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Abstract

Raman spectroscopy is a powerful technique for detecting and quantifying analytes in chemical mixtures. A critical part of
Raman spectroscopy is the use of a computer algorithm to analyze the measured Raman spectra. The most commonly used
algorithm is the classical least squares method, which is popular due to its speed and ease of implementation. However, it is
sensitive to inaccuracies or variations in the reference spectra of the analytes (compounds of interest) and the background.
Many algorithms, primarily multivariate calibration methods, have been proposed that increase robustness to such
variations. In this study, we propose a novel method that improves robustness even further by explicitly modeling variations
in both the background and analyte signals. More specifically, it extends the classical least squares model by allowing the
declared reference spectra to vary in accordance with the principal components obtained from training sets of spectra
measured in prior characterization experiments. The amount of variation allowed is constrained by the eigenvalues of this
principal component analysis. We compare the novel algorithm to the least squares method with a low-order polynomial
residual model, as well as a state-of-the-art hybrid linear analysis method. The latter is a multivariate calibration method
designed specifically to improve robustness to background variability in cases where training spectra of the background, as
well as the mean spectrum of the analyte, are available. We demonstrate the novel algorithm’s superior performance by
comparing quantitative error metrics generated by each method. The experiments consider both simulated data and
experimental data acquired from in vitro solutions of Raman-enhanced gold-silica nanoparticles.
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Introduction

Background
Raman spectroscopy is a powerful technique for analyzing

chemical compounds using a laser source. It exploits the Raman

effect, which arises from the interaction between laser light and a

sample of interest. When incoming photons hit the sample surface,

most photons are scattered elastically, after which they continue

traveling with the same energy and wavelength. However, a very

small fraction of the photons is scattered inelastically, meaning that

they lose energy and continue traveling with a longer wavelength.

The amount of energy lost by the photons depends on the

particular molecules they interact with. In fact, the chemical bonds

in the molecules absorb energy in highly specific patterns. As a

result, the Raman scattered photons possess highly compound-

specific wavelength spectra. Raman spectroscopy uses these highly

specific spectral fingerprints to identify and quantify compound

concentrations. The usefulness and power of Raman spectroscopy

lie in the fact that it allows rapid sample analysis of single or

multiple compounds (known as multiplexed analysis) at high

detection sensitivities [1]. Amongst its many promising areas of

application, Raman spectroscopy has gained growing interest from

the biomedical research community, where it promises to enable

sensitive imaging of nanoparticles for both diagnostic and

therapeutic applications [1–3]. Examples of such applications

are Raman colonoscopy for early cancer detection and improved

tumor margin detection during surgery.

A critical part of Raman spectroscopy is the use of an

appropriate signal analysis algorithm to analyze the measured

Raman spectra. This paper focuses on the development of a signal

analysis algorithm that is robust to natural variations in both the

background and analyte signal. In the following sections, we

describe the previous literature on spectral analysis algorithms,

highlight their strengths and weaknesses, and explain the need for

and novelty of our contribution.

Previous Raman Spectral Analysis Algorithms
Various methods have been used to analyze Raman spectra (i.e.

detect and quantify compounds of interest), such as classical least

squares [1], least squares with a low-order polynomial background

model [4], variable baseline correction [5–7], explicit detection

and parametric (Gaussian) modeling of Raman peaks [8],

principal component regression [9], partial least squares [10,11],

and hybrid linear analysis [12]. The classical least squares method

can be used when the pure spectra of the compounds of interest

(also known as analytes) and an accurate background spectrum are

known. While fast and quantitative, this method is sensitive to
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inaccuracies or variations in the spectra of the compounds of

interest and the background. It is also sensitive to noise when the

signal of interest is weak. Lutz et. al [4] addressed the problem of

background variability by allowing the background spectrum to

vary according to a low-order polynomial model. While successful

in accounting for slowly varying changes to the background

spectrum, it cannot accommodate higher-order variations such as

slight peak shifts or changes in the relative amplitudes of peaks, all

of which are regularly observed in practice. Many alternative

baseline fitting algorithms suffer from the same limitation [5–7].

Such methods commonly subtract a smoothly varying baseline

estimate from the measured spectra before computing concentra-

tion estimates, often using a conventional least squares approach.

Again, while suitable to account for smooth background variations

such as those caused by autofluorescence, these models are not

adequate in the presence of complex sources of variation such as

changes in peak position and relative peak amplitudes. Aiming to

model such shift and amplitude changes directly, Kode et al. [8]

proposed to model spectrum peaks explicitly with 1D Gaussians.

By employing a penalized cost function, the method allows the

peaks to modestly change position, width and amplitude while

computing concentration estimates. However, such peak detection

and quantification is sensitive to noise at low signal strengths.

Principal component regression (PCR) and partial least squares

(PLS) are implicit methods that require neither prior knowledge

of the reference spectra, nor an explicit background model. As

such, they can handle background variations that are more

complex than the smoothly varying curves discussed above.

Known as multivariate calibration methods, they attempt to find

a linear model that relates a dependent variable, e.g. analyte

concentration, to the measured independent variables, e.g.

spectra, for complex mixtures. The model parameters are

obtained in the form of a regression or calibration vector b,

which is derived from a calibration set of representative mixtures

for which the dependent variable is known. Subsequently, the

dependent variable (analyte concentration) is predicted by taking

the dot product of b with the measured spectrum of an unknown

mixture.

While PCR and PLS are broadly applicable, they also ignore

valuable knowledge of the analyte spectra when available. This

scenario was encountered previously by Berger et al. [12], who

possessed a mixture calibration set with variable spectra,

knowledge of the analyte concentration, as well as the pure

analyte spectrum. In a bid to improve on PCR and PLS, Berger et

al. proposed to exploit the additional information using a method

they called hybrid linear analysis (HLA). This technique represents

the variable background signal as a linear combination of the

background signals’ principal components. It obtains an accurate

calibration vector by estimating the background signals (i.e. the

calibration signals without the analyte contribution), and subtract-

ing from the known analyte spectrum its projections onto each of

the background signals’ principal components (see the section

entitled ‘Hybrid Linear Analysis (HLA) Method’). This technique

can be repeated to derive the calibration vector for any known

analyte in the mixture. HLA was shown to significantly

outperform PLS (PCR was not tested because its performance is

usually similar but slightly inferior to that of PLS). This result

makes intuitive sense because HLA uses more physical information

to obtain the calibration vector than PLS (or PCR).

In the study reported here, we possess a calibration set of

variable background signals excluding the analyte, as well as a

calibration set of pure analyte spectra. The analyte consists of

Raman-enhanced gold-silica nanoparticles (see the Simulation

Results section). Since the background and analyte variations

cannot be modeled by smooth curves (see the Results and

Discussion section), multivariate calibration techniques are better

suited than baseline correction methods. Of these techniques,

HLA is more suitable than PCR or PLS due to the availability

of pure analyte spectrum information. HLA can be used by

skipping the first step of background isolation (since we measure

it directly), and working with the mean of the analyte spectrum.

However, such an approach ignores the information about the

analyte spectrum variation. It also fails to incorporate informa-

tion about the extent of variation observed in the calibration sets,

as captured by the eigenvalues of the principal component

analyses.

Hybrid Least Squares and Principal Component Analysis
Algorithm

In this study, we propose to model variations in both the

background and analyte spectra, in order to increase the

robustness of analyte concentration estimates. Improving on

HLA, our method incorporates the principal components as well

as eigenvalues of the background and analyte calibration sets into

a hybrid least squares and principal component analysis (HLP)

method. Our method differs from standard multivariate calibra-

tion techniques in that it does not derive a calibration vector.

Instead, HLP estimates fitting weights for each of the analyte and

the background signals. We explain the mathematical details of the

method in the section entitled ‘Novel Hybrid Algorithm (HLP)’.

HLP is tested on both simulated data and experimental data

acquired from an in vitro solution of Raman-enhanced gold-silica

nanoparticles [1]. The results are presented in the Results and

Discussion section, where we demonstrate the improved perfor-

mance of the novel method compared to that of the least squares

method with a low-order polynomial background model [4] and

HLA. To reiterate, we chose HLA as a competitive method for

comparison, because it is robust to complex variations in the

background signal, and incorporates available information about

the analyte spectrum. The latter property makes it more suitable

for comparison to our HLP algorithm than PCR or PLS. Lastly,

the Conclusions and Further Work section draws conclusions and

describes avenues for future work.

Methods

Classical Least Squares Method
Here we briefly review the classical least squares method with

an added low-order polynomial background model, as proposed

by Lutz. et al. [4]. The measured spectrum can be modeled as a

linear combination of known spectra (a.k.a. reference spectra):

xl~
XK

k~1

wkSlk,wk§0, ð1Þ

where xl is the modeled intensity at wavelength l, K is the number

of reference spectra provided, Slk is the value of the reference

spectrum of the kth compound at wavelength l, and wk is the weight

for the kth compound. In the method proposed by Lutz et al. [4],

the spectra Sk include the compounds of interest as well as an

average background signal and the q+1 components of a qth order

polynomial. The concentrations of the various compounds are

then estimated by solving for the weights wk that give the closest fit

with the measured spectrum. This can be done by writing the

problem in the matrix form M = SW, where M is the L61 vector

containing the measured spectrum values ml, S is the L6K matrix

of reference spectra, and W is the K61 matrix containing the

Hybrid LS and PCA Algorithm for Raman Spectroscopy
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weights wk. The least squares solution is then given by

ŴW~S{M, ð2Þ

where S{~ ST Sð Þ{1
ST is the Moore-Penrose pseudoinverse of

the matrix S. Note that this algorithm implicitly assumes that the

noise on the signals is Gaussian distributed.

Hybrid Linear Analysis (HLA) Method
As mentioned in the section on previous Raman spectral

analysis algorithms, the HLA method proposed by Berger et al.

[12] estimates the concentration of an analyte by taking the dot

product between a calibration vector b and a measured spectrum

m. The calibration vector b is computed from a calibration set of

mixture spectra, for each of which the analyte concentration is

known, as well as an accurate estimate of the pure analyte

spectrum. Let BA denote the calibration set, where the sample

spectra are stored in the rows. The corresponding concentrations

are stored in a column vector k. The known spectrum of the

analyte is represented by a row vector SA, measured at unit

concentration. Using BA, k and SA, the calibration vector b is

computed as follows:

1. Isolate the background signals by subtracting out the

estimated spectral contributions of the analyte:

N

B~BA{kSA ð3Þ

2. Compute the principal components of the background

calibration set B, and store them in the rows of a matrix V. Since

all of the spectra in B can be modeled by those in V, the spectra in

V act like pure spectra of the background species.

1. Subtract from the reference spectrum SA its projections

onto each of the background’s principal components, leaving a

residual spectrum r:

N

r~SA{SAVtV ð4Þ

This residual r is the portion of SA that cannot be modeled by the

spectra contained in V, i.e. it is orthogonal to V.

2. Normalize r to get the calibration vector b:

N

b~
r

SA:r
ð5Þ

where ‘.’ denotes the dot product.

This procedure can be repeated for any analyte of interest. As

mentioned in the section on previous Raman spectral analysis

algorithms, HLA can be applied to our data by skipping step (i),

and using the mean spectrum of the analyte calibration set.

Novel Hybrid Algorithm (HLP)
Here we explain our proposed HLP method. It is derived by

extending the signal model of Eqn. 1. More specifically, we allow

each of the reference spectra Sk to vary according to the principal

components of variation observed in the background and analyte

calibration sets. For each reference spectrum, we penalize

deviations from the mean signal in accordance with the

eigenvalues obtained from the principal component analyses. In

essence, this constrains the variations in the reference spectra to

the statistically plausible. Note that the reference spectra can also

include the terms of a low-order polynomial background model.

However, this is unnecessary since spectrum variations are already

modeled by the principal components. In exploratory experiments

(not reported here), we verified that the inclusion of a polynomial

background model into HLP did not yield further improvements

in concentration estimates.

Mathematically, the signal model is extended to

xl~
XK

k~1

wk
�SSlkz

XP

p~1

cpkZlpk

 !
, ð6Þ

where �SSk is the mean spectrum observed for compound k, and Zpk

is the pth principal component with a non-zero eigenvalue for

compound k, observed during prior characterization experiments.

Our objective is now to estimate the coefficients W~fwkg and

C~fcpkg that give the best signal fit. We do so by using a

Bayesian probability framework, where we maximize the posterior

probability of W and C, given the measured signal M, the mean

reference spectra �SS, the principal components Z, and the

eigenvalues l (obtained during the same principal component

analysis). Using Bayes’ theorem and the rules of conditional

probability, we can decompose this posterior probability as

P(W ,CDM,�SS,Z,l)~

P(M D�SS,Z,W ,C)P(CDl)P(l)P(�SS)P(Z)P(W )

N ,
ð7Þ

where N is a normalization constant, and we recognized that

P(M D�SS,Z,l,W ,C)~P(M D�SS,Z,W ,C). We also assumed that �SS, Z,

W, and C are statistically independent of each other. Note,

however, that C and l are not assumed to be statistically

independent (see Eqn. 10).

The first term of Eqn. 7 is the data likelihood term. Assuming

statistical independence of the samples at each wavelength, it is

given by

P(M D�SS,Z,W ,C)~ P
L

l~1
P(ml D�SS,Z,W ,C): ð8Þ

Assuming a zero-mean Gaussian noise model, the probabilities

P(ml D�SS,Z,W ,C) are given by

P(ml D�SS,Z,W ,C)~
1ffiffiffiffiffiffi
2p
p

s
e
{

(ml{xl )2

2s2 , ð9Þ

where s is the standard deviation of the noise in the measured

signal. It can be estimated by taking repeated measurements of the

same location on a given sample. For the second term in Eqn. 7,

we assume that the coefficients cpk are independent, which yields

3.

4.

Hybrid LS and PCA Algorithm for Raman Spectroscopy
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P(CDl)~ P
K

k~1
P
P

p~1
P(cpk Dl), ð10Þ

where P is the number of non-zero eigenvalues. In practice, only

the first few eigenvalues and principal components are needed,

since they already capture most of the variation seen in the

calibration sets. In our experiments, the final concentration

estimates were found not to be sensitive to the particular number

of principal components used as soon as this number exceeded

three or four. By definition, the eigenvalues lpk obtained by the

principal component analysis are equal to the variance of the

coordinates obtained when projecting all data points on the

principal component axis corresponding to lpk, i.e. lpk~s2
pk.

Hence we have

P(cpk Dl)~
1ffiffiffiffiffiffi
2p
p

s
e

{
c2
pk

2s2
pk : ð11Þ

Next, the prior probability functions P(l), P(�SS), and P(Z) do not

contain the variables W and C, and therefore play no part in the

optimization problem. Lastly, we assume a uniform distribution

for P(W ).

Following standard practice in optimization problems, we

optimize the logarithm of the Bayesian cost function given in

Eqn. 7. This simplifies the optimization problem by converting

multiplications into summations. After dropping constant terms

and cancelling common factors, the cost function can be reduced

to

y(W ,C)~{
XL

l~1

(ml{xl)
2{b

XK

k~1

XP

p~1

c2
pk

s2
pk

ð12Þ

where b~s2. Note that Eqn. 12 takes the familiar form of a

penalized maximum likelihood (PML) problem, where b functions

as the hyperparameter.

The cost function in Eqn. 12 can be efficiently optimized

(maximized) by alternatingly solving it as a standard least squares

problem in W, and a Tikhonov regularized least squares problem

in C. Convergence was observed in all experiments after on the

order of 100 iterations. For the experiments in the Results and

Discussion section, where L~1015, the time per iteration was

0.02 seconds. All coefficients were initialized with a zero initial

guess. The expression for the update of the coefficients wk is,

similar to the one in the ‘Classical Least Squares Method’ section,

given by

ŴW n~S{nM, ð13Þ

where S{n is the Moore-Penrose pseudoinverse of the nth estimate

of the L|K matrix S, which is composed of the signals

Slk~�SSlkz
PP

p~1 cn
pkZlpk, where cn

pk are the latest estimates of

cpk. To obtain the update steps for the coefficients cpk, it is

instructive to substitute Eqn. 6 into Eqn. 12, and to rewrite the

latter as

y(C)~{
XL

l~1

pl{
XK

k~1

XP

p~1

cpkwn
kZlpk

 !2

{b
XK

k~1

XP

p~1

c2
pk

s2
pk

, ð14Þ

where pl~ml{
PK

k~1 wn
k
�SSlk, and wn

k are the latest estimates of

wk. To formulate our update step, we store the elements pl into an

L|1 vector Q, and the elements wn
kZlpk in an L|KP matrix

A~ wkZlpk

� �
. The matrix C is of size KP|1. Maximizing Eqn.

14 is then equivalent to minimizing the cost function

w(C)~{y(C)~DDAC{QDD2zDDCCDD2, ð15Þ

where C~
ffiffiffi
b
p

Is’, and Is’ is a KP|KP diagonal matrix that

contains the values
1

spk

~
1ffiffiffiffiffiffiffi
lpk

p along its diagonal entries. Eqn. 15

is a standard Tikhonov regularized least squares problem, and has

the explicit solution

ĈC~ AT AzCTC
� �{1

AT Q: ð16Þ

To complete this dicussion, we would like to highlight once again

the two key differences between HLA and HLP. First, HLA does

not account for variability in the analyte spectrum, whereas HLP

does. Second, HLA does not take into account the eigenvalues of

the principal component analyses, while they represent important

information about the magnitude of the variations observed in the

calibration sets. HLP improves on HLA by using the eigenvalues

within a Bayesian statistical framework to regularize the weights

cpk, and thereby to constrain the allowed variations about the

mean spectra to a well-justified statistical range. The resulting

improved performance of HLP over HLA is demonstrated in the

Results and Discussion section.

Results and Discussion

Here we compare the performance of HLP to that of least

squares with a third-order polynomial background model (from

hereon referred to as LS-3P), as well as HLA. The third order

polynomial was found to give optimal results for Raman signals

similar to the ones used here by Lutz et al. [4]. In this paper, we

restrict our attention to the case where K = 2. Higher values of K

are deferred to future work (see the Further Work section). In

other words, the measured spectra are modeled by two reference

spectra - one for the analyte (in our case gold-silica nanoparticles),

and one for the background. We compare the performance of LS-

3P, HLA and HLP for various relative strengths of the analyte and

background signal.

Simulation Results
In this section, we simulated the presence of a signal of interest

(analyte signal) within a background signal. Our aim was to

characterize the accuracy with which the weight (or concentration)

of the signal of interest could be recovered, in spite of variability in

both the signal of interest and background signal. This analysis was

repeated for various dynamic ratios of the two signals. To obtain

source signals with a realistic degree of variability to use in the

simulation, we collected Raman spectroscopy signals from a real

0.8 nM solution of Raman-enhanced S440 gold-silica nanoparti-

cles produced by Oxonica (now owned by Cabot Security Systems,

Boston, MA, USA), as well as signals from a paraffin background

material. By performing raster scans across the solution as well as

background material, we obtained 106 signals for the S440

nanoparticle solution, and 476 signals for the paraffin background.

The collection of signals, the mean signal, and the first two

principal components for each are shown in Fig. 1. Note that the

Hybrid LS and PCA Algorithm for Raman Spectroscopy
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Figure 1. Acquired signals, mean signal, and the first two principal components of the S440 nanoparticle (left) and the paraffin
background (right).
doi:10.1371/journal.pone.0038850.g001
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bump in the mean paraffin spectrum in the 1600–1800 range

appears smaller than could be expected from Fig. 1(b). This is

simply due to the fact that the majority of the 476 paraffin spectra

contain a smaller bump than the 30 or 40 outlying spectra that

visually dominate the plot in Fig. 1(b).

The characterization study was performed by conducting a

sequence of experiments as follows. In each experiment, we picked

one S440 signal and one paraffin background signal from our

database. We then simulated a measured signal by weighting the

chosen S440 signal and adding it to the chosen paraffin

background signal. This was done for S440 weights of 20, 221,

…, 2212, and 2213. The background signals were not weighted.

This was done for all possible combinations of S440 and paraffin

signals, at each concentration of S440, yielding a total number of

106|476|14~706,384 simulated signals. For each combination

of an S440 and paraffin signal, the remaining signals in the

database were used to compute the mean S440 and background

signals, as well as their respective principal components. The signal

strength (weight wS440) of S440 was then recovered by the LS-3P,

HLA and HLP algorithms. Finally, the recovered weight wS440

was converted to a concentration estimate cS440 using the formula

cS440~c
ref
S440|wS440, where c

ref
S440 was the concentration of the

S440 solution from which the reference spectrum was measured

(in this case 0.8 nM).

The performance of each method was evaluated using two

metrics: one to measure the closeness of the fit, and one to measure

the accuracy of the concentration estimates themselves. The

former was the Durbin-Watson statistic of the residual error, as

defined by

DW~

PL
l~2 (el{el{1)2PL

l~1 e2
l

, ð17Þ

where el is the residual error at the lth wavenumber. The Durbin-

Watson statistic can take values from 0 to 4. A value of 2 signifies

no autocorrelation between the successive error values. Values

substantially less than 2 indicate positive serial correlation, while

those substantially larger than 2 indicate negative serial correlation

between the error values. The latter metric was the fractional

error, defined as FE~
DCest{CtrueD

Ctrue

, where Cest and Ctrue are the

estimated and true concentrations of the S440 signal.

An example spectrum, as well as the fitted spectra by LS-3P,

HLA and HLP are shown in Fig. 2(a). Note that the fitted LS-3P

spectrum shows a wiggle in the 1650–1800 wavenumber range.

This is caused by over-fitting of the 3rd order polynomial

background model, which tries to compensate for the variable

magnitude of the bump in the 1600–1800 wavenumber range of

the paraffin spectrum. As such, the fitted LS-3P spectrum

illustrates the limited ability of polynomials to model irregular

background variations. While higher order polynomials are able to

capture sharper and more irregular background variations, they

suffer from increasing degrees of over-fitting and ‘‘whiplash’’

effects near the sides of fitted spectra. Lower order polynomials are

better behaved, but can account only for slow and smooth

background variations. The 3rd order polynomial model was

shown to offer a good compromise between these effects for similar

data in [4], but the above mentioned wiggle still reveals its

limitations. In essence, the plot illustrates that the variations

present in the S440 and paraffin spectra are poorly modeled by a

standard polynomial model. From a visual inspection of Fig. 2(a),

both HLA and HLP handle the variability more effectively and

provide better fits than LS-3P.

Fig. 2(b) shows the residual errors of the fits shown in Fig. 2(a).

LS-3P clearly yields the greatest residual errors, indicating a failure

to model the variations in the component spectra. HLA captures

more of the background variation, but not as much as HLP, which

shows the smallest residual errors. Fig. 2(c) confirms this trend

across all fitted spectra, with superimposed histograms of the

Durbin-Watson statistics produced by LS-3P (red), HLA (black),

and HLP (green). The histograms show that all three algorithms

display positive serial correlation (DW , 2). However, the positive

serial correlation of LS-3P tends to be highest (DW values closest

to zero), and that of HLP tends to be lowest (DW values closest to

two). HLA yields slightly greater degrees of positive serial

correlation than HLP, but much less so than LS-3P. Note also

that the shape of the DW histograms was similar for all three

methods, with each distribution exhibiting two peaks. We found

that a particular analyzed spectrum occupied the same relative

position in the histograms for each method. In other words, the

shifts in the histograms shown in Fig. 2(b) reflect shifts that were

true for all of the individual analysed spectra. In short, HLP

provided the most right-shifted histogram, and hence yielded the

lowest positive serial correlation for all spectra.

Next, Fig. 2(d) shows the estimated concentrations by LS-3P,

HLA and HLP, revealing that HLP outperforms both LS-3P and

HLA, in the sense that the spread around the true curve is least for

HLP. One can also see that HLA produced a large downwards

deviation from the true concentration for the second lowest true

concentration. This apparent instability yielded 65 values that

were lower than the lowest LS-3P value for that concentration.

While these 65 cases represent only a small fraction of the total

number of signals analyzed, it is worth noting that HLP did not

suffer from such instability for any of the analyzed spectra. Next,

the curves in Fig. 2(e-f) show the means and standard deviations of

the fractional errors as a function of true S440 concentration for

both algorithms. The above mentioned instability did not

significantly affect HLA’s performance curves because the number

of signals involved was relatively small. Once again, the HLP

algorithm clearly outperforms the LS-3P algorithm at all S440

concentrations, and most markedly so at lower S440 signals/

concentrations. It also outperforms HLA across the range of

concentrations tried, doing so most markedly at higher concen-

trations. Presumably this is because HLP models the variations in

the analyte spectrum, whereas HLA does not.

Experimental Results
Variable background phantom. To demonstrate that HLP

outperforms LS-3P and HLA on experimental data as well, we

designed an experimental phantom where the background signal

varied significantly. We placed eight drops of decreasing

concentrations of S440 nanoparticles on a thin film of paraffin,

which was in turn placed on a background of various colors (see

Fig. 3(a)). This background was obtained by printing a color image

of a matrix of random numbers between 0 and 1. These printed

colors each possessed a distinct Raman spectrum. The first S440

drop had a concentration of 0.8 nM, and subsequent drops were

obtained by each time halving the concentration. Raman spectra

were acquired on a Renishaw InVia Raman microscope, which

was modified by our laboratory for biomedical applications [13].

The integration time of each acquisition was 1 second, and the

laser had a wavelength and power of 785 nm and 15 mW,

respectively. To characterize the background signal, we first

performed a raster scan of the printed color background. The

background was covered with a thin paraffin film and had several

blank drops of suspension solution (distilled water) placed on top of

it. The collection of all acquired signals, as well as the mean
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background signal and the first two principal components are

shown in Fig. 4. The logarithm-transformed (base 2) images of the

estimated S440 concentrations are shown in Fig. 3(b-d) for the LS-

3P, HLA and HLP algorithms, respectively. The black pixels in

the images are points for which the algorithms produced negative

weights. It is clear that HLA and HLP succeed in imaging the

lowest concentration drop (bottom right), whereas LS-3P breaks

down at this low concentration.

To further examine the difference between the three methods,

and between HLA and HLP in particular, we provided fitted

spectra as well as quantitative results in Figs. 3(e)-(i). Fig. 3(e) shows

example fitted spectra computed by LS-3P, HLA and HLP.

Fig. 3(f) shows the residuals, obtained by subtracting the fitted

spectrum from the measured spectrum. In this example, HLP

shows hardly any serial correlation in the residual error (Durbin-

Watson = 1.999), unlike LS-3P, which shows clearly structured

residuals (Durbin-Watson = 0.127). It also compares favorably to

the Durbin-Watson statistic of 1.621 by HLA. Fig. 3(g) shows that

the favorable Durbin-Watson statistic of HLP over LS-3P and

HLA generally holds for all spectra. HLP achieves values closest to

2, which indicates zero serial correlation. HLA again gives the

second best performance. In other words, HLP best captures the

variability in the background signals, translating into the closest

fits, and the least amount of serial correlation in the residual errors.

Note also that the distribution of the Durbin-Watson statistic takes

a different shape from the one seen in Fig. 2(c); Fig. 3(c) shows only

one peak, whereas Fig. 2(c) shows two peaks. The difference is

merely due to the presence of different background materials. The

conclusion is however unchanged: HLP right-shifts the entire

distribution towards a DW value of 2.

An evaluation of the accuracy of each method in terms of their

concentration estimates is provided by Figs. 3(h) and (i). The

former shows the estimated concentrations of the droplets; the

latter shows the percent error in the estimated concentrations. The

concentration estimates were computed by taking the average of

the 6 brightest pixels within each droplet. The curves show that

LS-3P, HLA and HLP perform very similarly for high nanopar-

ticle concentrations. The performance of LS-3P deteriorates the

most rapidly of the three algorithms as the nanoparticle

concentration decreases. HLA and HLP yield similar results,

though HLP yields better estimates towards the lower nanoparticle

concentrations, i.e. when the nanoparticle signal strength is low

relative to the background signal. Note that the lowest weight was

not shown for LS-3P since it was negative, and hence does not

have a real-valued logarithm.

Ex vivo pig colon experiments. In this experiment, we

placed S440 drops of decreasing concentrations onto an excised

pig colon as shown in Fig. 5(a). All drop locations are identified by

a red circle. The pink dots within the red circles reveal the

locations of the most concentrated S440 drops. The drops were

produced by starting with a stock concentration of 0.8 nM, and

serially diluting by a factor of 2 for every subsequent drop. Drops

were arranged in 3 columns of 5 drops, starting on the top left of

the sample. The drop concentrations decreased down the

columns. Next, we raster scanned the sample with a 1 mm step

size, a 1 second integration time, and a 785 nm laser with a power

Figure 2. Simulation results. (a) Example of fitted spectra, (b) corresponding residuals, (c) histograms of Durbin-Watson statistics produced by
each method, (d) estimated concentrations, and (e-f) mean and standard deviation of fractional errors generated by the LS-3P, HLA and HLP
algorithms.
doi:10.1371/journal.pone.0038850.g002
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Figure 3. Color background results. (a) Phantom, (b-d) log2 of S440 concentrations by LS-3P, HLA, and HLP, (e-f) example fitted spectra and
residuals by LS-3P, HLA and HLP, (g) histogram of the Durbin-Watson statistic for all pixels, and (h-i) quantification of concentration estimation
accuracy. ‘True’ in (h) plots the theoretical linear relationship between the estimated and true concentrations of S440. The concentration estimate by
LS-3P for the lowest true concentration was negative and hence not shown in the logarithmic plot in (h).
doi:10.1371/journal.pone.0038850.g003
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of 15 mW. The total time for this scan was approximately 1 hour.

Prior to the placement of the drops, the pig colon was also raster

scanned at a step size of 2 mm to obtain a library of background

signals. The obtained background signals, as well as their mean

and first two principal components are shown in Fig. 6. The

objective of the experiment was to compare the S440 concentra-

tions computed by LS-3P, HLA and HLP. The calibration spectra

for S440 were obtained at the stock concentration of 0.8 nM.

Figs. 5(b-d) show the concentration maps obtained by LS-3P,

HLA, and HLP, respectively. HLP and HLA both eliminated the

false positive weights generated by LS-3P in the tissue background

where no S440 is present. However, HLP captured more of the

lowest concentration drop than HLA. Figs. 5(e-f) show example

fitted spectra with their corresponding error residuals. It is clear

that HLP produced the closest fits, as evidenced by the lowest

amount of structure in the error residuals. Fig. 5(g) shows a

histogram of the Durbin-Watson statistics for all fits by each

algorithm. The HLP histogram shows values that are closest to 2,

confirming that HLP’s closer fits held widely across all measured

spectra.

Lastly, Fig. 5(h) plots the S440 concentrations computed by

each algorithm. The concentrations were computed by taking the

mean concentration of the 5 brightest pixels in each drop. Note

that the S440 particles were not detectable beyond the seventh

drop for LS-3P, and not beyond the 8th drop for HLA and HLP.

The concentration estimates computed by HLP adhered most

closely to the expected linear relationship (as shown by the blue

‘Theoretical’ line). As before, HLA gave the second best

performance, and LS-3P gave the poorest performance.

Conclusions and Further Work
Conclusions. In this work, we showed that the LS-3P

algorithm for Raman spectroscopy is sensitive to natural variations

in the reference spectra. Our compound of interest was a solution

of Raman-enhanced gold-silica nanoparticles. We found that the

nanoparticle concentration estimates were sensitive to spectrum

variability primarily when the nanoparticle signal (concentration)

was weak. We proposed a novel algorithm (HLP) that is more

robust to variations in the reference spectra. The HLP method was

compared to both LS-3P and Berger et al.’s HLA method [12],

where the latter was specifically designed as an improvement over

PCR and PLS, and to be robust to variability in the background

signal. HLP’s superior performance over LS-3P and HLA was

shown for both simulated and experimental data. The simulated

data was generated by digitally combining weighted instances of

experimentally obtained nanoparticle and background spectra.

The experimental data was obtained from serially diluted in vitro

solutions of Raman-enhanced gold-silica nanoparticles. We

confirmed our expectation that Berger et al.’s HLA method

significantly outperforms LS-3P. However, our HLP method

improved concentration estimates even further for two reasons.

First, unlike HLA, it accounts for variability in the reference

spectrum of the nanoparticle itself, not just in background signals.

This is a useful property since, in practice, a single reference

Figure 4. Background signals of the printed colors: mean and first two principal components.
doi:10.1371/journal.pone.0038850.g004
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Figure 5. Excised pig colon results.
doi:10.1371/journal.pone.0038850.g005
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spectrum will always contain inaccuracies. Second, HLP incorpo-

rates the eigenvalues of the principal component analysis. This

regularizes how far the reference spectra are allowed to ‘stray’

from their means, in accordance with experimentally observed

variability. Both of these modeling improvements result in the

improved performance of HLP compared to HLA and LS-3P, as

demonstrated by the experiments in this paper. We also note that

our performance metrics (Durbin-Watson statistic and fractional

error) were computed over many spectrum instances

(N = 1461066476 = 706,384 for the simulated data, N = 180 for

the color background experiment, and N = 1,653 for the pig

background experiment). In other words, our conclusion that HLP

outperforms HLA is strengthened by the fact that the improve-

ment was observed across many different spectra. Furthermore,

the improvement was demonstrated across three different exper-

imental set-ups, lending further credibility to our results. Lastly,

the improvement makes intuitive sense because of the additional

information exploited by HLP compared to HLA, namely the

eigenvalues of the background calibration set, and the principal

components and eigenvalues of the analyte calibration set.

Further work. In this paper, the HLP algorithm was

evaluated for the case where K = 2, i.e. where only a single

analyte and mean background were considered. In future work,

we will examine the performance of HLP for multiplexed

spectroscopy (K.2). Second, the HLP algorithm presented in this

paper assumed a Gaussian noise distribution. In our future work,

we will evaluate the merits of using a Poisson instead of Gaussian

noise model, in an effort to decrease the lowest detectable

nanoparticle concentration. Lastly, we recall that the HLP

algorithm is equally capable of modeling variations in the

background spectrum as in the spectra of compounds of interest

such as gold-silica nanoparticles. While the S440 gold-silica

nanoparticle spectra were found to be relatively stable in this

study, other studies have reported significant variability in the

spectra of nanoparticle solutions (eg. [14]). A common cause for

such variability is non-uniformity in the particle sizes. In future

work, we will examine HLP’s ability to improve the robustness of

the concentration estimates for such nanoparticles with less stable

spectra. Lastly, we aim to investigate the spectral variability of

biomolecules as well, due to effects such as conformational

changes. As before, we will assess the extent of those variations, as

well as the robustness of our novel HLP method to them.
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