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Abstract

In transcriptome‐wide association studies (TWAS), gene expression values are

predicted using genotype data and tested for association with a phenotype. The

power of this approach to detect associations relies, at least in part, on the ac-

curacy of the prediction. Here we compare the prediction accuracy of six different

methods—LASSO, Ridge regression, Elastic net, Best Linear Unbiased Predictor,

Bayesian Sparse Linear Mixed Model, and Random Forests—by performing cross‐
validation using data from the Geuvadis Project. We also examine prediction

accuracy (a) at different sample sizes, (b) when ancestry of the prediction model

training and testing populations is different, and (c) when the tissue used to train

the model is different from the tissue to be predicted. We find that, for most genes,

the expression cannot be accurately predicted, but in general sparse statistical

models tend to outperform polygenic models at prediction. Average prediction

accuracy is reduced when the model training set size is reduced or when pre-

dicting across ancestries and is marginally reduced when predicting across tissues.

We conclude that using sparse statistical models and the development of large

reference panels across multiple ethnicities and tissues will lead to better pre-

diction of gene expression, and thus may improve TWAS power.
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1 | INTRODUCTION

Transcriptome‐wide association studies (TWAS) are an
increasingly popular approach to integrate genome‐wide
association study (GWAS) data with pre‐existing gene
expression data to understand biological pathways and
identify potentially causal genes underlying disease. This
methodology uses reference panels with measured gene
expression and single‐nucleotide polymorphism (SNP)

genotypes to build a predictive model representing the
genetically regulated component of gene expression. This
model is then applied to GWAS genotype data to impute
gene expression values, which can be tested for associa-
tion with the phenotype of interest. The methodology is
implemented in multiple software packages (Barbeira
et al., 2018; Bhutani, Sarkar, Park, Kellis, & Schork, 2017;
Gamazon et al., 2015; Gusev et al., 2016; Vervier &
Michaelson, 2016), and has been used to investigate the
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role of gene expression in many traits and diseases
(Mancuso et al., 2017; Torres et al., 2017).

The power to detect associations in TWAS partially relies
on the accuracy of gene expression prediction. To achieve
accurate predictions of gene expression, a statistical model
whose underlying assumptions best match the true genetic
architecture of gene expression should be used. For most
genes, the expression is thought to have a sparse architecture,
regulated by a few SNPs each with a large effect (Wheeler
et al., 2016). A previous comparison of a limited number of
statistical methods for gene expression prediction found
that sparse models, such as those obtained from least ab-
solute angle and selection operator (LASSO), out-
performed more polygenic models, such as those obtained
from linear mixed modeling, providing further evidence of
a sparse underlying genetic architecture (Zeng, Zhou, &
Huang, 2017). Current software packages for TWAS use a
range of methods to construct models for expression pre-
diction, including sparse and polygenic methods. The
PrediXcan, S‐PrediXcan, and FUSION packages use elastic
net (Zou & Hastie, 2005), a sparse form of penalised re-
gression, to model the relationship between genotype and
gene expression. Elastic net and other forms of penalised
regression, such as LASSO and ridge regression, have been
shown to perform well at prediction of a range of complex
phenotypes (Bae, Choi, Kim, & Park, 2016; Spiliopoulou
et al., 2015; Warren, Casas, Hingorani, Dudbridge, &
Whittaker, 2014) and at a prediction of disease risk (Choi,
Bae, & Park, 2016; Guo, Wei, Keating, & Hakonarson, 2016;
Wei et al., 2013). In addition, FUSION also uses the Baye-
sian sparse linear mixed model (BSLMM; Zhou, Carbonetto,
& Stephens, 2013), and the best linear unbiased predictor
(BLUP; Yang et al., 2010) to construct some of its prediction
models. The BSLMM is a spike and slab model, which has
been shown to perform well at disease risk and complex
phenotype prediction (Berger, Perez‐Rodriguez, Veturi,
Simianer, & de los Campos, 2015; Moser et al., 2015), while
the BLUP, is a polygenic model that has been used
widely for the prediction of complex traits in humans and
animals (Bermingham et al., 2015; de Los Campos, Hickey,
Pong‐Wong, Daetwyler, & Calus, 2013; Yang et al., 2010).
Another popular approach for complex trait prediction is the
machine learning method Random Forests (Breiman, 2001).
While it has not specifically been used for expression
prediction, it has shown promising results when used
for prediction of other complex phenotypes (Sarkar, Rao,
Meher, Nepolean, & Mohapatra, 2015; Xu et al., 2011),
making it a good candidate for further exploration. To date,
there has been no systematic comparison of all these
approaches for gene expression prediction.

A number of other factors are also likely to play a role in
determining how accurately gene expression can be pre-
dicted from SNP genotypes, including (but not limited to)

ancestry, sample size, and tissue matching. Ancestry is
known to be important in the prediction of complex traits.
Polygenic risk scores estimated in a population of one an-
cestry typically perform poorly when applied to populations
of alternative ancestries (Vilhjalmsson et al., 2015), while
some work has suggested that gene expression prediction
models trained using a sample of one ancestry tend to per-
form more poorly when applied to a sample of a different
ancestry (Mogil et al., 2018). Another factor known to affect
prediction of complex traits is the sample size, with larger
sample sizes typically associated with improved prediction
accuracy (Dudbridge, 2013, 2016; Wei et al., 2013; Wray
et al., 2013). Finally, an issue more specific to gene expres-
sion is prediction across tissues. Gene expression prediction
models for a specific tissue of interest may not be available
(due to a lack of publicly available matched genotype and
expression data), and so prediction models for an alternative
(proxy) tissue may be used instead. The relevance of results
from this proxy tissue to the tissue of interest depends on
how well prediction models for the proxy tissue can predict
expression in the tissue of interest. Early work suggested that
prediction accuracy was indeed reduced when predicting
across tissues in this manner (Gamazon et al., 2015). While
there has been some previous investigation of some of these
factors, more work is needed to truly understand how they
affect prediction accuracy in TWAS.

Here, we test the performance of statistical methods
that have either been implemented in transcriptome
imputation software or that have shown promise in
predicting complex phenotypes (LASSO, ridge regression,
elastic net, BSLMM, BLUP, and Random Forest) at pre-
dicting gene expression levels, using data from the Geu-
vadis project in which genome‐wide genotype and
lymphoblastoid cell line (LCL) gene expression data were
measured in 462 individuals of European or African
origin. We also compare the performance of these sta-
tistical modeling approaches with pre‐existing prediction
models from the PrediXcan software package. Finally, we
examine the impact of sample size, ancestry and tissue
matching on the accuracy of gene expression prediction.

2 | METHODS

2.1 | Data and quality control

2.1.1 | Geuvadis

The genotype data for 465 individuals (of Northern and
Western European [CEU], Finnish [FIN], British [GBR],
Tuscan [TSI], or Yoruba [YRI] ancestry) and PEER‐factor
normalized gene expression counts of 23,722 genes from
LCLs from 462 individuals measured by RNA‐seq were
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downloaded from the Geuvadis website (Lappalainen
et al., 2013). A total of 421 of the samples were genotyped as
part of the 1000 Genomes Project, and the remaining sam-
ples were genotyped on an Omni 2.5M array and then im-
puted to the 1000 Genomes Phase 1 reference panel. Samples
of CEU, FIN, GBR, and TSI ancestry were combined into a
single group of European (EUR) samples. Three EUR in-
dividuals for whom genotype data were present, but ex-
pression data were not, were removed, leaving 462 samples
to be taken forward (comprising 373 EUR samples and
89 YRI samples). EUR and YRI samples were separated
before genotype quality control (QC). Within each group, we
removed SNPs with minor allele frequency (MAF)< 0.01 or
with imputation quality R2 < 0.8 in the individuals for whom
genotypes were imputed. We also removed SNPs with
missing data in any samples. Gene expression data were used
as is, with no further processing or quality control after
download from the Geuvadis website.

2.1.2 | Wellcome Trust Case Control
Consortium (WTCCC)

Case/control data for type 1 diabetes (T1D) fromWTCCC1
(Wellcome Trust Case Control Consortium, 2007) were
obtained. In total, these data comprised 1,963 T1D cases
and 2,938 controls. QC was performed, removing SNPs
with MAF< 0.01, SNPs with abnormal cluster plots from
genotyping and SNPs that failed the original WTCCC1
automated QC procedures. These data were then imputed
to the 1000 Genomes Phase 1 reference panel using the
Michigan Imputation Server (Das et al., 2016), using
ShapeIT prephasing, and the EUR population to check the
consistency of allele frequencies. Further QC was per-
formed on these imputed data, again removing SNPs with
MAF< 0.01 and any SNPs with imputation R2 < 0.8.

2.2 | Modeling methods

In all methods applied here, gene expression was used as the
phenotype (y), and genotypes at all SNPs within 1 megabase
of the gene start or end site were used as predictors (x), with
no additional covariates included in the regression.

2.2.1 | Ridge regression

Ridge regression (Hoerl & Kennard, 2000) applies an L2
penalty to determine regression coefficients by minimising

∑y Xβ λ β( − ) + ,
j
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2
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where y is the gene expression, X is a matrix of SNP
genotypes, β represents regression coefficients, and λ is a
regularisation parameter. This penalty enables the
shrinkage of coefficients to near zero, but not absolute
zero, resulting in a polygenic model where many pre-
dictors each have small effects on the trait of interest.
Here we implemented it using the R package glmnet,
with λ determined via 10‐fold cross‐validation.

2.2.2 | Lasso

An alternative penalized regression approach is the
LASSO, which instead imposes a L1 type penalty on re-
gression coefficients (Tibshirani, 1996). This penalty
seeks to minimise
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By using an L1 penalty function, the LASSO can
shrink some coefficients to absolute zero, resulting in a
sparser solution than ridge regression is capable of. Here
we implemented LASSO via the R package glmnet, with λ
determined by 10‐fold cross‐validation.

2.2.3 | Elastic net

The elastic net (Zou & Hastie, 2005), combines the L1
penalty used by LASSO and the L2 penalty used by ridge
regression, giving the following minimization problem:
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By including both penalties, and using the parameter α
to determine the weight of each penalty, the elastic net
enables the degree of model sparsity to vary between that of
ridge regression (typically polygenic) and LASSO (typically
sparse). In this study, the elastic net was used twice—once
with α set to .5, and once in which α was determined by
cross‐validation. The λ parameter was determined by cross‐
validation in both instances. Here we implemented an
elastic net using the R package glmnet.

2.2.4 | Bayesian sparse linear mixed
model

The BSLMM is a spike‐and‐slab prior model that com-
bines a standard linear mixed model (LMM) with a
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Bayesian variable selection regression approach (BVSR).
The LMM aspect of the model assumes that all covariates
have a small effect on the trait of interest (polygenic), while
the BVSR portion also allows some variants to have a larger
effect on the trait. The model can be considered as

y μ Xβ u ε= 1 + + + ,n

∼ ∂β πN σ τ π(0, ) + (1 − ) ,a
2 −1

0

∼u σ τ KMVN(0, ),b
2 −1

∼ε τ IMVN(0, ),n
−1

where µ represents the mean of the trait of interest, β
represents a vector of fixed (sparse) effects, u is a vector of
random effects, ε is a vector of errors, π represents the
proportion of variants which have an additional effect
(over the polygenic effect provided by the LMM compo-
nent), τ−1 represents the residual variance, σa is the
magnitude of the non‐zero fixed effects, δ0 is a point mass
at zero, σb is the magnitude of the random effects, K is a
variance‐covariance matrix of genotypes, and In is an
identity matrix.

In practice, the model is reparameterised in terms of
PVE (ρ), which is the proportion of variance explained by
the sparse and random effects together, and PGE (h),
which is the proportion of variance explained by only the
sparse effects. ρ and h, in addition to π, are the model
hyperparameters estimated through Markov chain Monte
Carlo (MCMC). Here, BSLMM was implemented through
GEMMA (Zhou et al., 2013). We used 1,000 burn‐in
iterations and 10,000 MCMC iterations per gene for the
determination of hyperparameters. In addition, we tested
BSLMM using 10,000 burn‐in iterations and 100,000
MCMC iterations for 250 genes on chromosome 18. As
we did not see an increase in predictive performance with
the longer MCMC run (Figure S1), we chose to use the
shorter MCMC run for the whole genome.

For each run of the BSLMM, we estimated how well
the Markov chain for each hyperparameter mixed by cal-
culating the autocorrelation between Markov chain states.
For each chain, we defined good mixing as being achieved
when autocorrelation at lag 100 was between −0.1 and 0.1.
Chains showing autocorrelation values outside this range
at lag 100 were considered to have mixed poorly.

2.2.5 | Best linear unbiased predictor

The BLUP can be derived from a random‐effects regres-
sion model

y u ε= + ,i i i

where yi represents the phenotype of individual i, ui re-
presents a random effect representing the overall genetic
effect (summed over all loci) operating in individual i and
εi is the residual term. These are assumed to follow a
normal multivariate distribution:
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where G represents a genetic relationship matrix (GRM)
defined using genotypes of all SNPs within 1Mb of the
gene start or end sites, p represents the number of SNPs
used to generate the GRM, and I is an identity matrix.
This model tends to produce a more polygenic solution
where many SNPs have small effects on the phenotype of
interest. Further details on the determination of marker
effects and predictions can be found in the Supporting
Information note of de Los Campos, Vazquez, Fernando,
Klimentidis, and Sorensen, (2013). It was implemented
here using GEMMA.

2.2.6 | Random Forests

Random Forests is a tree‐based machine learning method
for classification and regression that was initially proposed
by Breiman (2001). Random Forests typically use a standard
algorithm. First, bagging is used to create many different
training data sets from the initial data. Each of these data
sets is then used to construct a decision tree. In the case of
Random Forests, feature bagging is also performed, mean-
ing for each tree a different random subset of the covariates
is used to construct the tree. This procedure is performed
for all the training data sets, resulting in a “forest” of de-
cision trees. The average decision of the forest is then used
as the prediction for the trait of interest. Random Forests
were implemented using the R package ranger.

2.3 | Assessing prediction performance

We used the Geuvadis data to examine gene expression
prediction accuracy under a number of scenarios:

2.3.1 | 10‐fold nested cross‐validation on
EUR samples

To initially compare the performance of the seven
different statistical methods, we used 10‐fold nested
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cross‐validation on the 373 EUR samples in Geuvadis.
This consisted of one cross‐validation within another.
These are termed the inner loop (used to tune model
parameters) and the outer loop (used to evaluate model
performance). The 373 samples were split into 10 groups
of equal size. For a single fold of the outer loop, nine
groups were combined into a single data set to be used for
training a gene expression prediction model (training
set), and the remaining one group was used to evaluate
the performance of the model (test set).

The inner loop 10‐fold cross‐validation was then
performed on the training set. This inner loop was used
to tune any model parameters. For ridge regression,
elastic net (α= .5) and LASSO, this inner loop was used
to tune the λ parameter. For elastic net (α by cross‐
validation), the inner loop was also used to tune the α
parameter. In each case, the parameter value was chosen
as that which maximized the correlation coefficient (R)
between the predicted and the observed expression va-
lues, within this inner loop. BSLMM and BLUP did not
have any parameters that could be tuned via cross‐
validation, so this inner loop was not performed for these
methods.

Once appropriate parameter values had been chosen
using the inner loop, a gene expression prediction model
was trained on the full training set using the appropriate
parameter values. The resulting model was then applied
to the test set, and expression was predicted for these
samples. The correlation coefficient (R) between pre-
dicted expression and measured expression was then
calculated in the test set. This gave a single R‐value for
onefold of the outer loop.

This procedure was then repeated for each of the re-
maining ninefold of the outer loop, each time using a
different 10th of the samples as the test set, so that each
Geuvadis sample appeared in the test set once. This gave
10 R values—one for each fold of the outer loop. The
prediction performance of a method for a gene was then
defined as the mean of these 10 R measures.

This 10‐fold nested cross‐validation was performed
seven times (once for each different method) for each
gene with available gene expression data.

2.3.2 | Prediction at smaller sample sizes

To examine the effect of sample size on gene expression
prediction accuracy, we repeated the 10‐fold nested cross‐
validation procedure described above, using the 373 EUR
Geuvadis samples. However, in each fold of the outer
loop of cross‐validation, we used 1 of the 10 groups as the
training set, and the remaining nine groups combined
as the test set. The rest of the procedure was unchanged.

R estimates obtained using this nested cross‐validation
with the reduced training set were then compared with R
estimates from our original cross‐validation.

2.3.3 | Prediction into a different
population

To evaluate the predictive ability of models trained using
samples of one ancestry to predict the expression of
samples of an alternative ancestry, we used the 89 YRI
samples. Initially, gene expression prediction models
were trained using the whole set of 373 EUR samples,
with model parameters tuned via 10‐fold cross‐validation
within the EUR samples. These prediction models were
then applied to the 89 YRI samples, and predictive per-
formance was evaluated as the correlation (R) between
gene expression predicted by the EUR‐trained models
and measured gene expression. The analysis was then
repeated using 90% of EUR samples to train models, and
37 YRI samples to test models, giving training and testing
set sample sizes equivalent to those used for onefold of
the 10‐fold nested cross‐validation on EUR samples.

To perform the reverse analysis, models were trained
on the 89 YRI samples, with parameters tuned via 10‐fold
cross‐validation. These models were then applied to the
373 EUR samples, and R between gene expression pre-
dicted by the YRI models and measured EUR expression
was calculated. In addition, 10‐fold nested cross‐validation
was performed on the 89 YRI samples using the same
procedure as used for the 10‐fold nested cross‐validation on
EUR samples. The R estimates from the application of YRI
models to EUR samples were compared with the R esti-
mates obtained from the 10‐fold nested cross‐validation on
the 89 YRI samples.

Finally, a combined analysis was performed. The 373
EUR and 89 YRI samples were combined into a single
group of 462 samples, and down‐sampled to 373 samples,
keeping the relative proportion of EUR and YRI samples
the same as in the larger group of 462 samples. 10‐fold
nested cross‐validation was performed on this mixed
group of 373 samples, using the procedure as described
above. The R estimates obtained from this were then
compared with R estimates obtained from the 10‐fold
nested cross‐validation on the 373 EUR samples.

2.4 | Gene set enrichment

Gene set enrichment was conducted using FUMA
(Watanabe, Taskesen, van Bochoven, & Posthuma, 2017).
A list of genes that achieved R≥ 0.5 (for any of the seven
methods tested) in the 10‐fold nested cross‐validation
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using the 373 EUR Geuvadis samples were used as the
input for the “gene2func” option. The MHC region was
not excluded.

2.5 | Estimation of gene expression
heritability

For each gene, the heritability of its expression attribu-
table to SNPs within 1Mb of the gene start or end site
was calculated using restricted maximum likelihood
(REML) analysis implemented in GCTA (Yang, Lee,
Goddard, & Visscher, 2011). For each gene, all SNPs
within 1Mb of the gene were used to construct a GRM.
The proportion of the variance of gene expression ex-
plained by these SNPs (the narrow‐sense heritability) was
then estimated using REML analysis in GCTA. As the
intention was to compare heritability estimates with
prediction accuracy estimates from 10‐fold cross‐
validation, the heritability estimates from REML were
restricted to fall within the [0,1] range.

2.6 | Application to WTCCC1 data

Using each of the seven methods, gene expression
prediction models were trained using data from all 373
EUR samples in Geuvadis. To avoid issues caused by
SNPs in the prediction models not being present in the
GWAS data, these prediction models were trained
using only the set of SNPs that were present in the
WTCCC1 T1D data. Each of these prediction models
was then applied to individual‐level imputed genotype
dosages of T1D cases and controls from WTCCC1 to
impute their expression. Imputed expression was then
tested for association with T1D status using logistic
regression, with no additional covariates included in
the regression model. The association statistics for
genes successfully modeled by all seven approaches
were then compared.

2.7 | Comparison with PrediXcan
models

Gene expression prediction models for 48 different
GTEx tissues from the PrediXcan software package
were downloaded from predictdb.org. These prediction
models had been trained by the developers of the Pre-
diXcan software packages using elastic net (with α set
to .5). Each set of prediction models was applied to
genotype data for the 373 EUR samples in Geuvadis,
and for each of these prediction models, the correlation

coefficient (R) between measured Geuvadis expression
and expression predicted using the GTEx‐informed
model was calculated.

3 | RESULTS

3.1 | Comparison of statistical modeling
approaches for gene expression prediction

We first aimed to compare the performance of seven
different statistical approaches for the prediction of
gene expression from SNP genotypes. The chosen
modeling approaches were: ridge regression, elastic net
(with the α parameter set to .5), elastic net (with α
determined by cross‐validation), LASSO, BSLMM,
BLUP, and Random Forests. To compare the ap-
proaches, LCL expression levels of 23,722 genes from
the Geuvadis project were used. For each of the seven
approaches, 10‐fold nested cross‐validation was per-
formed on data from the 373 Geuvadis samples of EUR
origin. In each of the 10 folds, 90% of samples (the
training set) were used to train a model, which was
applied to the remaining 10% (the test set). Correlation
(R) between the predicted and measured expression of
each gene in the test set was calculated in each fold.
For each gene, we defined prediction accuracy as the
mean of the 10R estimates.

In total, the expression of 22,218 genes could be
predicted by all seven methods. Overall, the BSLMM
showed the best average prediction performance
(average mean R = 0.0743) across these 22,218 genes
(Table 1). Behind the BSLMM, the other methods
performed similarly to each other, with the Random
Forests and the sparse penalized regression methods

TABLE 1 Mean R estimates across 22,218 genes from 10‐fold
nested cross‐validation using seven different statistical methods

Method
Mean R (across
22,218 genes)

Ridge regression 0.0587

Elastic net (α= .5) 0.0634

Elastic net (α tuned by cross‐validation) 0.0656

LASSO 0.0626

BSLMM 0.0743

BLUP 0.0608

Random Forests 0.0641

Abbreviations: BSLMM, Bayesian sparse linear mixed model; BLUP, best
linear unbiased predictor; EUR, European; LASSO, least absolute angle and
selection operator.
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slightly outperforming the polygenic methods, on
average. While BSLMM achieved the highest average R
across the 22,218 genes, examination of its MCMC
trace plots revealed a consistent failure to converge for
some of its hyperparameters (Figure S2). In total, we
estimated that 208,702 of the 225,170 BSLMM models
fitted during the 10‐fold cross‐validation showed poor
MCMC mixing (indicative of poor convergence) for at
least one of the hyperparameters, raising concerns
about its use for prediction of gene expression.

We observed that R estimates from the seven methods
were all highly correlated with one another (Figure 1),
indicating that genes predicted well with one method were
also predicted well with others. Despite this, some genes
showed a large difference in the R estimates achieved
by different methods. For example, HSPA12B showed
R= 0.877 with elastic net (α= .5) and R= .885 with
LASSO, but only achieved R= .425 with ridge regression
and R= .332 with BLUP. In total, for 108 genes we
observed a difference in R of at least 0.3 between any two
methods. In 94 of these cases, a method with assumptions
of sparsity showed the greater R, while a more polygenic
method showed the lower R. For these genes, there was a
clear benefit in using the more sparse method.

When examining results on a gene‐by‐gene basis, it is
clear that the expression of most genes could not be ac-
curately predicted from local SNP genotypes by any of the
seven methods tested here. Distributions of R estimates
for the 22,218 genes were heavily skewed toward zero for
all seven methods (Figure 2), with negative correlations
between predicted and measured expression observed for
some genes. However, each distribution showed a trail of
points corresponding to genes with high R estimates,
indicating that the expression of some genes could be
well predicted from local SNP genotypes. A total of 480
genes (2.16% of all genes tested) showed R≥ 0.5 from any
of the seven methods, and are subsequently defined as
“well‐predicted” genes. When considering only these
genes, the modeling methods with assumptions of spar-
sity outperformed the more polygenic methods even
more strongly than observed previously (Figure 3). Gene
set enrichment analysis on these genes found enrichment
of seven Gene Ontology gene sets and four GWAS catalog
gene sets (Table S1), mostly related to immunity. This
probably reflects the immune nature of LCLs in which
Geuvadis expression was measured, and is likely driven
by the presence of a number of HLA genes in this list,
including HLA‐DRB1, HLA‐DRB5, and HLA‐DQA1.

FIGURE 1 Correlation between
R estimates from seven different modeling
approaches. In the lower panels, each point
represents a single gene, and the R estimate
obtained from the two corresponding
methods are shown on the x and y axes. Also
shown are the line of equality (blue‐dashed
line) and the best fit line between x and y

(red solid line). In the upper panels, the
Pearson correlation between R estimates
from pairs of methods are shown. Overall,
R estimates from all methods were highly
correlated, with all pairwise
correlations ≥0.78
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The upper bound of prediction accuracy achievable
here is given by the heritability of gene expression at-
tributable to local SNPs. To identify this upper bound
for each gene, we next estimated the heritability of
each transcript that was attributable to the SNPs within
1 Mb of the gene using GCTA. Overall, estimates of
local heritability were highly correlated (r = .85) and
(with a small number of exceptions) showed strong
concordance with estimates of prediction accuracy
obtained using elastic net (α = .5; Figure S3). On
average, heritability estimates were slightly larger than
prediction accuracy estimates, indicating that there
was some potential room for improvement to predic-
tion accuracy.

3.2 | Comparison of statistical modeling
approaches for TWAS

We next sought to examine how the seven methods
compared in the context of a TWAS, where prediction
models are applied to GWAS data to identify gene

expression—trait associations. To do this, gene expres-
sion prediction models were trained on the full set of
373 EUR Geuvadis samples using each of the seven
methods and were applied to type 1 diabetes (T1D)
GWAS data from WTCCC1.

Overall, all seven methods tended to find associations
in similar genomic regions (Figure 4). All methods
identified associations with a number of genes in the
MHC region on chromosome 6, and a number of asso-
ciations on chromosome 12 at 12q13 and 12q24. Both of
these regions were also identified through traditional
GWAS of the T1D WTCCC data. For the genes tested by
all seven approaches, z scores were highly correlated
(Figure 5), with no approach showing greater average z
scores than another approach.

3.3 | Investigation of the impact of
sample size in gene expression prediction

A factor known to affect the accuracy of the prediction
of complex traits is the sample size of the data set used

FIGURE 2 Boxplots of gene expression prediction accuracy estimates from seven methods. Each boxplot shows the distribution of
R estimates (between predicted and observed expression) for 22,218 genes from 10‐fold nested cross‐validation for one statistical method.
The central line within the box represents the median, with the upper and lower quartiles shown as the hinges. Each boxplot is heavily
skewed towards zero, indicating that for most genes, prediction accuracy was poor. BSLMM, Bayesian sparse linear mixed model; BLUP,
best linear unbiased predictor, LASSO, least absolute angle and selection operator

FIGURE 3 Boxplots of gene expression prediction accuracy estimates from seven methods for well‐predicted genes. Each boxplot
shows the distribution of R estimates (between predicted and observed expression) for 480 genes from 10‐fold nested cross‐validation for one
statistical method. These genes had R≥ 0.5 from at least one of the seven methods. The central line within the box represents the median,
with the upper and lower quartiles shown as the hinges. Boxplots for the methods with assumptions of sparsity (LASSO, Elastic net, and
BSLMM) show greater medians than plots for the more polygenic methods, and are less skewed toward 0, indicating better performance.
BSLMM, Bayesian sparse linear mi xed model; BLUP, best linear unbiased predictor, LASSO, least absolute angle and selection operator
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to train prediction models. To investigate the effect of
sample size on gene expression prediction accuracy,
we repeated the 10‐fold nested cross‐validation, but
using 10% of samples as the training set and the re-
maining 90% as the test set in each fold. Estimates of
prediction accuracy achieved with this reduced training
set were then compared with those previously obtained
from the 10‐fold nested cross‐validation using the larger
training set.

Overall, the average prediction accuracy was re-
duced when using the smaller training set. For elastic
net (α = .5), 22,490 genes had predictions from both the
analyses using the larger and the reduced training sets.
Of these, 14,019 (62.3%) showed a smaller R in the
analysis using the reduced training set (Figure 6). We
repeated this analysis using the other six statistical
methods tested earlier, and in each instance, we ob-
served poorer prediction accuracy in the analysis with
the reduced training set (Table 2). Prediction accuracy
estimates from the analyses using the larger and re-
duced sample sizes were, however, highly correlated
(r= .79), and interestingly, many genes that achieved
large R estimates in the 90% training set analysis also
achieved large R estimates at the reduced sample size.
For example, RPS26 showed R = 0.913 in the larger

training set analysis and R= 0.888 in the reduced
training set analysis. Similarly, AC008957.1 showed
R= 0.915 in the analysis using the larger training set,
and R= 0.889 in the reduced training set analysis. Thus,
it seems that for genes where the relationship between
expression and local SNPs is strong enough, even small
sample sizes are sufficient for constructing models that
predict expression well.

To further investigate the effect of sample size,
10‐fold nested cross‐validation was repeated a further
seven times, using 20%, 30%, 40%, 50%, 60%, 70%, and
80% of samples as the training set in each analysis.
Across the genes modeled at all sample sizes, we
observed a clear improvement on average prediction
accuracy with each increase in the model training set
sample size (Figure S4A). This relationship did not
plateau at the largest available sample size, indicating
that a further increase in sample size may boost the
average prediction accuracy observed here. Despite this,
a plateau in prediction accuracy was observed for some
genes, with no further increase beyond a given sample
size (Figure S4B), indicating that the upper limit of
prediction accuracy imposed by the local heritability of
expression at these genes had been reached at the
sample sizes used here.

FIGURE 4 Manhattan plots from the application of gene expression prediction models to WTCCC T1D GWAS data. Each plot shows
the results of a TWAS on WTCCC T1D data using gene expression prediction models trained with a different statistical method. In each plot,
each point represents a gene, plotted by its genomic position (defined by the TSS) on the x axis, and its p value in the TWAS on the y axis.
The red lines indicate Bonferroni‐corrected significance thresholds. BSLMM, Bayesian sparse linear mixed model; BLUP, best linear
unbiased predictor, LASSO, least absolute angle and selection operator
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3.4 | Investigation of the impact of
ancestry in gene expression prediction

We next sought to investigate how well prediction models
trained using samples of one ancestry were able to pre-
dict the gene expression of samples of different ancestry.
To do this, prediction models were trained on the 373
EUR Geuvadis samples using elastic net (with α= .5) and
applied to genotype data for 89 YRI Geuvadis samples,
and the correlation (R) between predicted expression and
measured expression was calculated. These R measures
were then compared with the R achieved by elastic net
(with α= .5) from 10‐fold nested cross‐validation within
the EUR samples.

Overall, gene expression prediction models trained in
a population of one ancestry tended to perform less well
at predicting the expression of samples of a different
ancestry (Figure 7a). Of the 22,493 genes for which we
had Rmeasures both from the application of EUR models
to YRI samples and also from 10‐fold nested cross‐
validation within EUR samples, 12,828 (57.0%) showed
larger R from 10‐fold nested cross‐validation within EUR
samples. Across the 22,493 genes, the average prediction
accuracy obtained from 10‐fold cross‐validation on EUR
samples (mean R= 0.0625) was greater than the average

accuracy from the application of EUR models to YRI
samples (mean R= 0.0332). However, there was no con-
sistent pattern, with some genes showing greater R from
the application of EUR models to YRI samples. We re-
peated this analysis with the other six statistical methods
and consistently observed poorer average prediction
when predicting into YRI samples (Table 3).

To account for the differences in sample size in the
above analysis compared to our previous investigation in
European samples, we retrained prediction models on
90% of the EUR Geuvadis samples and applied them to
37 YRI samples, matching the training and test set sam-
ple sizes used for onefold of the 10‐fold nested cross‐
validation on EUR samples. Again, we observed that
prediction models trained in a population of one ancestry
performed more poorly when applied to samples of dif-
ferent ancestry (Figure 7b).

We next performed the reverse of this analysis by
training models on the 89 YRI samples using elastic net
(with α= .5) and applying them to the EUR samples, and
calculating R between predicted and measured expres-
sion in the EUR samples. We also performed 10‐fold
nested cross‐validation using only the 89 YRI samples
and then compared the R estimates from this YRI‐only
10‐fold nested cross‐validation with R estimates from the

FIGURE 5 Correlation between z

scores from TWAS on WTCCC T1D data
using seven different modeling approaches.
In lower panels, each point shows a single
gene, with the z scores from TWAS using
models trained with two different statistical
approaches shown on the x and y axes. Also
shown are the line of equality (blue‐dashed
line) and the best fit line between x and y

(red solid line). Upper panels show Pearson
correlation estimates between z scores from
TWAS using the two corresponding
methods. Z scores from the seven approaches
were highly correlated
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application of YRI‐trained models to EUR samples.
Across the 22,334 genes, the average prediction accuracy
from 10‐fold cross‐validation on YRI samples (mean
R= 0.0317) was greater than the average accuracy from

the application of YRI models to EUR samples (mean
R= 0.0184; Figure S5A), reinforcing our earlier findings.
As above, to account for sample size differences, we re-
peated the analysis by training models on 90% of YRI
Geuvadis and applying them to nine EUR samples,
matching the sample sizes to onefold of the 10‐fold cross‐
validation on the 89 YRI samples. While R estimates
showed much variation, likely reflecting the smaller
sample sizes used for both prediction and testing, we
again observed that average prediction accuracy was
poorer when predicting across populations (Figure S5B).

Finally, we combined the EUR and YRI samples into a
single group of 462 samples. We then extracted 373 sam-
ples, keeping the proportion of EUR and YRI samples the
same as in the larger group of 462 samples. Using this
mixture of EUR and YRI samples, we performed 10‐fold
nested cross‐validation on this group using an elastic net
(with α= .5). R values achieved in this mixed sample were
highly correlated (r= .780) with those achieved from
10‐fold nested cross‐validation using only the 373 EUR
samples (Figure S6). Across the 22,498 genes, the average
prediction accuracy estimate obtained from this mixed
sample 10‐fold cross‐validation (mean R=0.0609) was si-
milar to the average prediction accuracy estimate obtained
from 10‐fold cross‐validation on EUR samples (mean
R=0.0625), demonstrating that even when the population
contains samples from different ancestries, the prediction
accuracy mimics that achieved when using a single an-
cestry, as long as the composition of the training popula-
tion matches that of the testing population.

3.5 | Application of GTEx‐trained
models to Geuvadis data

Up to this point, our analyses have relied on splitting
Geuvadis data into different subsets, using models

FIGURE 6 Comparison between prediction accuracy
estimates at large and small sample sizes. Each point represents a
gene, with its R estimate from 10‐fold nested cross‐validation using
90% of EUR samples as the model training set on the x axis, and the
R estimate from 10‐fold nested cross‐validation using 10% of EUR
samples as the model training set on the y axis. All R estimates
were obtained using the elastic net with α= .5. Also shown are the
line of equality (black dashed) and a line of best fit (red solid), with
the correlation between x and y and the slope of the best fit line
shown in the bottom right corner. Most points lie below the line of
equality, and the slope of the best fit line is below 1, indicating that
average performance was greater when using the larger sample
size. EUR, European

TABLE 2 Mean R estimates obtained
using 10‐fold nested cross‐validation with
large and small model training set sample
sizes using seven different statistical
approaches

Method
Number of
genes

Mean R (90%
training set)

Mean R (10%
training set)

Ridge regression 22,490 0.0576 0.0256

Elastic net (α= .5) 22,490 0.0625 0.0234

Elastic net (α tuned by
cross‐validation)

22,490 0.0646 0.0246

LASSO 22,490 0.0617 0.0213

BSLMM 22,509 0.0723 0.0303

BLUP 22,222 0.0608 0.0248

Random Forests 22,498 0.0628 0.0286

Abbreviations: BSLMM, Bayesian sparse linear mixed model; BLUP, best linear unbiased predictor; EUR,
European; LASSO, least absolute angle and selection operator.
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trained in one subset to predict expression in another.
However, these subsets of Geuvadis data have all un-
dergone data collection and processing in the same
manner, and thus are likely to be very similar. This does

not reflect the most likely real‐life use of TWAS, in
which the data sets used for model training and for
application may be very different. To investigate a more
realistic scenario, prediction models trained using

FIGURE 7 Comparison of prediction accuracy estimates when EUR‐trained models are applied to EUR and YRI populations. On both
plots, each point represents a gene, and shown are the R estimate from 10‐fold nested cross‐validation within EUR samples (x axis), and the
R between expression predicted using models trained on EUR samples and applied to YRI samples, and measured YRI expression (y axis).
Plot (a) corresponds to the analysis where sample sizes of the model training and testing sets used for the within‐EUR analysis were not the
same as the sample sizes used in the across‐ancestries analysis. Plot (b) corresponds to the analysis where the sample sizes of the model
training and testing sets were the same in both the within‐EUR and across‐ancestries analyses. Also shown are the line of equality (black
dashed) and a line of best fit (red solid), with the correlation between x and y and the slope of the best fit line shown in the bottom right
corner. Most points lie below the line of equality, and the slope of the best fit line is below 1, indicating that prediction models trained on
EUR samples perform better at predicting EUR expression than YRI expression; EUR, European; YRI, Yoruba

TABLE 3 Mean R estimates obtained
from 10‐fold nested cross‐validation within
EUR samples and from the application of
EUR‐trained models to YRI samples using
seven different statistical approaches

Method
Number
of genes

Mean R (from
within EUR
cross‐validation)

Mean R (from
application of EUR‐
trained models to
YRI samples)

Ridge regression 21,891 0.0602 0.0274

Elastic net (α= .5) 22,493 0.0625 0.0332

Elastic net (α tuned by
cross‐validation)

22,363 0.0651 0.0351

LASSO 22,492 0.0617 0.0320

BSLMM 22,498 0.0724 0.0395

BLUP 21,627 0.0635 0.0313

Random Forests 22,498 0.0628 0.0303

Abbreviations: BSLMM, Bayesian sparse linear mixed model; BLUP, best linear unbiased predictor; EUR,
European; LASSO, least absolute angle and selection operator.
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GTEx EBV‐transformed LCL expression data (taken
from the PrediXcan software package) were applied to
Geuvadis EUR samples. Correlation between expres-
sion predicted with GTEx‐trained models and measured
Geuvadis expression was calculated.

Overall, prediction accuracy estimates from using
the PrediXcan GTEx‐trained models were very similar
to those achieved from 10‐fold nested cross‐validation
on Geuvadis data using elastic net (α= .5; Figure 8). In
total, there were 2,737 genes for which a GTEx‐trained
prediction model and measured expression data in
Geuvadis were available. Genes predicted well using
10‐fold nested cross‐validation were also well predicted
using GTEx‐trained models, including RPS26, which
achieved R= 0.905 from the application of the GTEx
model to Geuvadis, and R= 0.913 from 10‐fold nested
cross‐validation within Geuvadis. Overall, R estimates
from 10‐fold nested cross‐validation and from GTEx‐
trained models were highly correlated (r= .86), al-
though those from GTEx‐trained models tended to be
slightly smaller.

3.6 | Investigation of prediction across
different tissues

We next sought to examine how models trained using
GTEx expression data from a range of tissues performed
at the prediction of Geuvadis LCL gene expression. To
do this, 47 sets of gene expression prediction models
taken from the PrediXcan software package, each
trained using GTEx expression data from a tissue other
than LCLs (in which Geuvadis expression was mea-
sured), were applied to Geuvadis data and the correla-
tion between predicted and measured expression was
calculated. For each of the 47 GTEx non‐LCL tissues,
the average level of prediction accuracy achieved
(across gene‐specific prediction models) was lower than
that achieved (average R= 0.188) with the GTEx LCL
models (Table S2).

We then directly compared the accuracy of pre-
dicted expression from models trained in each of the 47
GTEx non‐LCL tissues with the accuracy of predicted
expression obtained from models trained in the GTEx
LCL data, using only genes for which there was a pre-
diction model available in both GTEx LCL and in the
non‐LCL GTEx tissue of interest. When examining
these results on a gene‐by‐gene basis, we observed that
for many genes the non‐LCL models could predict
Geuvadis expression with similar accuracy to LCL
models, yet there was a group of genes for which the
LCL model clearly outperformed the non‐LCL model
(Figure S7). This resulted in the non‐LCL prediction

models achieving slightly poorer prediction accuracy
than the LCL prediction models on average.

In total, 53.3% of prediction accuracy estimates
achieved by non‐LCL prediction models were within
0.05 of the prediction accuracy estimate achieved by the
LCL model for the same gene, indicating similar per-
formance and potentially shared regulation across dif-
ferent tissues. One gene for which non‐LCL prediction
models achieved similar prediction accuracy to the LCL
model was RPS26. Prediction models for this gene were
available for all 48 GTEx tissues, and prediction models
for all tissues achieved R ≥ 0.8 when applied to the
Geuvadis data (Figure S8). In contrast, we found that
10.3% of prediction accuracy estimates achieved by non‐
LCL prediction models were at least 0.2 less than that
achieved by the LCL model for the same gene. One
example of this was NDUFAF1, for which the GTEx
LCL model achieved a prediction accuracy estimate of
0.686, whereas the GTEx transverse colon model
achieved an estimate of 0.128. In instances such as this,
the LCL models clearly outperformed the non‐LCL
models.

FIGURE 8 Comparison of Geuvadis‐trained models and
GTEx‐trained models at predicting Geuvadis expression. Each
point represents a gene, and shown are the R estimates from
10‐fold nested cross‐validation within EUR samples on Geuvadis
data (x axis), and R between measured Geuvadis expression and
expression predicted using GTEx‐trained models. Also shown are
the line of equality (black dashed) and a line of best fit (red solid),
with the correlation between x and y and the slope of the best fit
line shown in the bottom right corner. As most points lie below the
line of equality and the slope of the best fit line is below 1, this
implies that Geuvadis‐trained models are better able to predict
Geuvadis expression than GTEx‐trained models
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4 | DISCUSSION

In recent years, TWAS has become a popular post‐
GWAS approach for integrating genotype and expres-
sion data to identify genes potentially underlying phe-
notypes of interest. The power of TWAS to detect true
gene expression‐phenotype associations relies partially
on accurate imputation of gene expression values. Ac-
curacy of imputation is dependent on a number of
factors, including (but not limited to) the statistical
method used to construct the prediction model, sample
size, ancestry matching, and tissue matching. Here, we
examined how each of these factors affects the accuracy
of gene expression prediction, and thus how they may
impact power in TWAS.

By using cross‐validation to train and test prediction
models, we found that statistical models that assumed
sparsity predicted gene expression levels slightly better
than those that assumed polygenicity, corroborating
similar findings from previous studies (Zeng et al., 2017).
This was especially the case for genes where expression
could be predicted well from SNP genotypes. As prediction
models were constructed using only SNPs local to each
gene, and the local genetic architecture of gene expression
is thought to be sparse (Wheeler et al., 2016), this result is
perhaps unsurprising. As there are thought to be many
weak trans‐eQTLs (expression quantitative trait loci) act-
ing on gene expression (indicative of a more polygenic
distal genetic architecture; Liu, Li, & Pritchard, 2019), it is
possible that the more polygenic methods may perform
better if distal SNPs were also to be used for the
construction of prediction models.

Here, we found that the best performing method was
the BSLMM, which showed a slightly higher average
prediction accuracy than Random Forests, elastic net,
and LASSO. All the major transcriptome imputation
software packages, including PrediXcan, S‐PrediXcan,
and FUSION, construct their prediction models using
elastic net with the α parameter set to .5. There thus
could potentially be a slight gain on average prediction
accuracy by either tuning the α parameter of the elastic
net, or switching to Random Forests or the BSLMM.
However, we found convergence issues when using the
BSLMM, implying that the parameters used by BSLMM
may not be correctly estimated from the data and raising
concerns about the use of this method for modeling.

An important (and perhaps under‐appreciated) ob-
servation from our study is that the average prediction
accuracy across the ~22,000 genes examined was typi-
cally very low, with many genes showing a cross‐
validation R near 0. This was briefly shown in
previous work (Fryett, Inshaw, Morris, & Cordell, 2018;
Gamazon et al., 2015; Wheeler et al., 2016), but has not

been explored in detail until now. Notably, we found
that prediction accuracy estimates were concordant
with, although on average slightly smaller than, esti-
mates of local gene expression heritability, indicating
that prediction models performed nearly as well as
could be expected given the natural limit on prediction
imposed by heritability. For genes with low R, we may
expect TWAS power to be low. However, the power to
detect associations through TWAS relies not only on the
accuracy of gene expression imputation but also on the
sample size of the GWAS data to be used. Thus, an
association can still be detected for genes with low
prediction R, provided a GWAS with a sufficiently large
sample size is used. This is becoming more feasible with
the advent of UK Biobank and other large population‐
based resources.

We examined the effect of the sample size of the
model training data set on expression prediction accu-
racy, finding that a reduced sample size led to poorer
prediction. This has been observed in the context of
prediction of other complex traits (Guo et al., 2016;
Wei et al., 2013), and underlines the need for larger
reference sample sets with measured genotype and ex-
pression. Current software packages for TWAS mainly
use GTEx as a resource for the reference panel. While
GTEx has measured genotype and expression across a
range of tissues, allowing the development of tissue‐
specific gene expression prediction models, for most
tissues the sample size available in GTEx is small. An
increase in sample size could improve prediction ac-
curacy, and potentially subsequent TWAS power. A
further reason to continue increasing sample size is that
it will eventually allow for the inclusion of trans‐effects
on expression. Current sample sizes are prohibitive for
modelling the effects of all SNPs across the genome on
gene expression, meaning that effects of SNPs distal to
the gene on expression are missed. Many genes are
known to have trans‐eQTLs (Brynedal et al., 2017), and
trans‐eQTLs are thought to drive a number of disease
associations (Kirsten et al., 2015; Westra et al., 2013).
Thus, increasing sample size to the point where trans‐
effects can be modelled may lead to an increase in
prediction accuracy and TWAS power. However,
inclusion of trans‐effects in prediction models also
increases the likelihood of coprediction of multiple
genes by a single prediction model, as trans‐eQTLs of-
ten regulate multiple genes (Brynedal et al., 2017). This
could lead to difficulty in interpreting TWAS results.
Further studies will be required to avoid this.

We also examined prediction across ancestries and
observed a reduction on average prediction accuracy
when predicting expression for a population of a different
ancestry from the ancestry of the model training data.
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This may be due to differences in linkage disequilibrium
across populations, differences in data processing be-
tween the samples from different populations, differences
in the set of SNPs used for prediction, or differences in
allele frequencies between populations as suggested in
Mogil et al. (2018). Regardless of the reason, this would
most likely reduce power in a subsequent TWAS. Most
publicly available resources with measured genotypes
and expression, including GTEx, are primarily made up
of samples of European descent. Using these resources
may lead to inaccurate expression prediction in popula-
tions of non‐European ancestry, and the detection of
spurious associations through TWAS. While some effort
has been made to generate gene expression prediction
models in non‐European populations (Mogil et al., 2018),
more population‐specific reference panels (especially
with expression data for tissues other than blood) will
need to be developed to allow accurate TWAS in popu-
lations of non‐European ancestry.

We also compared predictions from our Geuvadis‐
trained models with those made by PrediXcan models. As
expected, models trained using Geuvadis data slightly
outperformed PrediXcan models at the prediction of
Geuvadis data. This may reflect slight differences in data
processing or population structure between the Geuvadis
data and the GTEx data that PrediXcan models were
trained in. This implies that training prediction models
using data as similar as possible to the intended “test”
data would likely result in more accurate predictions.
While this may not be feasible for many software users,
for large consortia where a proportion of samples have
expression measures gathered, this may be a useful op-
tion. However, in uses such as this, it would still be im-
portant to consider the trade‐off between using similar
data and using a larger sample size (which may be
achieved by using a standard reference panel such
as GTEx).

Next, we examined the issue of prediction across
tissues. By applying GTEx‐trained models for non‐LCL
tissues to Geuvadis data, we found that average predic-
tion accuracy was reduced when the tissues of the
model training data set and the model testing data set
were different. We found that for many genes, models
trained in non‐LCL tissues were able to predict LCL
gene expression with similar accuracy to models trained
using LCL expression data. Given the evidence of
strong sharing of eQTLs across many tissues (GTEx
Consortium, 2015), this is not surprising, but is reassur-
ing, as it suggests that by using one tissue as a proxy for
another, reasonable TWAS power may still be achieved
for many genes. Despite this, there existed a set of genes
for which the LCL‐trained models clearly outperformed
models trained in other non‐LCL tissues, potentially

reflecting tissue‐specific regulation of expression. In these
instances, using models trained in the wrong tissue may
lead to poor prediction and misleading TWAS results.
GTEx currently has matched genotype and expression
data from over 50 tissues, making it a good resource for
prediction model training. Further improvements to this
reference panel by gathering more samples, especially
those from non‐European populations, and by gathering
data for tissues and cell types not currently measured in
GTEx will make these resources even more valuable to
the TWAS community.

In conclusion, we have shown that modeling methods
that assume sparsity (as implemented in most tran-
scriptomic imputation software packages) generally
achieve the best gene expression prediction accuracy,
although the actual prediction accuracy is low for the
majority of genes. We have also demonstrated that in-
creasing sample size and careful matching of ancestry
and tissue between model training and testing popula-
tions improves prediction accuracy. Further increases in
sample size and development of population‐specific re-
ference panels across multiple tissues may help to further
improve gene expression prediction accuracy and thus
improve the power of future TWAS.
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