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Abstract: Malignant gliomas constitute a complex disease phenotype that demands optimum decision-
making as they are highly heterogeneous. Such inter-individual variability also renders optimum patient
stratification extremely difficult. microRNA (hsa-miR-20a, hsa-miR-21, hsa-miR-21) expression levels were
determined by RT-qPCR, upon FFPE tissue sample collection of glioblastoma multiforme patients (n = 37).
In silico validation was then performed through discriminant analysis. Immunohistochemistry images
from biopsy material were utilized by a hybrid deep learning system to further cross validate the distinctive
capability of patient risk groups. Our standard-of-care treated patient cohort demonstrates no age- or sex-
dependence. The expression values of the 3-miRNA signature between the low- (OS > 12 months) and
high-risk (OS < 12 months) groups yield a p-value of <0.0001, enabling risk stratification. Risk stratification is
validated by a. our random forest model that efficiently classifies (AUC = 97%) patients into two risk groups
(low- vs. high-risk) by learning their 3-miRNA expression values, and b. our deep learning scheme, which
recognizes those patterns that differentiate the images in question. Molecular-clinical correlations were
drawn to classify low- (OS > 12 months) vs. high-risk (OS < 12 months) glioblastoma multiforme patients.
Our 3-microRNA signature (hsa-miR-20a, hsa-miR-21, hsa-miR-10a) may further empower glioblastoma
multiforme prognostic evaluation in clinical practice and enrich drug repurposing pipelines.

Keywords: glioblastoma multiforme; 3-microRNA signature; risk stratification; machine learning;
image classification; pattern recognition

1. Introduction

The ever-increasing development of novel diagnostic tools and targeted approaches is
of fundamental importance in the field of oncology. However, glioblastoma multiforme
(GBM), the most aggressive type of primary brain tumor, is still associated with poor
prognosis and patients’ median overall survival remains limited to 12–15 months [1,2].
According to the European Society for Medical Oncology (ESMO) guidelines for diagnosis,
tissue histopathological evaluation is required. The current standard of care is the maximal
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surgical resection of the tumor followed by radiotherapy with concomitant and adjuvant
temozolomide (TMZ), the latter being an alkylating agent [3,4].

As we navigate the big data era, we aim to translate information into knowledge with
a primary focus on inter-individual variability. Such a strategy is of paramount importance
when brain and central nervous system cancers are considered and this no doubt includes
GBM. This approach aims at more precise and powerful diagnostic, prognostic and ther-
apeutic strategies, tailored for each group of cancer patients [5]. GBM is characterized
by inter-tumor and intra-tumor heterogeneity, thus the development and validation of
potential biomarkers for optimal clinical decision-making becomes extremely demanding.
Specifically, the identification of prognostically distinct subgroups of patients, based on
common biological backgrounds, may lead to the best clinical outcome through a valuable
risk assessment and a well-oriented therapeutic plan [6].

MicroRNAs (miRNAs) are key players in GBM tumor initiation, progression, therapy
response and recurrence. The multi-gene targeting ability of a miRNA indicates its function
either as oncogenic or tumor suppressor. In this regard, a single miRNA may involve
in various cellular processes and pathways, consequently in tumor pathophysiology [7].
Several studies have focused on multiple miRNAs that exhibit distinct expression profiles
in GBM, aiming to correlate these profiles with GBM patients’ survival and prognosis. To
name but a few, Yuan et al. suggested a 3-miRNA signature (hsa-miR-222, hsa-miR-302, hsa-
miR-646) as a predictor of overall survival (OS), utilizing miRNA expression data for GBM
patients from the Cancer Genome Atlas (TCGA) dataset [8]. A recently published 4-miRNA
signature showed prognostic value, taking into account MGMT promoter methylation and
age as cofactors, in IDH1/2 wild type GBM patients [9].

Herein, we report a 3-miRNA signature (hsa-miR-20a, hsa-miR-21, hsa-miR-10a)
to map the inter-individual variability of glioblastoma multiforme patients, account-
ing for confounding factors and selection bias, toward optimum patient stratification.
Molecular-clinical correlations were drawn to classify high- (OS < 12 months) vs. low-risk
(OS > 12 months) patients, also shedding light on the molecular mechanisms involved in
disease progression. We have validated our 3-miRNA signature by quantitative real-time
PCR (qRT-PCR) coupled to discriminant analysis. Furthermore, we performed in-silico
validation, based on immunohistochemistry (IHC) images of GBM biopsies, employing a
hybrid deep learning system [10].

2. Materials and Methods
2.1. Mixed-Methods Content Analysis

A mixed-methods content analysis was conducted as it is considered the gold standard
approach for a content analysis, after the synergy of inductive (qualitative) and deductive
(quantitative) phases, especially when it comes to contemporary definitions. Our mixed
methods content analysis consisted of mining (data and text) and data analysis. We mined
omics datasets, peer-reviewed literature and clinical trial outcomes databases (as of 2021)
to explore inter-individual variability in GBM and overall survival datasets. Furthermore,
a novel frame-work was developed to meet the aims of our analysis, interrogating data
in terms of content and context. We relied on literature data from PubMed/MEDLINE
and Scopus, as they are considered the largest abstract and citation databases of peer-
reviewed literature. To avoid selection biases, both publicly available and private texts
have been assessed (according to our inclusion/exclusion criteria). A series of MeSH terms
(www.nlm.nih.gov/mesh, accessed on 23 January 2020) and keywords were used, namely
«GBM OR glioblastoma AND hsa-miR-20a AND biomarker», «GBM OR glioblastoma AND
hsa-miR-21», «GBM OR glioblastoma AND hsa-miR-10a». The interim output was questioned
further for sample size (validated by a power analysis), open data (yes/no) and research
strategy, as well as the impact/metrics of the publication in question (Q1 or Q2: citation
index/scientific journal rankings). Studies on non-human samples or those that failed to
meet the aforementioned criteria were excluded. The interim and final outputs (n = 13)
were co-analyzed by two co-authors (V.B. and T.K.), with the percentage of inter-rater
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agreement calculated. Both percentage agreement and Cohen’s kappa statistic have been
calculated to avoid biases (in particular, the possibility that raters guessed on scores) by
SAS® macro MAGREE with multicategorical ratings.

2.2. Glioblastoma Multiforme Patient Cohort and Clinical Samples

The study protocol is in accordance with the Declaration of Helsinki and has been
approved by the ethics review board of the General University Hospital of Patras, Greece.
IRB protocol number: 8735/142. Written informed consent was obtained from each indi-
vidual participating in the study. All patients (n = 37) were diagnosed with histologically
confirmed GBM, according to the World Health Organization classification of tumors of the
central nervous system and were treated by the standard-of-care treatment protocol [11,12].
The demographic and clinical characteristics of our patient cohort are summarized in
Supplementary Table S1. OS was calculated from the time of diagnosis until death or last
follow-up (12 months).

2.3. Immunohistochemical Analysis

Immunohistochemistry for DNA mismatch repair protein MSH2 (MSH2), a validated
target for hsa-miR-21, was performed on formalin-fixed, paraffin-embedded (FFPE) GBM
samples. anti-MSH2 (1:8000 dilution, ab227941, Abcam plc) was used as the primary
antibody. IHC staining was performed according to the manufacturer’s instructions. In
brief, sections were deparaffinized in xylene and rehydrated in a graded ethanol series.
For heat-induced antigen retrieval, samples were immersed in ethylenediamine tetraacetic
acid (EDTA) solution and were then heated in a microwave for 3–5 min and incubated for
40 min at room temperature. Following this, sections were treated with H2O2 3% v/v and
washed with Tris-buffered saline (TBS) solution. Sections were then incubated with 3% w/v
blocking solution, bovine serum albumin (BSA) for 15 min, followed by primary antibody
reaction. Subsequently, sections were washed five times with TBS and incubated with sec-
ondary antibody, using HRP-labelled polymer DAKO EnVisionTM (K5007, Dako Glostrup,
Denmark), followed by washes with TBS. Staining was visualized using diaminobenzidine,
DAB (Dako Company Glostrup, Glostrup, Denmark) and was counterstained with haema-
toxylin (Haematoxylin Harris Acidified, Atom Scientific, Manchester, UK), dehydrated in
ethanol, and cleared in xylene. The slides were cover-slipped using xylene diluted agent
(DPX Mountant Low Viscosity, Atom Scientific, Manchester, UK).

2.4. MiRNA Extraction

Total RNA was extracted from FFPE tissue using the miRNeasy FFPE Kit (cat.
No. 217504, Qiagen, Germantown, MD, USA). Briefly, excess paraffin was trimmed off the
sample block and 320 µL Deparaffinization Solution (cat. No. 19093) was added to the
sections. Following this, vortexing and brief centrifugation were applied. After incubation
at 56 ◦C for 3 min, 240 µL Buffer PKD and 10µL proteinase K were added to the lower clear
phase, followed by incubation at 56 ◦C for 15 min and then at 80 ◦C for 15 min to release
RNA from the sections studied. The lower, clear phase was incubated on ice for 3 min and
centrifuged for 15 min at 13,500 rpm. The DNase digestion step was performed by adding
the DNase Booster Buffer in a ratio of 1:10 of the total sample volume to the supernatant
and 10µL DNase I stock solution against DNA contamination, including highly fragmented
molecules. Following this, 500 µL Buffer RBC was added to the supernatant and the lysate
was mixed thoroughly. Absolute ethanol was added to provide the appropriate binding
conditions for RNA and 700 µL of each sample were then applied to a RNeasy MinElute
spin column, where total RNA, including miRNA, binds to the membrane. Contaminants
were efficiently washed away by adding Buffer RPE, following a centrifugation step. The
flow-through was discarded. The RPE step was repeated. The RNeasy MinElute spin
column was placed in a new 2 mL collection tube and centrifuged at full speed for 5 min.
For RNA elution, the RNeasy MinElute spin column was placed in a new 1.5 mL collection
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tube,14 µL RNase-free water was added and centrifugation was performed for 1 min at full
speed.

2.5. cDNA Synthesis

miScript II RT Kit (cat. No. 218161, Qiagen, Germantown, Maryland, USA) was used
and miScriptHiSpec Buffer was selected to prepare cDNA for the subsequent quantification
of mature miRNA. The reverse transcription reaction components in a total volume of
20 µL are listed as followed: 4 µL 5× miScriptHiSpec Buffer, 2 µL 10× miScriptNucleics
Mix, 2 µL miScript Reverse Transcriptase Mix plus 7µL RNase-free water 5µL template
RNA with concentration 10 ng–2 µg. Following this, an incubation step at 57 ◦C for 60 min
took place, followed by an extra incubation step at 95 ◦C for 5 min for enzyme inactivation.

2.6. Quantitative Real-Time PCR (qRT-PCR)

The quantitative real-time PCR reaction was carried out using miScript SYBR Green
PCR Kit (cat. No. 218073, Qiagen, Germantown, Maryland, USA) for the quantification
of hsa-miR-20a, hsa-miR-21 and hsa-miR-10a. To normalize the amount of target miRNA,
SNORD96A served as the endogenous reference RNA, as it has been verified to have rela-
tively stable expression levels in brain tissue. Each sample was diluted to 200 µL RNAase-
free water. The total reaction volume was 25 µL and the reaction setup was as detailed
below: 12.5 µL 2× QuantiTect SYBR Green PCR Master Mix, 2.5 µL 10× miScript Universal
Primer, 10× miScript Primer Assay (Hs_miR_20a_2 cat. No. MS00003199, Hs_miR_21_2
cat. No. MS00009079, Hs_miR_210a_2 cat. No. MS00031262, Hs_SNORD96A_11 cat. No.
MS00033733), 5 µL RNase-free water and 2µL template cDNA. Cycling conditions for
qRT-PCR were, as follows: 95 ◦C for 15 min; 45 cycles of 94 ◦C for 15 s, 55 ◦C for 30 s and
70 ◦C for 30 s. qRT-PCR was performed in the thermal cycler CFX96 TouchTM Real-Time
PCR Detection System (BIO-RAD). The relative expression of each miRNA was normalized
to the control SNORD96A and ∆Cq was calculated by subtracting the Cq of the investigated
miRNA from the Cq of the endogenous control.

2.7. Statistical Analysis
2.7.1. MiRNA Signature Analysis

Data analysis was performed to reveal any hidden patterns in our GBM cohort. The
Shapiro–Wilk test was applied to all the variables of our data (age and miRNA expression)
per group to test whether they follow a normal distribution. Subsequently, since we have
a small sample size, we performed a Wilcoxon signed-rank test to assess whether the
age differs between the low- and high-risk groups. Following this, a chi-square test was
performed to assess for sex-dependent differences in our study groups. The expression
values from our 3-miRNA signature were also interrogated by a two-way ANOVA to test
if there was similar variance between our two groups. Furthermore, the ANOVA was
followed by a Wilcoxon signed-rank test for each one of the three miRNAs to determine
which miRNAs differentiate between the low- and high-risk group of patients. For the
aforementioned analysis we employed the R-language (version 4.1.0).

2.7.2. Survival Analysis

We carried out Kaplan–Meier analyses to calculate the survival probability and visual-
ize the survival curves for the low- and high-risk groups. A log-rank test was implemented
to examine if the survival probabilities of the two groups differ significantly. For survival
analysis, we employed the Survival [13,14] and the Survminer [15] R packages.

2.8. Discriminant Analysis
2.8.1. MiRNA Raw Data

To test in silico whether our 3-miRNA signature can discriminate the low- and high-
risk group of patients, a machine learning approach was implemented. Before fitting the
miRNA expression values to the models, variable correlation was checked with a Pearson’s
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correlation coefficient test to assure that the models’ performance will not be affected by the
so-called multicollinearity problem [16]. In the discriminant analysis the data were split into
low- and high-risk groups and then were used to train five machine learning algorithms.
Since our sample size was rather limited, we opted for the bootstrap method [17] for the
evaluation of the trained models. To evaluate each predictor in our models, we used
the varImp function. The training and validation processes were repeated 10 times. The
selected machine learning models employed were: linear discriminant analysis, naïve
Bayes, k-nearest neighbors, support vector machines and random forest. Herein, we
consider as sensitivity the ability of the models to identify high-risk patients correctly as
high-risk. Similarly, specificity is defined as the ability of the model to predict correctly the
low-risk patients. Our discriminant analysis was implemented by the caret R-package [18].

2.8.2. IHC Images

A set of n = 45 IHC images were analyzed to cross-validate that low- and high-risk
groups can be discriminated based on antibody detection. Hence, we opted for an image
analysis method, which would extract representative features from the entire image and
not just textural or structural features from a specific area of the image in question. For
this, we employed VGG16, a convolutional neural network (CNN) for feature extraction, as
proposed in the studies of Xu et al. and Yonekura et al. [19,20]. More specifically, VGG16 is
a pretrained CNN model with 16 layers proposed by the Visual Geometric Group [21]. It
was trained with ImageNet, which is a dataset of approximately 1.2 million non-medical
images, belonging to 1000 classes. Thus, this model has the ability to extract features from
a wide range of images and then classify them. To extract features from our IHC images,
we resized them to 224 × 224 × 3, which is the VGG16 input requirement. Subsequently,
images advanced on the convolutional layers and features were extracted from the 4th
pooling layer of the CNN, creating a 100,352-dimensional feature vector for each image. The
whole process was performed in R language using Keras [22] and Tensoflow [23] packages.

Following this, we constructed a matrix by binding the feature vectors derived from
the images studied. Further processing was required to use those data for discriminant anal-
ysis. At first, we excluded the features that had zero values either for all the samples or for
the majority of samples (>50%), since they would operate as noise in the meaningful data.
Thus, the dimensions of each image vector dropped down to 9532 features. Subsequently,
due to the high dimensionality of our matrix, we used principal component analysis (PCA)
to reduce the features to an orthogonal matrix. Before the application of the PCA trans-
formation, data were scaled and a set of n = 45 principal components (PCs) was collected.
Following this, we employed the recursive feature elimination (RFE) algorithm [24], which
is a feature selection technique that would unveil the PCs that discriminate our two groups
better. For the implementation of the RFE, we set a threshold to select up to seven features.
This threshold was calculated by dividing by three the number of samples that belong
to the group with the fewer patients in question to avoid the overfitting of the machine
learning models employed. A similar methodology has been also successfully applied by
Theodosi et al. [10]. Data classification was carried out first with unsupervised algorithms
to see if data can be discriminated into clusters without the model knowing the group they
belong to. All n = 7 features combinations were tested to find the one that performs best.
The unsupervised algorithms that were used in our analysis were the following: k-means,
agglomerative clustering, Gaussian mixture and mini batch k-means. We also applied
supervised techniques by employing n = 10 different classifiers. In the supervised models,
we used the features that yield the best performance in the unsupervised learning. The
classifiers used were the following: nearest centroid, k-nearest neighbors (k-nn), Gaussian
naive Bayes (gaussiannb), linear discriminant analysis (lda), logistic regression, perceptron,
multi-layer perceptron, nu-support vector (nusvc), random forest and decision tree. To
evaluate the performance of each classifier, the bootstrap evaluation method was repeated
10 times. The same assumptions for specificity and sensitivity as in the discriminant analy-
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sis of the expression data were also made for these models. The aforementioned process
was implemented in Python3 (version 3.6), Sklearn package [25].

3. Results
3.1. A Mechanistic View of Our 3-miRNA Signature in GBM

We identified a subset of validated target genes and cancer-related pathways for each
miRNA studied (Figure 1), indicating the biological impact of hsa-miR-20a, hsa-miR-21 and
hsa-miR-10a in GBM. We found that these three miRNAs have been associated with key
molecular processes in GBM, inter alia, angiogenesis, radiosensitivity, cell migration and
invasion [7,26,27]. As depicted in Figure 1, hsa-miR-20a, when overexpressed, promotes
angiogenesis, cell invasion and cell growth, while hsa-miR-21 plays a key role in inva-
siveness, radiosensitivity and/or chemosensitivity. hsa-miR-10a overexpression has been
observed in epithelial-to-mesenchymal transformation (EMT). Key molecular pathways
may be shared among hsa-miR-20a and hsa-miR-21 or hsa-miR-21 and hsa-miR-10a.
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Figure 1. Qualitative Venn diagram of data and text mining findings. Venn diagram representing
genes and GBM-related pathways targeted by hsa-miR-20a, hsa-miR-21 and hsa-miR10a.

3.2. Deciphering Age and Sex Dependence in Age- and Sex-Matched Standard-of-Care Treated
Patient Cohort

Our findings suggest that 58% of patients are assigned to the low-risk group
(OS >12 months) and 42% of the patients to the high-risk group (OS < 12 months), respec-
tively (Supplementary Table S1). Determining the relations among different variables in
our GBM cohort, the age values seem to follow a non-normal distribution in the low-risk
group of patients, whereas in the high-risk group, they present a normal distribution.
As shown in Figure 2A, there was no significant difference between the mean age of the
patients with OS > 12 months or the patients with OS < 12 months. When we investigated
sex dependence in patients’ stratification into low- and high-risk groups, the proportion
of either males or females did not significantly differ between risk groups (Figure 2B).
Collectively, our findings indicate that there is no age or sex dependence in our age- and
sex-matched standard-of-care treated patient cohort.
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3.3. The 3-miRNA Signature Expression May Stratify the Standard-of-Care Treated Patients to
Lower (OS > 12 Months) vs. Higher (OS < 12 Months) Risk Groups

To assess the prognostic efficacy of our 3-miRNA signature, we determined the ex-
pression levels of hsa-miR-20a, hsa-miR-21 and hsa-miR-10a in n = 37 FFPE samples of our
GBM patient cohort. The differential expression of the 3-miRNAs between GBM samples
suggests that we can map and shed light to the inter-individual variability and thus, eluci-
date individual molecular profiles. It was noted that hsa-miR-21 expression levels were
elevated compared with those of hsa-miR-20a and hsa-miR-10a (Figure 2C). Regarding
the distribution of each miRNA per risk group, the 3-miRNA expression values in the
low-risk group of patients follow a normal distribution, whereas in the high-risk group,
only hsa-miR-10a expression values follow normal distribution. The implementation of a
two-way ANOVA among the expression values of the 3-miRNAs between the low- and
high-risk group yielded a p-value of <0.0001. Mean expression between the two risk groups
was tested for each miRNA of the 3-miRNA signature, independently. hsa-miR-21 and
hsa-miR-10a expression levels were significantly higher in the high-risk group of patients.
Meanwhile, no significant difference in the hsa-miR-20a expression levels between risk
groups was observed (Figure 2D). Our findings suggest that our 3miRNAs can serve as a
patient stratification signature in GBM, as patients can be classified in subgroups of low-
(OS > 12months) or high-risk (OS < 12 months).

3.4. In Silico Validation of the 3-miRNA Signature

To further evaluate the ability of our 3-miRNA signature to stratify our patient cohort,
we performed an in-silico validation. We trained five machine learning algorithms with the
3-miRNA expression values. Subsequently, we evaluated their efficiency in discriminating
GBM patients into the low- and high-risk groups studied. Figure 3 illustrates the perfor-
mance of the five algorithms in the validation data. The random forest algorithm yielded
the highest performance after 10 repetitions of the training and evaluation process. The
random forest algorithm resulted in a mean accuracy of 94.32% with a standard deviation of
3.24%, a mean F1 score of 92.82% with a standard deviation of 4.02% and an AUC of 97% in
the validation set. The mean importance of each variable contribution to model predictions
was assessed as following: hsa-miR-20a = 9.41, hsa-miR-21 = 7.02, hsa-miR-10a = 13.02.
All predictions made on the training data after 10 repetitions of training and evaluation
with the bootstrapping method are depicted in Supplementary Figure S1, according to
which random forest was the algorithm that outperformed all (100% accuracy, sensitivity,
specificity, F1 score and AUC in the training data). This is due to the medium rate of
multicollinearity among the three miRNAs, since the Pearson correlation showed that the
hsa-miR-20a and hsa-miR-21 were 67% correlated, hsa-miR-20a and hsa-miR-10a were
51% correlated and hsa-miR-10a and hsa-miR-21 were 58% correlated. As random forest
was not affected by multicollinearity, it had the best performance, and was also devoid of
overfitting. Taking into consideration the significant difference of the survival probabilities
of the two groups, as the results of the Kaplan–Meier analysis (p-value < 0.001) and the
log rank test (p-value < 0.0001) indicate in Figure 4, we could infer that the reverse is also
feasible. The model is able to efficiently classify patients in the two risk groups by learning
their 3-miRNA expression values.
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Figure 3. Supervised machine learning algorithms’ performance in discriminating the low- and
high-risk group employing miRNA expression values, measured by qRT-PCR: (A) The ROC curves
of each model predicting the risk group of the validation set. It illustrates the predictive ability
that each model has over true positives and false positives. The area under curve (AUC) is also
reported; (B) The table provides the models and the metrics used for their evaluation (sensitivity is
the ability of the models to predict the high risk and specificity the ability to predict the low risk).
The table summarizes the mean value and the standard deviation of each mode performance over
10 repetitions of the bootstrap method; (C) The mean confusion matrix of the model that scores the
best performance on the validation set after 10 repetitions. In the upper left corner of the table, we can
see the true positive predictions, and in the lower right, the true negative predictions are depicted.
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Meier analyses between high- and low-risk group. The patients were stratified to the aforementioned
groups, according to their overall survival. In the y-axis we can see the proportion of patients
surviving and the vertical drops in the curve indicate the events. The number of patients at risk and
the number of censorings are supplementary to the survival curve; (B) The cumulative events are
depicted and indicate the cumulative hazard probability. This is comparable to the integration of
the hazard rate of each patient over months; (D,F) Log Rank test for the comparison of the survival
curves of the two risk groups. The null hypothesis in this test is that the two curves do not differ.
The fact that our p value is below 0.05 indicates that the survival curve of the low-risk group differs
significantly from the survival curve of the high-risk group.

3.5. GBM IHC Images Can Be Discriminated into Two Groups, Depending on Overall Survival

Feature extraction applied to the IHC images through the CNN produced thousands
of features which were transformed to n = 45 PCs after PCA analysis. Out of the n = 45 PCs,
the RFE algorithm showed that those that can better discriminate our two groups, were
the 2nd, 3rd, 4th, 5th, 6th, 8th and 38th. Hence, we used only those PCs to train both
unsupervised and supervised models (Figure 5).
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Figure 5. Schematic representation of the workflow followed for the discrimination of the immuno-
histochemical (IHC) images between low- and high-risk biopsies. The initial images are resized in
order to fit in the Vgg16 Convolutional Neural Network. This pretrained network performs the
feature extraction. Subsequently the image features are processed in order to be classified from both
supervised and unsupervised algorithms.

Optimum performance was achieved by the agglomerative clustering algorithm,
which reached an accuracy score of 91.11%. Euclidean distance was set as a measure of
distance and Ward’s method as the linkage criteria to specify the dissimilarity between
clusters. Standard Deviation (STD) values for accuracy, sensitivity and specificity were
equal to zero, as it is not a stochastic algorithm. The PCs that led to this result were the 2nd,
5th, 6th, and 38th. Figure 6A depicts how each patient was clustered in a dendrogram plot.
Agglomerative clustering, like all the hierarchical clustering methods, works from bottom
up by merging the nearest clusters at each step, until there is only one cluster containing
all the samples of the dataset [28]. The results of our analyses were initially organized in
four clusters: the turquoise, the red, the orange and the cluster containing only the 22nd
sample. Following this, two clusters were obtained: one for the orange and the red sub-
clusters and another one for the two remaining clusters. In the dendrogram it is apparent
that the first cluster represents the low-risk group with four misclassified samples, while
the second one represents the high-risk group with only one misclassified sample. Thus,
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sensitivity rises to 95.46%, specificity to 86.96% and F1 score to 91.01%. The performance
of all the clustering algorithms is depicted in Figure 6C. The distribution of the four PCs
that yielded the highest accuracy is depicted with box plots in Supplementary Figure S2.
Those PCs were also used to train n = 10 supervised algorithms. The performance of each
model on the validation set is provided in Figure 6D. The highest mean accuracy score of
92.00% with 3.61% standard deviation was achieved by the Nu-Support Vector classifier
and a mean F1 score of 91.72%, with 4.06% standard deviation obtained in the validation
set after 10 repetitions. This model’s performance is also illustrated with its ROC curve
in Figure 6B, with an AUC = 95%. The mean confusion matrix for this model is given in
Figure 6D. The model classifies patients from both groups.
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(C) The table presents the unsupervised models and the measurements used for their assessment.
It contains the mean value, the standard deviation and the feature combination of each model that
yield the best performance over 10 repetitions of the bootstrap method (as sensitivity is the ability of
the models to predict the high risk and as specificity the ability to predict the low risk); (D) The table
shows the performance of the 10 supervised algorithms, in the validation set, after 10 repetitions of
the evaluation method. The features used for training of the algorithms were PC2, PC5, PC6 and
PC38; (E) The mean confusion matrix of the Nu-Support Vector model that yields the highest accuracy
on the validation set after 10 repetitions.

4. Discussion

GBM patients are a remarkably heterogenous group, presenting different prognoses for
OS. Such intra-individual heterogeneity of GBM requires more effective biomarkers from
the perspective of clinical implementation, which will be accomplished by the integration
of individual molecular profiling together with a better understanding of the disease
phenotype. Herein, we assess the prognostic value of a 3-miRNA signature that allows
GBM patient stratification into low- and high-risk groups.

Following our mixed-methods content analysis, the key role for hsa-miR-20a, hsa-
miR-21 and hsa-miR-10a was revealed in the regulation of gene expression in GBM patho-
physiology. The functional role of hsa-miR-20a, which is found overexpressed in GBM,
based on its validated targets TIMP-2, TGFb-RII and CTGF, is associated with increased
cell invasion, angiogenesis and cell growth [26,29,30]. The upregulation of hsa-miR-21 has
been correlated with reduced cellular radiosensitivity and chemosensitivity, through its
implication in DNA-repair mechanisms and cell-cycle linked pathways [7]. hsa-miR-10a
overexpression has been linked to increased cell invasion and migration, as it regulates
epithelial-to-mesenchymal transformation (EMT) [27]. Our findings reveal the oncogenic
function of the abovementioned miRNAs, as patients with unfavorable prognoses have
been associated with higher miRNA expression levels, compared with those with bet-
ter prognoses. It is of note that slightly lower expression values of hsa-miR-10a may be
attributed to upstream negative regulators, such as the long non-coding RNA TUSC7 [31].

Several studies have shown that distinct miRNA expression patterns may serve as
diagnostic, prognostic or predictive candidate biomarkers. To name but a few, a GBM
miRNA profile, including nine differentially expressed miRNAs in FFPE samples, could
discriminate GBM from gliomas of grades I-III [32]. Moreover a 4-miRNA signature has
been proposed that can determine short- and long-term survival in GBM patients [33].
Additionally, the prognostic value of miRNA signatures and their OS prediction ability
have been reported in various studies [34–38]. Weighing up the aforementioned studies,
our 3-miRNA signature consists of a unique, low complexity combination of miRNAs
and may be applied regardless of confounding variables, such as MGMT status or GBM
molecular subtype.

In the present study, miRNA expression analysis was performed on a balanced GBM
cohort. The FFPE material used was that of choice as it is the most reliable source for miRNA
isolation and the most standardized way to process tissue in a clinical routine [32]. For
miRNA quantification, we used qRT-PCR, as the gold-standard methodology, characterized
by high sensitivity and specificity [39]. Importantly, our findings show that we can extract
a distinct miRNA expression profile for each individual, which reflects disease severity. To
avoid selection biases, considering the sample size of this study, instead of a population-
based estimate, 12 months was the cut-off value set for the low- and high-risk groups, as
reported by pivotal studies (RT+TMZ) in GBM and/or clinical trials for newly diagnosed
patients and the age-groups included herein [40–42]. Our analysis revealed a clear tendency
of higher expression levels for our 3-miRNA signature in the high-risk group.

Our 3-miRNA signature expression profile discriminates the two prognostic groups.
Among the three miRNAs, although differences do exist, hsa-miR-20a expression has no
significant difference between the risk groups. This result may be attributed to the specific
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sample space, upon consideration of the established oncogenic function of hsa-miR-20a,
its implication in gliomagenesis and the meta-analysis findings, which have shown its
association with an increased hazard of death [43]. To our knowledge, only two studies
have reported on hsa-miR-20a as a protective miRNA in GBM [29,44].

Our in-silico validation by coupling machine learning to a pathomics approach em-
powers our 3-miRNA signature value as a useful tool for risk stratification in GBM. Machine
learning algorithms, using the 3-miRNA expression values, show a very good predictive
ability for high-risk (sensitivity = 95.36%) and low-risk (specificity = 90.67%) patients. We
note that despite hsa-miR-20a expression levels not being significantly different between
the two groups, it is effectively used as a predictor in our models (mean importance of
hsa-miR-20a = 9.41), indicating that the combination of those miRNAs as a signature can
discriminate patients into high- and low-risk groups, rather than each miRNA alone. The
fact that the algorithm seems to be in favor of the high-risk group according to our view
rises from the low variability that our 3-miRNA signature has in the high-risk group.
Despite there was no external test set available for further evaluation of the models’ gener-
alization, the random forest classifier produced robust predictions. This was reflected in
the low standard deviation in its accuracy among the 10 iterations of the models’ design
and evaluation. As our model does not overfit, we conclude that the prediction of patients’
risk groups from an independent GBM cohort, providing the 3-miRNA expression profile,
is feasible. In this context, we used the mean predictions made by the random forest to
perform the Kaplan–Meier analysis (graphs not shown). The survival probabilities pro-
duced the same results as the Kaplan–Meier analysis which was done based on the OS
and thus these predictions could be eventually used to get the survival probabilities of
an independent cohort. Our hybrid deep learning model, based on the GBM IHC images,
classifies the patients from both groups quite well. There are several studies performing
pattern recognition in different modalities of GBM images [45–47]. In most of the cases,
images were used to discriminate GBM molecular features or subtypes, whereas we aim
to stratify patients into low- and high- risk groups. The PCs used in the machine learning
process have a rather low variance, which is not considered optimal; however, as Jolliffe [48]
suggests, PCs with a low variance can also be used as predictors. Indeed, in our case PCs
were able to discriminate the two groups, which verifies the significance of our 3-miRNA
signature toward patient stratification.

GBM constitutes a major challenge in selecting the most effective therapeutic approach
due to tumor heterogeneity, inter-individual variability, late diagnosis and poor prognosis,
as well as limited therapeutic options. Since miRNAs exhibit a pivotal role in glioma
pathophysiology, miRNA profiles present information-rich signatures and may serve as a
toolbox towards optimum disease management. We and others working on better-informed
decisions and translational biomarkers call for a non-stop critical appraisal of study design
and data reliability. There is no “one-size-fits-all.” Multivariate analyses that also include
the IDH mutation status, MGMT promoter methylation status and Verhaak GBM subtypes
may corroborate independent prognostic predictors rather than being an epiphenomenon of
established prognostic markers. Herein, a prospective study was designed with extra care
for the patient cohort to be as fully characterized as possible—not accidentally homogenous,
in an attempt to account for confounding factors and overcome selection bias. First, the
choice of a single clinical site ensures the data quality of, for instance, TMZ cycles, in
particular, are difficult to ascertain from data files or retrospective studies. Following this,
we chose not to use multivariate regression methods as the means against selection bias, but
our thorough hybrid deep learning approach, instead. For sure, there are several prognostic
factors with regard to survival that are not registered, i.e., unmeasured confounders [49],
that play a crucial role in predicting OS in addition to those mentioned above: performance
status, extent of resection, and Mini-Mental State Examination [50]. So far, none of these
factors had a hazard ratio over 4. In a 5-year follow-up of TMZ data, neither recursive
partitioning analysis class nor MGMT promoter methylation have hazard ratios of such
magnitude [51]. Helseth et al. (n = 66) reported a significant association between OS and
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patients with MGMT promoter methylation status and the extent of resection with hazard
ratios of 7.9 and 4.5, respectively [52]. We advise that a sensitivity analysis based on the
methodology detailed by Rosenbaum is required to demonstrate the impact necessary for
any unmeasured confounder to invalidate findings [53]. In our study, any confounder
not controlled for would need an odds ratio of at least 4 to invalidate our findings, also
validated by a hybrid deep learning approach.

Future perspectives cannot but aim at innovative strategies with potential impacts in
clinical practice [54,55].

5. Conclusions

GBM is a rather complex disease trait that renders optimum decision-making hard,
in particular when the poor survival rate and therapeutic options are considered. To this
end, miRNAs serve as a toolbox toward biomarker discovery. We herein suggest the
synergy of wet- and dry-lab approaches as a viable solution to the deleterious issue of
translational biomarkers, which are most hampered by poor data quality and biases. Our
pipeline accounts for confounding factors in both test and validation phases. Our 3-miRNA
signature (hsa-miR-20a, hsa-miR-21, hsa-miR-10a) is able to stratify GBM patients and
hence may contribute to OS prediction to empower evidence-informed decision-making in
clinical practice and enrich drug repurposing pipelines.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/curroncol29060345/s1, Figure S1: Supervised models performance
on the training set for the discriminant analysis of the qRT-PCR data in low- and high-risk group:
(A) ROC curves and the corresponding AUC for each model predictions on the data that were used for
the training of the classifiers. The Random Forest algorithm results in the highest AUC. (B) The mean
value and standard deviation of the metrics used to evaluate the five machine learning algorithms
for 10 iterations.; Figure S2: Boxplots of the Principal Components combination that gives the best
discrimination between the low- and high-risk group: (A,B,C) The 2nd, the 5th and the 6th Principal
Components differ statistically among the 2 groups. (D) The 38th Principal Component does not
differ statistically between the two categories.; Table S1: Demographic and clinical characteristics of
the standard-of-care treated GBM patients.
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