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Comparative quantification of 
chlorophyll and polyphenol levels 
in grapevine leaves sampled from 
different geographical locations
Elísabet Martín-Tornero1, Ricardo Nuno Mendes de Jorge Páscoa   2*,  
Anunciación Espinosa-Mansilla1, Isabel Durán Martín-Merás1 & João Almeida Lopes3

Near infrared spectroscopy (NIRS) and mid-infrared spectroscopy (MIRS) in combination with 
chemometric analysis were applied to discriminate the geographical origin of grapevine leaves 
belonging to the variety “Touriga Nacional” during different vegetative stages. Leaves were collected 
from plants of two different wine regions in Portugal (Dão and Douro) over the grapes maturation 
period. A sampling plan was designed in order to obtain the most variability within the vineyards 
taking into account variables such as: solar exposition, land inclination, altitude and soil properties, 
essentially. Principal component analysis (PCA) was used to extract relevant information from the 
spectral data and presented visible cluster trends. Results, both with NIRS and MIRS, demonstrate 
that it is possible to discriminate between the two geographical origins with an outstanding accuracy. 
Spectral patterns of grapevine leaves show significant differences during grape maturation period, with 
a special emphasis between the months of June and September. Additionally, the quantification of 
total chlorophyll and total polyphenol content from leaves spectra was attempted by both techniques. 
For this purpose, partial least squares (PLS) regression was employed. PLS models based on NIRS and 
MIRS, both demonstrate a statistically significant correlation for the total chlorophyll (R2

P = 0.92 and 
R2

P = 0.76, respectively). However, the PLS model for the total polyphenols, may only be considered as 
a screening method, because significant prediction errors, independently of resourcing on NIRS, MIRS 
or both techniques simultaneously, were obtained.

Vitis vinifera L. is one of the most cultivated fruit plants in the word and has a significant economic, environmen-
tal and medical impact. Grapes and wine are the major commercialized grapevine products, but the consumption 
of brined and fresh leaves is growing1,2 due to their phenolic composition and antioxidant content3. Moreover, 
grapevine leaves are a good indicator of the vigor, water stress and presence of diseases in the plant. It also reflects 
the grapevine cultivar or the soil where the vines are planted, being particularly useful in precision agriculture4. 
Therefore, the analysis of grapevine leaves is of paramount importance and it is essential to provide faster, more 
reliable and cost effective ways of diagnosing the plant status. In this sense, vibrational spectroscopy techniques, 
namely, mid-infrared (MIR), near-infrared (NIR) and visible (Vis) spectroscopy presents all the aforementioned 
properties. It is also relevant to emphasize that spectral measurements of leaves using these techniques are more 
robust that the measurements taken from grapes especially during the early stages of ripening.

Several reports using Vis/NIR spectroscopy applied to grapevine leaves were described in the literature. For 
instance, the anthocyanin content in grapevine leaves was determined in two French hybrid grapevine cultivars 
collected in two different months5. Accurate predictions were obtained despite the differences in pigments com-
position, leaf thickness, age and pubescence. Diseases monitoring (namely, Plasmopara viticola), canopy health 
and vigour status assessment were also successfully performed through remote sensing Vis/NIR spectroscopy sys-
tem6. The evaluation of grapevines water status through leaves using NIR spectroscopy was already demonstrated 
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by using portable NIR instruments. Determination coefficients around 0.90 between NIR spectra and pressure 
chamber measurements were obtained7,8. Recently, a NIR spectrophotometer mounted on a vehicle and operating 
without plant contact was used with the same purpose and a correlation coefficient (R2) of 0.88 was obtained for 
the estimation of the estomatal conductance9. Leaf relative water content has also been addressed with R2 between 
0.66 and 0.8110. Infrared spectroscopy techniques have also been applied in grapevine leaves for classification 
purposes. Grapevine varietal and clone identification were successfully tested using the hyperspectral image of a 
leaf measured in reflectance mode and proper classifications around 95% were obtained in both cases11,12. In the 
same context, Gutierrez et al. (2015) used a portable NIR instrument for in-field grapevine varieties discrimina-
tion using the leaves spectra13. A total of 20 different grapevine varieties were included in this study and around 
85% of correct predictions were obtained. In another work, the accuracy of Vis-NIR spectroscopy to discriminate 
between vineyard soils using leaves spectra was demonstrated. A comparison with the existing soil map proved 
that the NIR spectroscopy based estimation was very similar14. Moreover, the results obtained in this work con-
firmed that the same variety planted in different soils will grow differently, or in other words, the grapevine leaves 
reflect the soil where the vines are located. However, as far as we know, there are no studies regarding the discrim-
ination of leaves of the same grapevine variety collected at different vineyards located in two geographical regions 
using infrared spectroscopy.

The analysis of grapevine leaves should also take into account the vegetative cycle of the plant. The vegetative 
cycle is a process that takes place in the vineyard each year and comprises all the morphological and biological 
changes. These changes are called phenological stages and their occurrence and duration is influenced by climatic 
factors15. It is known that leaf metabolites composition vary significantly over the vegetative cycle, especially 
during the ripening period due to environmental factors or the plant development16. These parameters are genet-
ically determined, however their expression throughout the grape ripening process change with agricultural and 
environmental factors17.

In this sense, this work intends to investigate the suitability of two infrared techniques, near and mid infrared 
spectroscopy, for the discrimination of grapevine leaves of the same variety growing in two different geographi-
cal locations (different leaves vegetative cycles were also considered by collecting samples over different months 
during the ripening process), for the discrimination leaves’ vegetative cycle and also for the determination of total 
chlorophylls and polyphenols. and considering different vegetative cycle. The determination of these pigments 
was carried as their concentration can be a good indicator of leaf maturation stage and consequently an indirect 
indicator of grapes maturation stage. In this way, the infrared technique that prove to be the most efficient can 
hamper wine growers regarding the ripening stage and provide an efficient, cost-effective and multi-parametric 
alternative analytical tool to assist grapes ripening. This tool can also be applied into other crops.

Material and methods
Sample collection.  Leaf sampling was carried out in two vineyards, property of SOGRAPE VINHOS SA, 
located in two Portuguese wine regions: Quinta dos Carvalhais (QC) in the Dão Wine Region (Mangualde, 
40°33′28.2′′N 7°47′10.2′′W) and Quinta da Leda (QL) in the Douro Wine Region (Almendra, 41°01′15.1′′N 
7°00′43.6′′W). All plants belong to the “Touriga Nacional” grapevine variety, a Portuguese iconic variety largely 
growth in the north of the country, and responsible for a large percentage of Port and Douro wine production. 
Eight different spots in each region were selected according to: altitude, sun orientation (solar exposition) and soil 
type (see Figure S1 in the supporting information).

Leaves were collected on four periods, with approximately one-month interval, from June to September (rip-
ening period) during the 2017 campaign. Therefore, a total of 64 samples were included (8 spots at each vineyard 
along four periods). At each spot, a total of twenty leaves in five different plants were sampled. Once the leaves 
were harvested, samples were transported to the laboratory under controlled temperature conditions and stored 
in the freezer (−20 °C) until lyophilisation. Leaf lyophilisation was performed at −80 °C and 0.4 mbar during 3 
days (Telstar, Lyoquest 85). After lyophilisation, all leaves from each sampling spot were mixed and milled. Then, 
the samples were stored at room temperature in the dark.

Chemical analysis.  Total phenolic compounds.  Polyphenols were extracted from approximately 0.25 g of 
milled samples with 10 mL of methanol:water (80:20) in an ultrasound bath during 30 minutes. The obtained 
extract was centrifuged at 3000 rpm for 10 min and the supernatant was used to determine total phenolic 
compounds.

Total phenolic compounds were determined colorimetrically using a Cary 50 UV-VIS spectrophotometer 
(Agilent Technologies) following the method described by Singleton and Rossi (1965)18. Aliquots of 1 mL of 
the extract diluted 1:33 (v/v) with ultrapure water, or gallic acid standard was added into a 10 mL borosilicate 
tube, followed by additions of 5 mL Folin-Ciocalteu reagent (1:10 v/v with water) and 4 mL of 75 g L−1 sodium 
carbonate solution. After mixing, the samples were incubated for 1 h at room temperature and the absorbance of 
the mixture was measured at 760 nm using the respective mixture with only ultrapure water as blank. External 
standard methodology was used. Total phenolic compounds content were expressed as mg of gallic acid per g of 
lyophilized leaves.

Chlorophylls a and b.  Pigments, chlorophylls and carotenoids, were extracted from leaves with methanol. 
Accurately weighted 0.1 g of lyophilized leaves was mixed with 10 mL of methanol in a centrifuge tube. After 
mixing with a vortex, all tubes were placed in an ultrasound bath for 15 minutes and centrifuged at 3000 rpm for 
10 minutes. Then 300 μL of supernatant was diluted to 3 mL with methanol. The absorbance of this solution was 
measured at 470, 652 and 665 nm and the concentrations of chlorophylls and carotenoids pigments were deter-
mined by using equations according to19,20.
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Spectral acquisition.  NIR spectra of lyophilised grapevine leaves powder were collected in diffuse reflec-
tance mode on a Fourier-transform near infrared spectrometer (FTLA 2000, ABB, Quebec, Canada) equipped 
with an indium-gallium-arsenide (InGaAs) detector and controlled by Bomen-Grams software (version 7, ABB, 
Quebec, Canada). All samples were transferred to borosilicate flasks prior to spectral acquisition. Each spectrum 
resulted from an average of 64 scans with a resolution of 8 cm−1 within the spectral range of 10000 to 4000 cm−1. 
Three spectra of each sample were collected and the average was considered for further analysis. Teflon reference 
material was used as background.

MIR spectra of the lyophilised grapevine leaves powder were collected in diffuse reflectance mode on a 
Fourier-transform spectrophotometer (Spectrum BX FTIR, PerkinElmer, Waltham, USA) equipped with a DTGS 
detector and PIKE Technologies Gladi ATR accessory. Three portions of each sample were transferred to the 
ATR crystal and compressed with a pressure of 150 N cm−2 for spectral acquisition. The resultant spectrum was 
obtained from an average of 32 scans with a resolution of 4 cm−1 within the spectral range of 4000 to 600 cm−1. 
The ATR crystal was cleaned, dried and a background (empty cell/air) was performed between each grapevine 
leave sample measurement. All spectral measurements were performed in triplicate and the average was consid-
ered for further analysis.

Data analysis.  All spectra (NIR and MIR) were pre-processed in order to remove variations and artifacts 
that do not represent the actual differences between samples. In this work, both NIR and MIR spectra benefit 
from baseline correction. Therefore, a Savitzky-Golay filter with a filter size of 15 points, 2nd order polynomial, 
and first or second derivative was applied followed by standard normal variate (SNV). These methods were thor-
oughly used in the literature for similar spectral data processing14. After this, all the spectra were mean centered 
for further analysis.

Principal component analysis (PCA) was carried out prior to classification and quantification approaches, 
with the objective of detecting outliers and eventually evaluate possible clusters formations (exploratory data 
analysis)21. Leaves classification was carried out by partial least squares discriminant analysis (PLS-DA). Several 
PLS-DA models were built with different classification purposes, namely for geographical region discrimina-
tion and vegetative stage discrimination. Samples were divided in two sets. The first data set (training set) was 
composed by leaves collected from 6 spots of each vineyard. The training set was used to perform the calibration 
and the cross validation of the models. The other dataset (test set) was composed of leaves collected from the 
remaining 2 spots and it was only used to test the robustness and accuracy of the developed PLS-DA models. 
This data division was only performed for the PLS-DA models. With the aim to select the most significant spec-
tral regions for the discrimination of the geographical region and vegetative stage, NIR and MIR spectra were 
divided in five different regions. For NIR, the spectral regions were: 9960 − 7317 cm−1 (R1), 7314 − 6507 cm−1 
(R2), 6503 − 5350 cm−1 (R3), 5346 − 4964 cm−1 (R4), 4961 − 4035 cm−1 (R5). The spectral regions established 
for MIR were: 3982 − 2702 cm−1 (R1), 2700 − 1802 cm−1 (R2), 1800 − 1182 cm−1 (R3), 1180 − 862 cm−1 (R4) 
and 860 − 620 cm−1(R5). Therefore, the optimization of the PLS-DA models involved selecting the optimal num-
ber of latent variables (LV’s) according to the lowest cross validation error using venetian blinds technique. The 
(combination) of best spectral regions were evaluated by performing all possible combinations using only the 
training set and the cross-validation strategy. After this optimization step, the validation set was projected into 
the training set and PLS-DA predictions were compiled under the format of a confusion matrix (presenting only 
for the validation set results). The percentage of correct predictions was obtained through the diagonal elements 
sum of the confusion matrices.

Moreover the partial least squares (PLS) regression was used to establish prediction models for total chloro-
phylls and polyphenols based on spectral data (NIR and MIR techniques). The entire NIR and MIR spectra were 
considered and the samples were randomly divided into two sets: 70% of the samples for calibration (45 samples) 
and the rest (30%) for validation (19 samples). This was done ensuring that the samples included in the valida-
tion set presented parameter values within the ones found in the calibration set (a kennard-stone algorithm was 
employed). Calibration optimization was achieved by estimating the best number of latent variables according 
to the leave-one-sample-out cross validation procedure and testing different pre-processing techniques (namely, 
SNV, Savitzky-Golay filter with different filter widths, polynomial orders and derivatives) individually and in 
combination using only the calibration set. After this optimization, the prediction set was projected and the PLS 
models evaluated using the following parameters: root mean square error of calibration (RMSEC), root mean 
square error of cross validation (RMSECV), root mean square error of predictions (RMSEP), coefficients of deter-
mination for cross validation (R2cv) and prediction (R2p), range error ratio (RER), residual predictive deviation 
(RPD), limit-of-detection (LOD) and limit-of-quantification. More details can be found at22.

Data analysis was performed using Matlab R2016b version 9.1 (The Mathworks Inc. Natick, MA, USA) with 
the PLS_Toolbox 8.2.1 (Eigenvector Research Inc. Wenatchee, WA, USA).

Results and Discussion
Grapevine leaf composition is influenced by soil properties and the vegetative stage. Thus, the composition of 
leaves could be allow the discrimination between grapevines of different geographical zones. With the aim to 
obtain information about the composition of grapevine leaves, NIR and MIR spectra from the lyophilized sam-
ples were obtained. Figure 1 shows the average of pre-processed NIR and MIR spectra of leaves collected from 
two vineyards during the vegetative cycle, comprised between June and September.

The spectra of grapevine leaves are complex, as can be observed, showing many bands which reflect the com-
plex composition of the grapevine leaves. Grapevine leaves vibrational spectra showed differences according to 
the geographical origin (QC and QL) and vegetative stage. Regarding leaves NIR spectra, it is possible to obtain 
information concerning several chemical compounds commonly present. The chemical compounds commonly 
present in leaves such as carbohydrates (e.g., cellulose, starch), lipids, proteins, water and phenolic compounds 
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(e.g. lignin), have already specific bands assignment in NIR spectra23. Moreover, other chemical compounds that 
contain or influence the following chemical bonds, C-H, N-H, O-H and S-H, can also be detected. In relation to 
MIR spectra, the identification of the bands is less complex than in NIR spectra but the chemical compounds that 
can be detected are similar to the ones above mentioned.

Geographical analysis.  Both NIR and MIR spectra acquired from the two different vineyards were com-
pared in order to highlight significant differences and the eventual impact of the two terroirs on the character-
istics of the leaves. The adopted procedure was based on the initial pre-processing of all spectra according to 
the selected method (section 2.4 Data Analysis) and then by calculating the average and standard deviation of 
the spectra for each vineyard. Wavenumbers, where a significant difference was found, were marked and the 
difference between the averages was performed. This procedure reveals regions in the spectra where there is a 
significant difference (two standard deviations were considered), in this case considering a 0.05 significance. This 
procedure was performed considering the months of June, July, August and September separately. For a better 
visualization of the differences, for each technique the average differences were normalized (divided by the high-
est computed difference) (Fig. 2).

The obtained results using NIR and MIR techniques were in agreement. First, it is clear a very high degree of 
similarity between spectra of both geographical origins for the months of June and July. Conversely more pro-
nounced differences were observed in August and September. Indeed, considering the last two periods, a very 
important number of spectral windows revealed significant differences (>5200 cm−1 for NIR and >2100 cm−1 
for MIR spectroscopy). It should also be noted that using NIR spectroscopy it was possible to capture differences 
almost in the entire spectrum for the month of September, although not so remarkable as those found above 
5200 cm−1.

A PCA of both NIR and MIR spectra was performed to examine the composition changes on the leaves of the 
same variety grown in the two different geographical regions. PCA models for each set of spectra were built in 
order to detect any grouping of samples. This exploratory analysis was performed applying first-order derivative, 
SNV as data pre-processing in the entire spectral regions. Mean-centering was always used as scaling procedure 
previous PCA analysis. The results show that the two first components explain more than 92% of the spectral 
variance in NIRs, and more than 66% in MIRs. The PCA score plots of the first two principal components (PC1 
and PC2) for each model (NIRs and MIRs) are shown in Fig. 3.

Figure 1.  Average of pre-processed NIR (a,c) and MIR (b,d) spectra (Savitzky-Golay using a window size of 15, 
2nd polynomial order and first derivative followed by SNV) of leaves samples collected in the different sampling 
dates and in two different geographical regions, Quinta dos Carvalhais (a,b) and Quinta da Leda (c,d).
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As can be seen in Fig. 3, both score plots show some tendency to cluster samples in two groups, highlighting 
and confirming chemical differences between leaves collected from different geographical regions. For the NIRS 
model, most of the samples from QL are placed in the fourth quadrant and the samples from QC are distributed 
between the others three quadrants. However, as can be seen in Fig. 3A, some samples of QL are placed between 
the samples of QC. When these samples were identified, all of them correspond to samples collected in June and 
July.

For the MIRs model, the groups are better defined. Most QC samples are placed in the negative side of PC1 
in opposition to samples from QL. Some overlapping can also be observed in the negative side of the PC2. These 
samples correspond to the June month, suggesting that lower differences are found between the samples collected 
in June. In order to confirm this, two additional PCA models were built for each spectral data set, considering 
only June and September. The score plots of the two first principal components for each model can be seen in 
Figure S2 of the supporting information. These plots confirm that better discrimination between leaves collected 

Figure 2.  Identification of the significant spectral differences regions found between both geographical origins. 
Results considering NIR (A) and MIR (B) spectra segregated according to the month are shown.
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in the two vineyards is found for samples harvested in September. The promising results of the exploratory data 
analysis suggest the use of a supervised classification method for the discrimination of the geographic origin.

The supervised classification method selected was PLS-DA. In order to select the spectral region that achieve 
better discrimination between the two classes, a PLS-DA model was developed for each separated spectral region 
and for the entire spectra using in all the cases Savitzky-Golay with 15 points filter width, 2nd polynomial order 
and first–derivative followed by SNV as pre-processing. The number of LVs was tested until a maximum of 10. 
Table 1 shows the % of correct predictions considering different number of LVs included in the PLS-DA model 
performed for each separated region and for the entire spectra, both with NIRS and MIRS. In this case, separated 
spectral windows were tested. Results are described for the prediction set.

The percentage of correct predictions obtained for each spectral region with both techniques indicates whose 
spectral regions could be more important. As can be seen in Table 1, NIR spectra show a slightly better perfor-
mance than MIR spectra for geographical origin discrimination. Moreover, all the spectral regions of NIR and 
MIR spectra showed a percentage of correct predictions around 90–100% with a low number of LVs. In this 
context, these results reinforce the idea that “terroir” has a high impact over the grapes and leaves of grapevines 
as leaves from different “terroirs” present a different chemical composition.

The analysis of the regression coefficient vectors of the PSL-DA models will allow a better visualization of the 
most important spectral regions. In Fig. 4A, the regression coefficient vectors considering the entire NIR spectra 
and 4 LV were plotted, and the respective confusion matrix was shown in Table 2. The same was done considering 
the entire MIR spectra and 1 LV (Fig. 4B and Table 2).

The more important wavenumbers for geographical origin discrimination obtained by the PLS-DA model 
using NIR spectra were located within the region 5,500 to 4,000 cm−1. These wavenumbers belong to the NIR 
combination band region where N-H plus C-H, C-H plus C-H and C-H plus C-C bonds vibrations are located 
and therefore can be mainly associated with carbohydrates and proteins24,25. It makes sense that the “terroir 
effect” has a significant impact over several chemical compounds commonly present in grapevine leaves, namely 

Figure 3.  PCA score plots of the two first components obtained for NIR (A) and MIR (B) spectra for both 
geographical origins discrimination considering the entire spectral range and the complete sample data set.

LV

Entire spectra R1 R2 R3 R4 R5

Near infrared spectroscopy

1 81 81 81 94 81 81

2 94 100 81 81 94 94

3 94 100 94 94 94 94

4 100 100 100 94 100 100

5 100 100 100 100 100 100

Mid infrared spectroscopy

1 94 56 81 100 100 94

2 94 88 88 100 100 88

3 88 88 94 94 94 88

4 94 94 88 94 94 88

5 94 100 88 94 94 88

Table 1.  Percentage of correct predictions for geographical origin discrimination obtained through PLS-DA 
considering individual spectral regions and the entire spectra for different number of latent variables (LV). All 
the samples were used (n = 64).
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carbohydrates and proteins. Regarding the regression coefficient vectors squared obtained by the PLS-DA model 
using MIR spectra for geographical origin discrimination, the wavenumbers with the highest contribution 
were located around 2,900 cm−1, within 1,800 to 1300 cm−1 and around 700 cm−1. The wavenumbers around 
2,900 cm−1 can be attributed to C-H bonds of carbohydrates23 while the wavenumbers within 1,800 to 1300 cm−1 
can be related with several molecules, such as amino acids and/or proteins due to the amide group at 1655 and 
1565 cm−123,26, chlorophyll due to the C = O band around 1700 cm−126 and cellulose due to the C = O, O-H and 
CH2 bands within 1750 to 1435 cm−123. The wavenumbers around 700 cm−1 can be related with proteins namely 
glycine due to CH2 and NH2 bonds and lipids due to CH2 bonds26.

Figure 4.  Squared PLS-DA regression coefficient vectors model for geographical discrimination considering 
a 4 LV NIR model (A) spectra, and a 1 LV MIR model (B). Note that for this PLS-DA model the regression 
coefficients for both classes are symmetric, and therefore the square is the same.
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The confusion matrix obtained considering the entire NIR spectra revealed that all leaf samples were correctly 
classified. When the entire MIR spectra was used, all leaf samples from Quinta dos Carvalhais were correctly classified 
while around 6% of the samples belonging to Quinta da Leda were misclassified as belonging to Quinta dos Carvalhais.

Leaf vegetative stage analysis.  A similar analysis was performed along the leaf vegetative stage. It was 
important to evaluate how spectral markers differences evolve over time and how this evolution can be distinct 
considering different geographical origins. The same procedure was followed, but now considering differences 
between the spectra collected in June in relation with the remaining three months. In Fig. 5, the processed spectra 
obtained by both techniques along leaf vegetative stage and in the two geographical regions are shown.

The analysis of the leaf vegetative stage from the point of view of the spectral data reveals that only marginal 
differences are observed between data collected in June and July. However, as the time span increases signif-
icant differences emerge, and this observation was valid for both NIR and MIR spectroscopy. Differences in 
multiple spectrum locations appear to increase as the time span increases. This was observed in both vineyards. 
Nevertheless, and taking into account the magnitude of the differences, it can be mentioned that the spectral 
differences between the same spectral window for QL and QC are similar but not exactly the same, which in 
some degree validates the observation made before, when the two geographical origins were compared and con-
siderable differences were observed. This finding highlights that the same grapevine variety planted in different 
geographical regions presents different chemical profiles in the leaves. A PCA model was carried out to explore 
the data and to detect grouping of samples collected in the four sampling dates at each geographical region. The 
exploratory analysis was performed under the same pre-processing conditions as for previous PCA models. The 
score plots obtained for the first two principal components for both techniques (NIRS and MIRS) and geograph-
ical regions (Figure S3 supporting information) allowed to distinguish between two groups, samples of June and 
July are located on one side of the PC1, while the samples of August and September are located on the other side, 
regardless of the geographical region and the technique used.

Due to the observed differences, a PLS-DA model was built for each geographical region. To find the best 
spectral region for this discrimination and the optimal number of LVs, the same procedure abovementioned 
was adopted. It was possible to conclude that for both NIR and MIR spectra there were no significant differences 
between the percentage of correct predictions for the leaf vegetative stage discrimination obtained for each sepa-
rated spectral region and the entire spectra.

In this context, the confusion matrix considering the entire NIR spectra of leaves from Quinta dos Carvalhais 
and Quinta da Leda with 5 LV and 4 LV, respectively is shown in Table 3. With MIR spectra, the entire spectra 
were also used and 2 LV for Quinta dos Carvalhais and 3 LV for Quinta da Leda were considered.

The percentages of correct predictions obtained for Quinta dos Carvalhais and Quinta da Leda were 87.5% 
and 62.5%, respectively, considering both techniques.

Both techniques allowed a correct classification between the samples collected in different months at both 
geographical regions, taking into account that the different compounds evolve continuously throughout the 
leaf vegetative stage. Therefore, as can be seen by the confusions matrices, the misclassified samples were only 
obtained between two consecutive months which can be easily explained by the small chemical composition dif-
ference between these leaves. However, no samples from June were classified in September and vice versa.

Correlation between infrared spectra and physicochemical analysis.  Chlorophylls are among 
the most abundant pigments in photosynthetic plants. Their content provides valuable information about the 
physiological status of the plant and the relation of all photosynthetic pigments are important indicators of leaf 
senescence27. From all chlorophylls, chlorophyll a and b are the more predominant and for this reason were the 
ones analyzed in this study. On the other hand, the total polyphenol content was analyzed because phenolic com-
pounds are known to play a key role in the final quality of grapes and wine.

PLS regression was selected to establish quantitative models between the chemical analysis of total chloro-
phylls (refers to the sum of chlorophyll a and b) and total polyphenols (expressed as gallic acid) obtained through 
reference procedures and the entire spectral data of NIR and MIR techniques as aforementioned. The PLS mod-
els were optimized using the calibration set (section 2.4) and four different PLS models were built (two using 
the experimental data and NIR spectra and the other two using the experimental data and MIR spectra). The 
best pre-processing technique obtained for the determination of total chlorophylls and polyphenols considering 
NIR spectra was Savitzky-Golay with 15 points filter width, second polynomial order and second derivative, fol-
lowed by SNV. For MIR spectra, the application of SNV generated the best results for both total chlorophylls and 
polyphenols determinations.

Vineyard (predicted)

Vineyard (real)

NIR (LV = 4) MIR (LV = 1)

Total
Quinta dos 
Carvalhais

Quinta da 
Leda

Quinta dos 
Carvalhais

Quinta da 
Leda

Quinta dos Carvalhais 50 0 50 0 50

Quinta da Leda 0 50 6.3 43.7 50

Total 50 50 56.3 43.7 100

Table 2.  Confusion matrix obtained for a PLS-DA model for vineyards discrimination. All the samples were 
used (n = 64). Values are expressed in percentage considering total samples.

https://doi.org/10.1038/s41598-020-63407-8


9Scientific Reports |         (2020) 10:6246  | https://doi.org/10.1038/s41598-020-63407-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

A graphical representation of the experimental versus predicted total chlorophyll and total polyphenol content 
is presented in Fig. 6.

The PLS results are shown in Table 4. The best PLS models were obtained for total chlorophyll determination 
by both techniques, and NIR revealed to be more accurate. The NIR PLS model results suggest that it is possible 
to determine the amount of total chlorophyll (R2

P of 0.92, RER of 13.0 and RPD of 3.41) with a relatively high 
accuracy (RER and RPD above 10 and 2.5, respectively), while for total polyphenols (R2

P of 0.76, RER of 7.50 
and RPD of 1.90) it can be used only as a screening method. Regarding MIR data, the PLS model results reveal 
that this technology is also accurate for the determination of total chlorophyll (R2

P of 0.84, RER of 10.2 and RPD 
close to 2.5) while for total polyphenols the result follows the trend already observed for NIR spectroscopy (R2

P 
of 0.51, RER of 5.15 and RPD of 1.46). The other figures of merit calculated reinforce that NIR spectroscopy is 
more accurate.

Besides presenting the PLS model’s results it is also important to understand which spectral regions have a 
higher contribution to the respective models. In this context, the regression coefficient vectors of all PLS models 
were plotted in Fig. 7.

Figure 5.  Identification of the spectral regions where statistically significant differences were found between 
NIR (A) and MIR (B) spectra considering different time periods. The comparison is always made considering 
the June month as the basis.
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For NIR spectra and considering the total chlorophyll, the most important wavenumbers were located within 
the region between 5,000 and 4,000 cm−1 while for total polyphenols the most important wavenumbers were 
located within 6,000 to 4,000 cm−1. The wavenumbers associated with the chlorophyll content are commonly 
located at the spectral regions closer to the visible region24. In this case, the wavenumbers within 5,000 and 
4,000 cm−1 are usually associated with carbohydrates and proteins content present in the leaves24,25. In fact, this 
spectral region belongs to the NIR combination band region where N-H plus C-H, C-H plus C-H and C-H 

Leaf vegetative 
stage (predicted)

Leaf vegetative stage (real)

Quinta dos Carvalhais Quinta da Leda

Near infrared spectroscopy

June July August September Total June July August September Total

June 25 0 0 0 25 12.5 12.5 0 0 25

July 0 25 0 0 25 0 12.5 12.5 0 25

August 0 0 12.5 12.5 25 0 0 25 0 25

September 0 0 0 25 25 0 0 0 25 25

Total 25 25 12.5 37.5 100 12.5 25 37.5 25 100

Mid infrared spectroscopy

June July August September Total June July August September Total

June 25 0 0 0 25 25 0 0 0 25

July 0 25 0 0 25 0 12.5 12.5 0 25

August 0 0 25 0 25 0 0 12.5 12.5 25

September 0 0 12.5 12.5 25 0 0 12.5 12.5 25

Total 25 25 37.5 12.5 100 25 12.5 37.5 25 100

Table 3.  Confusion matrix obtained through PLS-DA model for leaf vegetative stage discrimination. Values are 
expressed in %. All the samples for each vineyard were used (n = 32).

Figure 6.  Experimental values versus PLS cross-validation predictions (●) and independent test set 
predictions (□) for total chlorophyll (a) and polyphenols (b) using NIR spectra and for total chlorophyll (c) and 
polyphenols (d) using NIR spectra and MIR spectra.
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plus C-C bonds vibrations are located. However, this could make sense because the chlorophyll molecule has all 
these bonds and another work suggested the possibility of chlorophyll being responsible for absorptions within 
the spectral region of 4,800 to 4,300 cm−128. Regarding the total polyphenols content, the wavenumbers located 
within 6,000 to 4,000 cm−1 include the NIR combination band region abovementioned and part of the first over-
tone region, including the S-H bonds. This entire region can be associated to aromatic compounds and phenols29.

Considering MIR spectra and total chlorophyll PLS model the most important wavenumbers were located 
within 1,770 to 800 cm−1 while for total polyphenols PLS model the most important wavenumbers were located 
within 1,650 to 600 cm−1. For total chlorophyll, the highest peaks were located around 1,700 cm−1 which are in 

Total chlorophylls (µg g−1 of sample) Total polyphenols (µg g−1 of sample)

NIR MIR NIR MIR

LV 5 5 4 8

RMSEC 204 375 6.33 6.72

RMSECV 355 504 9.51 11.8

RMSEP 283 318 7.87 10.9

R2
CV 0.84 0.72 0.61 0.40

R2
P 0.92 0.84 0.76 0.51

RER 13.0 10.2 7.5 5.2

RPD 3.41 2.48 1.90 1.46

Slope Y = 0.95x +  134.3 Y = 0.86x +  253.4 Y = 0.87x +  5.57 Y = 0.56 +  19.9

Bias −2110 2635 18.7 12.7

LOD 849 954 23.6 32.7

LOQ 2830 3180 78.7 109

Table 4.  PLS calibration models’ results for total chlorophyll and polyphenols using NIR and MIR 
spectroscopy. All the samples were used (n = 64).

Figure 7.  Squared regression coefficient vectors of total chlorophyll and polyphenols PLS models built using 
the entire NIR spectra (A) and the entire MIR spectra (B).
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agreement with C = O bands of chlorophyll molecule26. Regarding total polyphenols, the wavenumbers within 
1600 and 1100 cm−1 can reflect the presence of aromatic compounds, flavonoids and phenols23,30. Thus, this rein-
forces why the more important wavenumbers for total polyphenols were found within 1,650 and 600 cm−1.

Conclusions
High-throughput analysis resourcing on vibrational spectroscopy methods such as near or mid-infrared spectros-
copy for the monitoring of vineyards has been proposed essentially aiming at following grapes ripening processes 
and for harvest time tracking. These procedures made on grapes, both in-situ or at the lab, present sampling 
difficulties given the geometry, high water content and variability of grapes chemistry within bunches. This work 
evaluated the feasibility of tracking the plant evolution by using the same spectral methodologies but applied on 
dried (lyophilized) leaves, thus increasing signal-to-noise and eliminating the water content disturbance. Results 
obtained from leaves of the same grape variety collected from two geographically different wine regions over four 
months (June to September) show that it is indeed possible to track the ripening stage. Signals collected with 
NIR and MIR both allow to differentiate the geographical origin of grapevine leaves with an accuracy above 95% 
independently of the ripening month. Moreover, differences known in grape chemical profiles from these wine 
regions caused by a distinct terroir can also be detected from grapevine leaves. The evolution of leaves chemical 
composition during the June-September period could also be tracked by NIR/MIR spectroscopy. Markedly differ-
ences are observed when June leaves spectra are compared with August and September leaves spectra, indicating 
a major chemical profile transition around end of July. Besides using the spectra to track the vinegrape leaves 
evolution during the ripening period, the quantification of total polyphenols and chlorophylls was also successful. 
For quantification purposes, NIR spectroscopy revealed a better option with and higher accuracy when compared 
to MIR spectroscopy (quantification errors approximately 20 to 30% lower). The application of these methods to 
the determination of chlorophylls was also superior compared to the total polyphenols with almost twice high 
range-error-ratios. Quantification accuracy for chlorophylls and polyphenols yield 283 and 7.9 µg/g, respectively. 
This work demonstrated that it is possible to track vinegrape chemical evolution over the ripening period by 
monitoring the leaves (dried leaves), leaving an open possibility to use this methodology for monitoring the 
grapes ripening process. As already demonstrated in the literature, the in-situ spectra analysis of leaves is much 
more robust when compared with grapes, thus requiring substantially fewer spectral analyses, and allowing the 
monitoring of a increased areas in the same time period.
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