (0.41) [1], and the GC content was slightly higher
in deletions than in insertions for all of the methods except for θ2.

When the bp sizes of deleted or inserted sequences were considered, the deletion-to-inser-
tion ratios showed a different pattern depending on the sizes (Fig 3A). The ratios increased for
bp sizes of 1 to 3, decreased for bp sizes of 5 to 8, and then increased again. The GC proportion
of total insertions and total deletions also changed depending on the bp sizes (Fig 3B). Interest-
ingly, the pattern of insertions was opposite that of deletions. If the GC proportion was high in
insertions, then the GC proportion was low in deletions. A more interesting feature was that
the pattern of change of the GC proportions corresponded to the pattern of change of the dele-
tion-to-insertion ratio. When the deletion-to-insertion ratio was high, the GC proportion of

Fig 3. Changes in deletion-to-insertion ratios (A) and GC proportions (B) depending on the size of inserted or deleted base pairs from 1~10 to >10.

doi:10.1371/journal.pone.0128186.g003
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deletions was lower than that of insertions. These observations indicated the influences of
indels in maintaining the GC content in the human genome.

The biased gene conversion
Previous studies have suggested that GC-biased gene conversion through recombination is the
primary explanation for the occurrence of GC isochores in the genome [27–29]. The influence
of recombination on nucleotide substitutions strongly supports GC-biased gene conversion
[30–32]. However, it has been argued that the fixation bias towards GC is an artifact of parsimo-
ny assumptions in sequence alignments between species [33]. To examine GC-biased gene con-
version, the changes in AT bias were examined with respect to allele frequencies. The AT bias
was calculated as indicated previously [1, 34]. To examine the trend dependent on allele fre-
quencies, the AT bias of substitutions was calculated for each allele frequency range of 0.1. If
GC-biased gene conversion exists, the AT bias should decrease as the allele frequency increases.

In Fig 4, the derived alleles from each method showed GC-biased gene conversion. The de-
rived alleles based on sequence alignments and θ2 showed substantial trends in GC-biased gene
conversion; whereas the derived alleles based on θ1 showed only a slight trend. Notably, derived
alleles that were concordant in any two methods always showed lower trend in GC-biased gene
conversion. In addition, derived alleles that were concordant in all three methods showed al-
most no obvious GC-biased gene conversion. The little evidence of biased gene conversion re-
sulted primarily from the derived alleles of θ1 estimates. The GC-biased gene conversion of the
derived alleles from the sequence alignments was previously argued as an incorrect result [33].
The GC-biased gene conversion of derived alleles from θ2 resulted from misidentified ancestral
alleles, as shown in Fig 2. The proportion of misidentified alleles increased as the allele frequen-
cies increased in Fig 2, and the actual number of G/C to A/T substitutions would be higher
than the actual number of A/T to G/C substitutions among the misidentified derived alleles.
Because of the high proportion of misclassified G/C to A/T substitutions, the AT bias in

Fig 4. AT bias depending on derived allele frequencies: A. nucleotide substitutions; B. single base-pair insertions and deletions.

doi:10.1371/journal.pone.0128186.g004
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derived alleles decreased as the allele frequencies increased. The reduced decrement of AT bias
for derived alleles with high frequencies when both sequence alignment and θ2 were consistent
supported the condition of very weak GC-biased gene conversion. The absence of GC-biased
gene conversion was more apparent in transversions than in transitions (S4 Fig).

In this study, the biased gene conversion in insertions and deletions was also examined. Here,
the AT biases of combined insertion bases and deletion bases for single base-pair indels were cal-
culated. Using all indel variants, no clear trend was observed; however, when the variants were
grouped depending on their sizes, clear trends were found for single base-pair insertions and dele-
tions. As shown in Fig 4B, the insertions showed the GC-biased gene conversion overall. The re-
sult using multiple sequence alignments showed the weakest GC-favoring fixation bias in
insertions. Due to the smaller number of indel variants based on sequence alignment, there was a
relatively small number of variants with high allele frequencies of the derived alleles when all
three methods agreed. In addition, the GC% of one base-pair insertions using the multiple se-
quence alignments was lowest among the three methods in Fig 3B, which led to high AT biases re-
gardless of the derived allele frequencies. For the small number of variants with high derived allele
frequencies based on multiple sequence alignments, the large proportions of A/T insertions pro-
vided drastically increased numbers of A/T insertions in variants when all three methods agreed.
However, the derived alleles based on both θ1 and θ2 showed obvious GC-biased gene conversion.

Interestingly, AT-biased gene conversion was observed in the deleted alleles. Again, the re-
sult using multiple sequence alignments showed the weakest AT-biased gene conversion. Simi-
lar to the one base-pair insertions, it is most likely due to the small number of variants using
multiple sequence alignments and the highest GC proportion of one base-pair deletions using
multiple sequence alignments among all three methods. The GC-favoring fixation bias in inser-
tions and the AT-favoring fixation bias in deletions indicated the possibility of maintaining the
GC contents in the human genome. It could be effective enough to maintain the GC contents,
considering that the deletion-to-insertion ratio of single bp indels was the lowest and that the
GC contents of single bp indels was high in insertions and low in deletions, as shown in Fig 3.
These effects disappeared for indels of more than 2 bp.

Quantitative trait loci (QTL) and genome-wide association variants
The variants from quantitative trait loci (QTL) and genome-wide association studies (GWASs)
were examined for the variants that were concordant in all three methods. The types of substi-
tutions were examined for the QTL and GWAS data. Because the analysis required a sufficient
number of variants, QTL data with more than 50000 variants were analyzed, which included
all of the QTLs of the EUR data except for the miRNA QTLs and exon QTLs of YRI data
(Table A in S1 File). The results using variants that were concordant in all three methods are il-
lustrated in Fig 5 (Table B in S1 File). All of the QTL data showed similar results. The increased
G:C-to-A:T transitions in the QTL data might be derived from the high transitions in the CpG
sites of gene regions. The higher GC contents in gene regions increased the substitutions from
C or G (Fig 5A). The QTL variants showed slight GC-biased gene conversions in several QTLs,
especially in repeats QTL of EUR (S5 Fig).

The GWAS data showed more dramatic differences in nucleotide substitutions than the
QTL data. Transitions were increased overall and showed more increased A:T-to-G:C transi-
tions than G:C-to-A:T transitions, which might have resulted from the low GC content in the
region where GWAS variants were located. Transversions between A/T and G/C were in-
creased overall, and the A:T-to-C:G transversions also increased; however, the proportion was
still slightly lower than the C:G-to-A:T transversions. In the GWAS data, the proportions of
both the C:G-to-G:C and A:T to T:A transversions decreased.
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The indels in the QTL data were analyzed and compared with the indels in the whole ge-
nome data (Fig 5B and 5C). Interestingly, insertions occurred more often than deletions in the
QTL data. The results showed more severe insertion biases than did the results of a previous
study on human-specific indels in coding exons [35]. In addition, the deleted bases were
smaller than the inserted bases. In the QTL variants, there was a fixation bias of deletions (S6
Fig). Because the whole genome variants did not show any trends, the functional deletion vari-
ants might be under selective pressure. The insertions in the QTL data showed a higher GC
content than those in the whole genome data. In contrast to the indels in the whole genome
data, the GC content in the deletions was slightly lower than that in the insertions in all of the
analyzed QTL data (Fig 5C).

Discussion
In the current study, ancestral allele identification methods based on population mutation param-
eters using population sequencing data were developed for actual applications for the first time.

Fig 5. Summary of derived alleles fromQTL and GWAS variants: A. Types of nucleotide substitutions; B. Deletion-to-insertion ratios of QTL
variants; C. GC proportions in insertions and deletions of QTL variants (original: whole genome data; EUR exon: EUR exon-expression QTL data;
YRI exon: YRI exon-expression QTL data; EUR gene: EUR gene-expression QTL data; EUR repeats: EUR transcribed repeats QTL data; EUR
trratio: EUR transcription ratio QTL data; GWAS: GWAS catalog data).

doi:10.1371/journal.pone.0128186.g005
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Unlike in a previous effort [16], the ability to identify ancestral alleles was studied in earnest in
the current study. These methods showed evidence of being effective and especially useful for in-
sertions and deletions. As shown in Fig 2, the distribution of derived allele frequencies showed an
approximately natural shape when all three methods agreed. The distributions based on sequence
alignment and θ2 indicated that the ancestral alleles from these methods could be misclassified. In
the diversity estimates, the number of corresponding haplotypes in the population is considered
to be the population size, and the theta estimates involve fluctuations in allele frequencies in the
past. Therefore, the haplotypes with minor alleles could have less diversity than the haplotypes
with major alleles. θ1 estimates account for the number of the corresponding haplotypes by apply-
ing the smallest non-zero allele frequency of the sampled haplotypes with interested alleles to the
equation; however, θ2 estimates do not, resulting in misclassified ancestral alleles.

The estimates of population mutation parameters in the current study were derived based
on the Wright-Fisher population model of a fixed population size with a finite site [21, 22].
Other similar estimates that disobey this basic model should be examined for the availability to
identify ancestral alleles using simulations based on a certain proper model. A constant popula-
tion size was assumed; however, in reality, the population size is not constant. In addition, se-
lection pressures were not accounted for in the basic model. For regions under strong selective
pressure or for populations undergoing rapid expansion, the detection of ancestral alleles
might be less accurate. It should be noted that, theoretically, the proportions of correct identifi-
cations cannot be less than 50% no matter how rapid the population sizes increase because the
population expansion applies to both alleles; however, as shown in the high-frequency derived
alleles, the proportions of correct identifications could be less than 50% for regions under ex-
tremely strong positive selection. The selective pressures should be strong enough to increase
the derived allele frequencies of most variants in the region much higher than 0.5, which is un-
likely in most natural conditions. The influence of changes in population sizes, population
structure, and selection pressures should be studied further to examine how accuracy is affected
by the conditions. Some of the variants are expected to be too old to be distinguished based on
population genetic methods. If an allele age that either separately or concurrently accounts for
the influence of selection pressure and demographic changes can be obtained, the accuracy of
the identified ancestral alleles can be determined and can be improved.

Compared to the ancestral allele identification obtained using sequence alignment methods,
the proposed methods can identify ancestral alleles for any common variants from population
sequencing data. The θ2 estimates increased consistently as the sample size increased (S2 Fig).
By correcting the sampling biases, the estimate would be more useful for increasing the applica-
bility to rare variants. The sampling bias of θ1 estimates decreased as the population size in-
creased (S2 Fig). Considering that the recent changes in effective population sizes of human
populations were large [24], the ancestral alleles having smaller allele counts could be correctly
identified using θ1 estimates for young variants. The examined ranges around the target vari-
ants were ±5000 bp; however, the range could be reduced to obtain more accurate results de-
pending on the local mutation rates. For the gene regions in particular, mutation rates appear
low due to purifying selection, and the accuracy of identifying ancestral alleles could differ. In
addition, there are very large insertions and deletions in the human genome. Variants near or
in those insertions and deletions could be affected in their population mutation parameters,
and adjusting the effects would lead to a more accurate identification of ancestral alleles for
large insertions and deletions.

The evidence of GC-biased gene conversion was unclear in the current study. Considering
the correlations between recombination and GC-biased gene conversion, additional studies
that include the effect of recombination rates would be required to determine the influence of
GC-biased conversion. Slight trends of GC-biased gene conversions were shown in variants of
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several QTLs (S5 Fig). GC-biased gene conversion could result from either selection or recom-
bination [36]. Additional studies that include local recombination rates would provide accurate
explanations of the GC-biased gene conversions of functional variants. As previously suggested
[30, 37], studies that consider local differences in substitution rates could also provide more ac-
curate information on genome evolution.

The differences in the proportions of substitution types in the exon QTL variants came from
the high GC content in gene regions. The majority of the GWAS variants were located in inter-
genic regions, which might have relatively low GC contents compared to gene regions. However,
the low GC content might not fully explain the differences from the whole genome variants, such
as increased transitions and decreased proportions of transversions between A and T and be-
tween C and G. The different proportions of nucleotide substitutions in the GWAS variants also
need careful examination to exclude any artifacts resulting from the data generation processes.
Different from the QTL data based on RNA-sequencing, the variants for genome-wide genotyp-
ing were selected depending on specific selection criteria, which might result in a biased result.

In contrast to the nucleotide substitutions, the differences in insertions and deletions of the
QTL data (i.e., more insertions than deletions, lower GC content in deletions than insertions,
and fixation biases of the deletions) are noteworthy. There was a report regarding the fixation
bias of insertions in the gene region of Drosophila melanogaster [38]. In this previous study, the
number of insertions was not higher than the number of deletions in the gene region, but there
were more high-frequency insertions than high-frequency deletions. The QTL indels are likely
functional among the indels in gene regions, and a recent study on the human genome showed
that functional indels are influenced by strong purifying selection pressures [39]. The different
results may indicate the differences between functional indels and general indels in gene re-
gions. The strong deletion-biased fixation in the QTL variants indicated that functional dele-
tions might be under stronger selection pressure than functional insertions. Another recent
study on the gene regions of Drosophila melanogaster indicated that the deletions, but not the
insertions, between 11 bp and 30 bp in size tended to be fixed more frequently than did the syn-
onymous mutations [40]. Most insertions and deletions of the QTL variants were less than 5
bp in the current study. Therefore, a comprehensive analysis on the indels in gene regions
could provide more solid conclusions.
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