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Abstract: Histone-modifying proteins have been identified as promising targets to treat several
diseases including cancer and parasitic ailments. In silico methods have been incorporated within
a variety of drug discovery programs to facilitate the identification and development of novel
lead compounds. In this study, we explore the binding modes of a series of benzhydroxamates
derivatives developed as histone deacetylase inhibitors of Schistosoma mansoni histone deacetylase
(smHDAC) using molecular docking and binding free energy (BFE) calculations. The developed
docking protocol was able to correctly reproduce the experimentally established binding modes
of resolved smHDAC8–inhibitor complexes. However, as has been reported in former studies, the
obtained docking scores weakly correlate with the experimentally determined activity of the studied
inhibitors. Thus, the obtained docking poses were refined and rescored using the Amber software.
From the computed protein–inhibitor BFE, different quantitative structure–activity relationship
(QSAR) models could be developed and validated using several cross-validation techniques. Some
of the generated QSAR models with good correlation could explain up to ~73% variance in activity
within the studied training set molecules. The best performing models were subsequently tested
on an external test set of newly designed and synthesized analogs. In vitro testing showed a good
correlation between the predicted and experimentally observed IC50 values. Thus, the generated
models can be considered as interesting tools for the identification of novel smHDAC8 inhibitors.

Keywords: binding free energy calculations; Schistosoma mansoni; histone deacetylase inhibitors;
quantitative structure–activity relationship (QSAR)

1. Introduction

Neglected parasitic diseases have been responsible for morbidity and mortality of
hundreds of millions of humans in underprivileged communities especially in parts of
the Middle East, South America, Southeast Asia and, particularly, in sub-Saharan Africa
for over many decades [1]. Amongst these neglected parasitic diseases is schistosomiasis
(bilharzia), which is a common intravascular parasitic infection in humans caused by
Schistosoma spp. [2]. Despite being a preventable illness, chronic infection is associated
with long-term undernutrition, anaemia, organ scarring and fibrosis, resulting in disabling
patient symptoms [2–4]. According to the World Health Organization (WHO), an estimated
206.5 million people required preventive treatment for schistosomiasis, out of which
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more than 89 million people were reported to have been treated [3,4]. Several detailed
studies/reviews explaining the epidemiology of schistosomiasis have been published [1–5].
In recent years, national and international programs have been implemented in regular
drug administration to control or prevent Schistosoma infections. Interestingly, there has
been a decrease in the number of infected individuals. However, with no available vaccine,
new small molecule inhibitors to treat the disease are needed. In addition, drug resistance
problems have been reported for the current drug of choice, praziquantel [2,6–10].

A promising strategy to treat schistosomiasis amongst other parasitic diseases is
to target the epigenome of the parasite [11–13]. Histone modifying proteins have thus
emerged as potential targets to modulate the epigenome of this parasite in the hope to treat
this parasitic ailment. Among these histone modifying proteins are histone deacetylases
(HDACs, sometimes also referred to as lysine deacetylases, KDACs), which function by
regulating the deacetylation of histone lysine residues as a part of DNA transcriptional
regulation [14]. An upset of this balance can lead to hypoacetylation or hyperacetylation
leading to the manifestation of diseases such as cancer, inflammation, etc. Conventionally,
there are 18 known human HDAC isoforms divided into four major classes (classes I, II, III
and IV) depending on their homology to yeast (Saccharomyces cerevisiae) HDACs [15]. While
class I (HDAC1, 2, 3 and 8), class IIa (HDAC4, 5 and 7), class IIb (HDAC6 and 10) and
class IV (HDAC11) are Zn2+-dependent for their deacetylase activity, class III (Sirtuins 1–7)
are nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases [15–20].
Although HDACs have recently emerged as potential targets to treat cancer and parasitic
diseases amongst others, the biology behind the effect of HDAC inhibition on these diseases
is still not fully understood [21–25].

For over three decades, HDACs have been targeted for various cancer treatments
which have resulted in the approval of five HDAC inhibitors with several others in clinical
trials for the treatment of several types of cancer [26–38]. Most of the designed, developed
and reported HDAC inhibitors have a general structural pharmacophore consisting of three
features—the zinc-binding group (ZBG), the linker and the capping group (cap) [39–42].
Additionally, HDAC inhibitors bearing a hydroxamate group chelating the catalytic zinc
ion are the most investigated. Due to the partially conserved nature across the active site in
all HDACs with a substrate binding channel and the relatively similar pharmacophoric
features of the reported HDAC inhibitors, the desired isoform(s) selectivity represents
a challenge [27,43,44]. Many of the published hydroxamate-type inhibitors inhibit most
HDAC isoforms, which limits their use as pharmacological tools and may lead to side effects
in the clinic. Resolved crystal structures also reveal that a majority of the hydroxamate
derivatives, as well as some other reported zinc chelating groups are able to coordinate
the catalytic zinc ion in a bidentate fashion [45,46]. Nevertheless, some recently released
crystal structures of HDAC6 isoform shows that some HDAC inhibitors coordinate the
catalytic zinc ion in a mono-dentate fashion [47,48]. In addition to the zinc ion coordination,
HDAC inhibitors are further stabilized by hydrogen bonds, mostly with the two conserved
histidine residues and the catalytic tyrosine residue, as well as van der Waals and π–π-
interaction(s) amongst others.

Several studies have explored the major pharmacophoric features and interactions
observed with HDAC inhibitors for the development of new drug candidates against
schistosomiasis to target the parasite’s epigenome [49]. To reduce the potential side effects
of the new molecules, specific targeting of schistosomal HDACs is very important [50].
Interestingly, the human orthologue of S. mansoni HDAC8 (smHDAC8), human HDAC8
(hsHDAC8), is less abundant in humans than other class I HDACs (HDAC1 and 3) except
in some tumor cells where it is up-regulated [51]. Thus, the development of small-molecule
smHDAC8 inhibitors represents a promising approach for the treatment of schistosomi-
asis. We have previously reported on a series of smHDAC8 inhibitors through virtual
screening-based identification and structure-guided optimization [49,52–54]. Applica-
tion of computational methods to aid our quest for new smHDAC8 inhibitors led to the
identification of several potential scaffolds [52,54]. Amongst the identified scaffolds, the
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m-substituted benzhydroxamates were identified as promising lead structures and further
structural optimization studies of this series led to potent smHDAC8 inhibitors [54]. The
developed benzhydroxamates exerted interesting selectivity over relevant human HDAC
isoforms (HDAC1, 3 and 6; in some cases also HDAC8) and induced apoptosis and mortal-
ity of schistosomes in cellular assays. Selectivity of these molecules has been attributed to
the possibility of these molecules to target the side pocket present in HDACs 6 and 8 as
stipulated in the binding modes from docking procedures and resolved crystal structures.
Furthermore, some selected compounds displayed significant dose-dependent killing of
the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained
in culture.

In this study, we first set to generate structure-based QSAR models that were able to
explain variations in the determined smHDAC8 IC50 values. The validated models were
subsequently used to predict the activities of some newly designed benzhydroxamate
derivatives as smHDAC8 inhibitors and to propose the most promising ones for synthesis
and biological evaluation.

2. Results and Discussion
2.1. Diversity Analysis of Dataset(s)

In order to develop a robust QSAR model, accuracy and precision of the biological
data are very important. Thus, the selection of molecules to build the model holds a
critical place in the development process. A critical aspect of the selection is to focus on
a particular series/chemical space of molecules while covering a reasonable biological
activity range. In this study, benzhydroxamic acids—an important class of HDAC inhibitors
that we recently developed as inhibitors of the HDAC8 isoform (see the Materials and
Methods section) constituted the training set molecules. These molecules in the training
set can be generally characterized by the scaffolds depicted in Figure 1, were R1 (at the
para position) represents small groups like hydrogen, halogen, methyl, methoxy, while
R2 (meta position) represents aromatic substitutions. Reported studies show that this
class of molecule has well-established interactions with amino acids residues within the
binding site of smHDAC8. For instance, the hydroxamate function (ZBG) coordinates the
catalytic Zn2+ ions while additionally forming hydrogen-bond interactions with Tyr304,
His140 and/or His141. On the other hand, the carbonyl functional group (in the case of
the amides-scaffold) forms a hydrogen bond with Lys20 while the amide/amine H atom
is observed to form hydrogen bond with His292. We began our studies by analyzing
the diversity of the selected compounds (Figure 1 and Table 1 for information about the
selected compounds) using principal component analysis (PCA). The applicability domain
of the studied dataset can be used to define a model’s limitations. Figure 2 shows the two-
dimensional (2D) plot of the variations (Figure 2A) and the 3D representation (Figure 2B) of
the three most important components (PCA1, PCA2 and PCA3) of the computed descriptors
(a_heavy, b_1rotN, b_single, lip_acc, lip_don, mr, PEOE_VSA_POL, TPSA, h_logD and
PEOE_VSA_FPPOS) for the training dataset. Distribution of the three most important
PCAs after linear transformation using PCA showed that the molecules used in this study
were distributed homogeneously within the PCA space. Interestingly, analysis of the three
most important principal components of the molecular descriptors space could explain
approximately 100% covariation of the global information of the original space.



Molecules 2021, 26, 2584 4 of 25

Figure 1. Training set molecules.

Table 1. Training set molecules and their respective experimental pIC50 and SP-Docking Sores.

Name Compound
Code * Scaffold R1 R2

smHDAC8
IC50 (nM)

pIC50-
smHDAC8

GLIDE
SP_Score

TH100 13r A methoxy 4-ethoxyphenyl 305 ± 35 6.52 −7.14
TH101 13s A methoxy benzyl 183 ± 39 6.74 −7.51
TH104 13z A chloro 2,4-dichlorophenyl 191 ± 17 6.72 −7.20
TH31 13a A hydrogen phenyl 468 ± 79 6.33 −8.52
TH33 13b A methyl phenyl 154 ± 0.03 6.81 −7.48
TH39 13c A methoxy phenyl 135 ±0.03 6.87 −7.60
TH60 13k A methyl 2-quinolyl 96 ± 13 7.02 −7.04
TH61 13e A chloro phenyl 67 ± 10 7.17 −7.31
TH65 13l A methoxy 4-biphenyl 293 ±35 6.53 −7.35
TH66 13h A ethoxy phenyl 129 ± 8 6.89 −7.43
TH67 13i A propoxy phenyl 267 ± 49 6.57 −7.51
TH68 13n A methoxy 4-chlorophenyl 146 ± 4 6.84 −7.34
TH69 13m A methoxy 4-methoxyphenyl 106 ± 18 6.97 −7.31
TH74 13t A chloro 4-methoxyphenyl 147 ± 5 6.83 −7.65
TH75 13f A bromo phenyl 150 ± 9 6.82 −7.41
TH76 13d A fluoro phenyl 178 ± 8 6.75 −7.28
TH83 13j A isopropoxy phenyl 220 ± 56 6.66 −8.58
TH85 13o A methoxy 2-chlorophenyl 351 ± 16 6.45 −7.22
TH86 13p A methoxy 2,4-dichlorophenyl 122 ± 19 6.92 −7.98
TH92 13za A ethoxy 4-biphenyl 92 ± 26 7.04 −8.58
TH93 13x A chloro 4-chlorophenyl 235 ± 10 6.63 −7.36
TH94 13g A trifluoromethyl phenyl 140 ± 8 6.86 −7.10
TH95 13q A methoxy 3-biphenyl 290 ± 20 6.54 −7.28
TH96 13y A chloro 4-nitropheny 394 ± 50 6.40 −7.06
TH77 13u A chloro 3-benzyloxyphenyl 378 ± 45 6.42 −9.49
TH78 13v A chloro 3-phenoxyphenyl 396 ± 43 6.40 −9.55
TH81 13w A chloro 4-phenoxyphenyl 620 ± 70 6.21 −8.85
TH58 14a - - - 8210 ± 1300 5.09 −7.51
TH36 10c - - - 1722 ± 910 5.76 −7.41
TH70 15a - - - 268 ± 21 6.57 −7.34
TH71 16a - - - 485 ± 158 6.31 −7.58
TH28 10a B hydrogen benzyl 1040 ± 250 5.98 −7.15
TH32 10b B hydrogen cyclohexyl 3630 ± 620 5.44 −6.80
TH35 10e B methyl cyclohexyl 600 ± 196 6.22 −7.16

* Compound code from the original publication (Heimburg et al. [54]).
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Figure 2. (A) 2D plots to visualize the variation of the three most important computed principal components for the
training set (Blue box represent the outlier TH58) and (B) 3D visualization of the chemical space occupied by the training
set molecules using the first three PCAs.

2.2. Molecular Docking

At the beginning of this study several co-crystallized protein–ligand structures of
smHDAC8 were known and available in the protein databank (https://www.rcsb.org/
(Accessed 16 January 2020)). The existence of these deposited complexes allowed the
restriction of the molecules to be docked in the binding site only and the prior knowledge
of reported ligand–target interactions/pose helped in selecting poses that are closest to the
experimentally reported pose. As mentioned above, 25 crystal structures of smHDAC8
in complex with various inhibitors were studied in the current work. The selection of
the most suitable crystal structure for the docking protocol was based on re- and cross-
docking studies.

Docking in protein structure PDB ID 6HRQ showed good re-docking results (Figure 3)
as well as the best cross-docking results, where the docking poses of 21 out of 25 docked

https://www.rcsb.org/
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ligands showed an rmsd ≤ 2 Å (Table S1). Failure to reproduce the docking pose of some
of the crystal structure could be attributed to (i) a different ZBG (e.g., 4CQF had a thiol
ZBG while other structures had a benzhydroxamate ZBG) (ii) different compound/linker
class (e.g., while we were focused on reproducing the binding pose of amide or amine
meta-substituted benzhydroxamates linkers, PDB Codes: 4BZ7 and 4CQF possess linear
and flexible linkers lacking the aromatic portion while 6HSH had a heteroaromatic linker
with two rings connected (2-(piperidin-1-yl)pyrimidine)).

Figure 3. Re-docked pose in PDB code: 6HRQ. Crystallized ligand and re-docked ligand poses are
shown in cyan and magenta, respectively. Protein backbone is shown as a cartoon (white ribbon) and
side chains of key amino acid residues in the active sites are shown as white sticks. The catalytic zinc
ion and conserved water molecule are shown as orange and red spheres, respectively.

In general, the chosen docking protocol could reproduce the experimentally deter-
mined binding mode of the already reported ligands with an rmsd < 2 Å (Figure 4). In
all cases, the hydroxamate group (ZBG) of the docked ligands coordinates the zinc ion in
a bidentate manner as well as showing other interactions (such as the hydrogen bonds
between the ligands and His141, His142, Lys20, His292 and Tyr341 residues in addition to
π–π staking interactions with residues lining the lysine binding tunnel and the side pocket)
to stabilize the ligand–protein complex. Interestingly, based on our docking protocol, the
selected poses were also top ranked using the standard precision (SP) scoring function of
Glide in Schrödinger software. Hence, the top-ranked docking pose for each ligand was
selected for further calculations after careful visual inspection. However, the correlation
between the docking scores and the experimentally reported activities was poor (r2 ~ 0.009)
(Model 1; Table 2; Table S1). Thus, the obtained docking poses were rescored by means of
binding free energy calculations as discussed in the following section.
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Figure 4. Comparing the docking poses derived from our docking protocol with the crystallized
smHDAC8 ligands. Co-crystallized ligands were taken from the corresponding PDB IDs by overlap-
ping (A) PDB ID: 4BZ8, (B) PDB ID: 5FUE, (C) PDB ID: 6HT8 and (D) PDB ID: 6HU1. Co-crystallized
ligands with their experimentally determined binding mode are shown in cyan while the docking
pose of the ligands from our docking protocol in PDB ID: 6HRQ are shown in magenta. In the
different pictures, protein backbones are shown as ribbons and side chains of key amino acid residues
in the active sites are shown as white sticks. Catalytic zinc ion and conserved water molecule are
shown as orange and red spheres, respectively.

2.3. Analysis of BFE

Due to the low correlation (r2) observed between the Glide-SP docking score and the
experimentally determined activities, we further evaluated the affinities of the ligands
to smHDAC8 using complex minimization and MM-PB/GBSA and QM/MM methods
(using Amber software). The top scored docking poses from the molecular docking step
were rescored either using a single frame (after short minimization steps) or several frames
from the short MD simulations (1 ns). Different GB models, namely GBHCT (igb = 1),
GBOBC (igb = 2), GBOBC2 (igb = 5), and GBn (igb = 8), as well as PB_mbondi (mbondi),
PB_bondi (bondi) and PB_Parse (PARSE) were used to estimate the BFE. Moreover, the
hybrid QM/MM–GBSA approach was also implemented, where the ligand and the catalytic
Zn2+ ions were treated as the QM region using Parameterized Model number 3 (PM3) and
Austin Model 1 (AM1) semi-emperical Hamilitonian theories in combination with GB1
solvation [55–66].

As mentioned in Sections 3.3 and 3.4, models were generated using either the com-
bination of terms summing up to the total energy term or the overall calculated energy.
Furthermore, we tried to improve the quality of some of the models with the addition of a



Molecules 2021, 26, 2584 8 of 25

2D-descriptor (Fractional positive polar van der Waals surface area) computed in MOE.
The fractional positive polar van der Waals surface area (PEOE_VSA_FPPOS) was chosen
amongst other descriptors to observe how the overall charge property of the molecules can
contribute to explaining the observed activity of the molecules. In summary, 126 models
were generated based on the docking score, complex minimization as well as the different
MMGB-PB/SA and QM/MM methods/models used. The obtained correlation results
using the different methods are shown in the SI (Table S2). In Table 2, selected correlation
results are listed to give an overview on the performance of the different methods. In
general, BFEs from MM-PBSA using the PB-bondi radii averagely outperformed the other
methods in explaining the reported experimental activities.

Table 2. Summary of statistical interpretation of the selected models.

Model
Number Method Frame Number of

Molecules

lm LOOCV Leave_3out
CV 3fold CV

Outlier
r2 RMSE q2 QMSE q2 QMSE q2 QMSE

1 34 0.01 0.44 - - - - - -
6 AM1/GB1 Emin2 34 0.41 0.34 0.30 0.37 - - - -
7 AM1/GB1 Emin2 34 0.51 0.31 0.38 0.35 - - - -

22 GBHCT (igb = 1) Emin2 34 0.31 0.37 0.13 0.42 - - - -
23 GBHCT (igb = 1) Emin2 34 0.51 0.31 0.32 0.36 - - - -
33 GBOBC (igb = 2) Emin1 33 0.30 0.37 0.19 0.40 - - - -
34 GBOBC (igb = 2) Emin1 34 0.46 0.32 0.33 0.36 - - - -
48 GBOBC (igb = 5) Emin1 34 0.31 0.36 0.20 0.40 - - - -
49 GBOBC (igb = 5) Emin1 34 0.47 0.32 0.34 0.36 - - - -
65 GBn (igb = 8) Emin2 34 0.19 0.40 0.02 0.48 - - - -
77 PB-mbondi Emin2 34 0.27 0.38 0.08 0.43 - - - -

94 PB-bondi MD51-
100 34 0.45 0.33 0.36 0.35 0.39 0.36 0.38 0.36

95 PB-bondi MD51-
100 34 0.61 0.27 0.53 0.30 0.55 0.30 0.54 0.31

96 PB-bondi MD51-
100 33 0.62 0.22 0.53 0.25 0.56 0.25 0.54 0.26 TH58

97 PB-bondi MD51-
100 31 0.73 0.19 0.66 0.22 0.70 0.21 0.69 0.22

TH58,
TH70,
TH74

105 PB-PARSE Emin2 34 0.17 0.40 0.01 0.46 - - - -
117 PM3/GB1 Emin2 34 0.37 0.35 0.26 0.38 - - - -
118 PM3/GB1 Emin2 34 0.52 0.31 0.41 0.34 - - - -

lm: linear model, LOOCV: Leave-one out cross validation, Leave_3out CV: Leave-3-out cross validation, 3fold CV: 3fold cross validation,
PM3/GB1: Parameterized Model number 3 in combination with GB1 solvation, AM1/GB1: Austin Model 1 in combination with GB1
solvation, Emin2: single frame after the second energy minimization step, Emin1: single frame after the first energy minimization step,
MD51-100: every fifth frame from the first frame frames for 51–100 during the MD simulation run.

2.4. Derived QSAR Models and Their Validation

As aforementioned, BFEs were computed using either a single frame from energy min-
imization or several frames from MD simulations. An application of the Partial least square
(PLS) method was then applied to generate QSAR models based on the computationally
estimated BFEs from the MM-PB/GBSA and QM/MM methods. For instance, in the MD
simulation step, selected frames/snapshots (every fifth frame from the first frame for 1–50,
51–100 and 101–500 frames) were used to compute BFEs for the model development. The
models were first constructed using various response variables (Y-variables) (1) the total
calculated energy ∆G (2) the deltaGgas and deltaGsol values that sum up to the total energy.
However, these models generated based on the computed BFEs did not show sufficient
correlation with the observed biological activities. In order to improve the performance,
we also investigated the effect of considering further computed descriptors in combination
with the estimated BFEs to explain the reported biological activities. Thus, resulting models
developed in this study were developed with or without the computed 2D descriptor.
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The developed QSAR models used in this study are exemplified in Table 2 (the entire
list of models is presented in Table S2). Overall, we constructed 126 models using the
BFEs calculated at different steps. These models were developed using several approaches
(please refer to Sections 2.3 and 3.3) so as to explore every means to explain variance in
the observed activity of the molecules. Overall, models were judged based on their r2 and
q2 values. For this study, better r2 and q2 values for the training set was observed with
model 97 when compared to those from the initial “model 94”; both models generated
using the PB-bondi radii. Model 97 was developed through the continuous improvement
of model 94 (Table 2). The progress in the development of the topped model from each
method utilized herein will be discussed in the following paragraphs with main focus on
models 94 to 97 from MM-PBSA using the PB-bondi radii calculation.

We observed that all the models developed using MM-GBSA with GBHCT (igb = 1),
GBOBC (igb = 2), GBOBC2 (igb = 5), and GBn (igb = 8) solvation models did not lead to
satisfactory results and the computed BFEs were unable to explain the reported activity
of the molecules in the training set. Just as observed in Table 2 above, the best model
obtained using GBHCT (igb = 1) calculations was model 23 which was designed using the
computed contributions of deltaGgas and deltaGsol at the second energy minimization step
and including the 2D descriptor PEOE_VSA_FPPOS (Equation (1)). This model showed a
correlation coefficient (r2) of 0.51 and rmse of 0.3. However, further statistical validation
of the model using the LOOCV approach led to very low q2 and higher qmse; thus, the
discarding of the model. Meanwhile, all models developed using GB2, GB5 and GB8
showed an r2 < 0.5.

pIC50_pred = 2.21599 − 0.05272 * deltaGgas − 0.05911 * deltaGsol + 12.20274 * PEOE_VSA_FPPOS (1)

Application of the MM-PBSA method (using PB-bondi radii) led to the stepwise de-
velopment of a satisfactory model which showed good correlation with the biological data
and good cross validation results. First, model 94 was developed based on the computed
BFE from the MD step using every fifth frame from the first frame for frames 51–100.
Exploration of the model revealed that its predictive performance was only moderate, as
it could explain only about 45% variance of the reported biological activity (r2 of 0.45)
while having an rmse of 0.35 (Table 2; Equation (2)). Therefore, we analyzed the molecular
properties of the studied inhibitors and calculated a variety of molecular descriptors and
include them in the QSAR models. We identified PEOE_VSA_FPPOS; a 2D descriptor that
improved the QSAR model (Model 95).

pIC50_pred = 3.98023 − 0.03888 * ∆G (2)

Improvement of model 94 by including PEOE_VSA_FPPOS as a 2D descriptor led to
model 95 (Equation (3)) which could better explain the correlation between the experimental
and calculated activities. The r2 value was observed to increase from 0.45 (in model 94)
to 0.61 (in model 95). In addition to the increased r2 values, q2 also increased from 0.36 to
0.53, 0.39 to 0.55 and 0.38 to 0.54 for LOOCV, Leave-3-out-CV, and 3fold-CV validations,
respectively. This model was also considered to be more reliable because the rmse values
were generally at acceptable limits (Figure 5).

pIC50_pred = 3.31705 − 0.03592 * ∆G + 10.69909 * PEOE_VSA_FPPOS (3)
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Figure 5. Correlation plot between the experimental pIC50 values (X-axis) and the calculated pIC50

values (Y-axis) for the training set molecules (blue points) using model 95.

Analyzing Model 95 detected three outliers based on their calculated Z-score
(Z-score > 2, compounds TH58, TH70 and TH74) and removal of these compounds led to
the development of Model 97 (Equation (4), Figure 6) with a significant difference in the r2,
q2, rmse and qmse values when compared with model 95. Z-score in brief represents the
absolute difference between the experimentally reported value and the predicted value
base on the model in question divided by the square-root of the mean square error of the
dataset. Z-scores were calculated for the molecules in this study using the QSAR module
of MOE and molecules with Z-score greater than two were considered outliers. In addition
to the statistical Z_score that was used to select molecules that were deemed as outliers,
compounds TH58 and TH70 were further considered outliers based on the following ob-
servations/analyses. From another point of view, the computed 2D-descriptors to analyze
the chemical space of the molecules could also be used to explain why TH58 was an outlier.
For instance, based on the chemical space analysis, TH58 occupied a distant chemical space
when compared to other molecules within the training set and it was thus not strange
having it in the list of outliers. TH70 on the other hand, although structurally similar to
molecules of scaffold B, had the N-atom of the linker portion of the molecule replaced with
an O-atom. This difference in atom type brought about observable changes in docking pose
for compound TH70 when compared with a structurally related compound (TH28). The
docking pose of compound TH70 showed that some important interactions including the
hydrogen bond interaction observed between the docked molecules with His292 and Lys20
were missing. Additionally, a slight change in the coordinate of the aromatic linker was
observed. The resulting model could explain ~73% variation of the reported experimental
activity (Figure 6). For this reason, model 97 was also considered for further investigation
and prediction of novel designed smHDAC8 inhibitors.
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pIC50_pred = 3.45878 − 0.03231 * ∆G + 11.84528 * PEOE_VSA_FPPOS (4)

Figure 6. Correlation plot between the experimental pIC50 values (X-axis) and the calculated pIC50

values (Y-axis) for the training set molecules (blue points) using model 97 as well as the distribution
of the newly designed set of molecules (orange points) along the linear regression line.

2.5. Evaluation of Novel Designed smHDAC8 Inhibitors

To further evaluate the reliability and predictive power of the best performing models,
the best models were evaluated on a set of newly developed inhibitors (Figure 7, Table 3).
Based on the obtained biological data of the previously described molecules in the training
set, we utilized a structure-based approach in order to design further benzhydroxamate
derivatives in an attempt to optimize their activity against smHDAC8. Generally, the
scaffolds (scaffold A and B) were maintained (except for an inverse amide derivative,
compound 23) while the substituents at the para- (R1) and meta- (R2) positions were
altered. The maintained scaffolds have well established interactions with important amino
acids such as Tyr304, His292, His140, His141, Lys20 as well as a bidentated coordination
to the catalytic zinc ion; as seen in solved smHDAC8 crystal structures. For instance,
starting from the lead compounds TH61 and TH39 including several derivatives which
bear an additional alkoxy substituent at the 2- and 2,4-positions of the phenyl capping
group were designed, with the goal of better addressing the hydrophobic side pocket. This
improved Van der Waals interactions led to increased activity as seen when moving from
TH66 to TH92. This observation led to the exploration of several hydrophobic substituents
including the effects of bicyclic and tricyclic substituents. Docking pose prediction for such
compounds showed that they could fit within the receptor active site while maintaining
the necessary interactions from the scaffolds used. Thus, derivatives which have bulkier
aromatic substituents at the 3- and 4-positions of the phenyl capping group, such as the
biphenyl and phenoxyphenyl derivatives (TH77 and TH95) were further modified by
adding different substituents at the m-position of the benzhydroxamte moiety. Compound
TH60, possessing a quinolyl moiety as a capping group, was another inhibitor within
the training set which showed highly potent inhibition of smHDAC8. Hence, further
derivatives with bi- and tricyclic capping groups, such as compounds 2, 6, 7, 18, 19 and
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20, were designed and synthesized (details on the synthesis, crystallization and biological
testing will be published elsewhere).

Analysis of the chemical space of the designed (test set) molecules in a similar way
as for the training set revealed that the designed inhibitor 24 distanced itself from the
remaining molecules (Figure 7 while the 2D and 3D distribution of the molecules can be
seen in Figures 8 and 9). Figure 9 shows that the computed properties of this molecule
do not fall in line with the properties of the molecules designed based on the scaffolds
(scaffold A and B) of choice for this study. To further visualize the position of the molecules
used in this study, we performed extra graphical representation as seen in Figure 9. With
the exception of compound 24 in the newly designed/external set, all the molecules were
homogeneously distributed within the PCA space. Thus, the molecules used in this study
generally occupied a similar chemical space. In addition to this observation, we could also
explain the position of compound 24 as an outlier, based on the fact that this compound
uniquely has a carboxylate substituent at the meta-position of the benzhydroxamate scaf-
fold (Figures 7 and 9) which plays a role in deviating its computed properties from the rest
of the molecules.

Figure 7. Chemical structures of novel smHDAC8 inhibitors used as external test set.
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Table 3. Chemical structure and prediction of test set compounds.

Compound
Number

Compoud
Code Scaffold R1 R2 smHDAC8_IC50

nM- pIC50_exp pIC50_pred
Res a

(Exp_pIC50-
Pred_pIC50)

Res b

Avg_Exp_pIC50-
Pred_pIC50

Glide
SP_Score

1 AT_T4 A methoxy 9H-fluoren-1-yl 163 ± 17 6.79 7.01 −0.22 −0.44 −9.20

2 SD14 A methoxy
3-methyl-1,2,3,4-

tetrahydro- -carbolin-
8-yl

197 ± 19 6.71 6.64 0.06 −0.07 −9.24

3 TH112 A ethoxy 2,4-dichlorophenyl 103 ± 7 6.99 6.77 0.22 −0.20 −8.99
4 TH117 A chloro 4-biphenyl 404 ± 90 6.39 6.42 −0.03 0.15 −8.69
5 TH119 A methanethiolyl 4-biphenyl 101 ± 7 6.99 6.68 0.31 −0.11 −8.47
6 TH120 A chloro benzo[b]thien-7-yl 97 ± 16 7.01 6.81 0.20 −0.24 −8.90

7 TH125 A methoxy 1H-benzo[d]imidazol-
2-yl 575 ±72 6.24 6.86 −0.62 −0.29 −9.48

8 TH127 A methoxy 3-benzyloxyphenyl 605 ± 68 6.22 6.66 −0.44 −0.09 −9.23
9 TH128 A methyl 3-benzyloxyphenyl 447 ± 31 6.35 6.43 −0.08 0.14 −8.63

10 TH132 A methoxy 2-chloro-4-biphenyl 101 ± 77 7.00 6.68 0.31 −0.11 −8.71
11 TH133 A chloro 2-chloro-4-biphenyl 112 ± 11 6.95 6.77 0.18 −0.20 −8.35
12 TH134 A methoxy 4-propoxyphenyl 729 ± 86 6.14 6.19 −0.05 0.38 −8.51
13 TH135 A methoxy 4-isopropoxyphenyl 725 ± 52 6.14 6.86 −0.72 −0.29 −8.76
14 TH136 A methoxy 2,4-dimethoxyphenyl 2078 ± 273 5.68 6.90 −1.22 −0.33 −9.29
15 TH137 A chloro 2,4-dimethoxyphenyl 220 ± 13 6.66 6.51 0.15 0.06 −9.22

16 TH138 A methoxy 2-chloro-4-(4-
fluorophenyl)phenyl 318 ± 19 6.50 6.37 0.13 0.20 −8.99

17 TH139 A chloro 2-chloro-4-(4-
fluorophenyl)phenyl 281 ± 37 6.55 6.70 −0.14 −0.13 −8.66

18 TH142 A methoxy quinolin-8-yl 332 ± 51 6.48 6.98 −0.50 −0.41 −9.84
19 TH143 A methoxy 4-dibenzofuranyl 271 ± 30 6.57 6.91 −0.34 −0.34 −9.76
20 TH156 B methoxy 4-dibenzofuranyl 451 ± 90 6.35 5.98 0.37 0.59 −9.42
21 TH34 B methyl benzyl 1260 ± 170 5.90 6.18 −0.28 0.39 −9.15
22 TH42 B methoxy benzyl 620 ± 0 6.21 6.13 0.08 0.44 −9.74
23 TH97 - - - 220 ± 67 6.66 6.77 −0.11 −0.26 −8.13
24 TH98 - - - 1590 ± 190 5.80 6.49 −0.69 0.08 −9.59

a Difference between the experimental pIC50 and the predicted pIC50; b difference between the average pIC50 (excluding outliers) and the predicted pIC50.pIC50_Exp is the pIC50 obtained from the reported
experimental activity while Pred_pIC50 is the predicted pIC50 and corresponds to each model used.
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Figure 8. 2D plots to visualize the variation of the three most important computed principal components for the test set
(Blue box represent the outlier; compound 24).

Figure 9. 3D visualization of the first three PCAs to compare the chemical space occupied by training
set (green balls) and newly designed molecules (blue balls) while the outlier (compound 24) from the
newly designed set is shown as the grey ball.
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In order to predict the activity of the newly designed (test set) molecules, docking
and BFE calculations were also performed following the same protocols reported for the
training set. Additionally, due to the good performance of Models 95, 96 and 97 (judging
by the observed r2 and q2 values between experimental and predicted pIC50 values from
the training set molecules; for predictions from Models 95 and 96, see Table S3), the
three models were considered for the final prediction of activities of the newly designed
molecules. We assessed the predictive quality of the selected models by calculating the
difference between the experimentally determined and predicted pIC50 values. The IC50
values of the newly designed and synthesized compounds were measured using a similar
procedure as described in previous publications [49,67]. The observed experimental activity
was in the sub-micromolar to lower-micromolar range (Table 3). The IC50 values were
subsequently converted to pIC50 for further evaluations. For the vast majority of the
newly designed set of compounds, the absolute difference between the experimental and
predicted pIC50 values was <0.7 log unit (which is less than 1000 nm) when considering all
selected models. The low residual value between the experimentally measured activities
and the predicted activities indicate that the models generated have good predictive ability.

However, all top models failed to rightly predict the activity of one out of the 25 newly
designed molecules (compound 14; Figure 10, respectively), which showed weak exper-
imental activity but was predicted to be highly active. Though there are no significant
features setting this molecule apart from the rest of the molecules that were rightly pre-
dicted, it may be noted that this molecule possesses a capping group that could adopt
different docking poses (Figure 11). Several docking poses were suggested for this molecule,
with observable shift in coordinates of the atoms encompassing the capping group. Con-
versely, a detail look into the computed BFE and the different contributions summing-up
to the total energy did not also show any abnormality. Thus, the model just failed to rightly
predict this molecule, for reasons that are still to be identified. Looking at the residual
between the average value of experimentally reported pIC50 of the training set that was
used in generating model 97 and the predicted activity for each compound showed that
~99% of the molecules were rightly predicted. The distribution of the molecules along the
regression line (Figure 6) confirmed that the predictions generally had deviations less than
400 nm.

Figure 10. Structure of the poorly predicted molecule by Model 97.
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Figure 11. Comparison of the topped docking pose for the poorly predicted molecule (compound 14; cyan) with a closely
related molecule (compound 12; green). Protein backbone is shown as ribbon and side chains of key amino acid residues in
the active sites are shown as white sticks. Catalytic zinc ion and conserved water molecule are shown as orange and red
spheres, respectively.

3. Materials and Methods
3.1. Dataset Source, Preparation and Analysis
3.1.1. Dataset

A set of 34 previously reported smHDAC8-inhibitors with their smHDAC8 IC50 values
were used as the training set for this study (Figure 1) [54]. All compounds were synthesized
as reported [54], and the in vitro inhibitory activities were determined using an enzymatic
assay. The measured IC50 values were converted to pIC50 values for the QSAR study.

3.1.2. Calculation of Molecular Descriptors and Dataset Diversity Analysis

Descriptors used in this work were calculated using MOE version 2016.08 [68]. Several
2D structural molecular descriptors for the training set and the newly designed series of
benzhydroxamate derivatives were calculated. The calculated descriptors were further
analyzed to ensure that there is no correlation between the descriptors using QuSAR-
Contingency (a statistical application in MOE), and the resulting descriptors were submitted
for further utilization in this work (Table 4). To investigate the chemical space coverage
(diversity) of the molecules used in this study, we applied the PCA method implemented
in the MOE package. The selected descriptors were transformed linearly using PCA [69,70].
This resulted in a new (smaller) table of descriptors that are uncorrelated and normalized
(mean = 0 and variance = 1). Analysis of the variation of percentage counts and the 2-
and 3-dimensional plots of the best three principal components (PCA1, PCA2 and PCA3)
for all the datasets employed in this study was performed to check the diversity of the
different sets.
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Table 4. List of selected 2D descriptors used to analyze the chemical space of molecules employed in this study.

Notation Molecular Descriptors

a_heavy Number of heavy atoms
b_1rotN Number of rotatable single bonds. Conjugated single bonds are not included

b_single Number of single bonds (including implicit hydrogens). Aromatic bonds are not considered to
be single bonds.

lip_acc The number of O and N atoms.
lip_don The number of OH and NH atoms.

mr Molecular refractivity (including implicit hydrogens).
PEOE_VSA_POL The number of OH and NH atoms.

TPSA Polar surface area (Å2) calculated using group contributions to approximate the polar surface
area from connection table information only.

h_logD The octanol/water distribution coefficient at pH 7.
PEOE_VSA_FPPOS * Fractional positive polar van der Waals surface area.

* Included in some of the developed QSAR models for quality improvement.

3.2. Molecular Docking
3.2.1. Ligand Preparation

The ligands used in this study were prepared using a similar approach as we previ-
ously reported, and which was successful in reproducing the X-ray structures of smHDAC8–
inhibitor complexes [52,71]. We started with the generation of 3D structures of the inhibitors
using MOE 2016.08 [68]. The generated molecules were further processed using the “Wash”
option implemented in MOE to deprotonate strong acids and protonate strong bases. The
resulting dataset, containing the ligands only in their hydroxamate form, was subsequently
prepared for docking using the LigPrep tool as implemented in Schrödinger’s software (ver-
sion 2017-1) [72]. In this step, the generated ionization state obtained from MOE was kept;
all possible tautomeric forms as well as stereoisomers were generated after which an initial
structural energy minimization was performed using the integrated Optimized Potentials
for Liquid Simulations 2005 (OPLS-2005) force field [73]. Finally, the ConfGen module also
implemented in the Schrödinger’s software package was used to generate 50 conformers of
the prepared molecules while allowing minimization of the output conformations [74,75].

3.2.2. Protein Preparation

We used the same preparation protocol as in our earlier publications [50,52,54,71].
At the time of this work, 25 of the 28 published crystal structures for smHDAC8 were
used (we excluded PDB Codes: 6HSF and 6HSG because they had mutated residues (from
the schistomal His-292 residue to the human MET-292 residue) while PDB Code: 4BZ5
was excluded because it lacked a crystallized ligand). All crystal structures of smHDAC8
were imported into MOE from the PDB database (www.rcsb.org (Accessed 16 January
2020)) [68,76]. For each crystal structure, all water molecules (except the conserved water
molecule (HOH744) within the catalytic pocket that was used for the docking procedures)
were deleted. The Protein Preparation Wizard of Schrödinger software was subsequently
used for further preparations of the protein structure [77,78]. At this juncture, bond orders
were assigned and hydrogen atoms added. Additionally, the hydrogen bond network
was optimized and the protonation states at pH 7.0 were predicted using the Epik-tool
in Schrödinger [79,80]. Finally, a restrained energy minimization step (rmsd of the atom
displacement for terminating the minimization was 0.3 Å) using the OPLS-2005 force field
was performed on the system [73].

3.2.3. Grid Generation and Docking

For the 25 prepared protein structures, a receptor grid for each protein structure was
generated using the receptor grid preparation module implemented in Schrödinger. In
this step, the center of the co-crystallized ligand for each crystal structure corresponded
to the centroid of the grid box. Additionally, a metal constraint to the conserved catalytic

www.rcsb.org
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zinc metal ion was included while keeping other options as default. The docking protocol
using Glide in the standard precision mode (SP-score) was first validated by (1) redocking
(its ability to reproduce the binding mode of a co-crystallized ligand with the binding site
of its crystalized protein) and (2) cross-docking (the ability to rightly predict the binding
mode of ligands from other smHDAC8 crystal structures). The entire re-docking and cross
docking results are provided as a supplementary file. The best generated protocol, with
PDB Code: 6HRQ (being able to reproduce the crystallized ligands poses with low rmsd)
was then used to dock the prepared training set ligands using Glide [81–83]. A total of
20 poses per ligand conformer were included in the post-docking minimization step. The
top-ranked docking pose for each ligand was selected and submitted for protein–ligand
interactions (BFE analysis).

3.3. Binding Free Energy (BFE) Calculations

The obtained top-ranked docking poses were subjected to BFE calculations using
different radii sets (GBHCT (igb = 1), GBOBC (igb = 2), GBOBC2 (igb = 5), and GBn (igb = 8);
Poison Boltzmann mbondi, bondi and PARSE), with the Tip3P solvation method and
12-6-4LJ ion model [84–88]. Preparation of ligands, protein, complexes and calculation
methods employed in this step of the study are similar to those previously reported and
are briefly described in the following sub-sections [89].

3.3.1. Ligand and Ligand–Protein Complex Preparation

Antechamber package in AMBER16 was used to prepare the top-ranked docking
pose for each ligand using the semi-empirical Austin Model 1 (AM1) with Bond Charge
Correction (BCC) (AM1-BCC) [90]. In this process, assignment of atom type, bond type,
judging of the atomic equivalence, generation of residue topology file, as well as finding
missing force field parameters and supplying reasonable and similar substitutes with the
parmchk function of amber were done. The tleap module in AMBER was then used to
prepare the various protein–ligand complexes.

Hydrogen atoms were added to all amino acid residues assuming a normal ionization
state for all ionizable residues. The Duan et al. (2003) force field (ff03.r1) and general amber
force field (gaff) were used for protein and ligand optimization, respectively [91–93]. TIP3P
water solvation model was used to solvate the systems in an octahedral box, leaving at least
10 Å between the solute atoms and the borders of the box [85]. We also applied 12-6-4LJ
ionic models for the zinc ion [94]. Additionally, 15 Na+ ions were required to neutralize
each complex system.

The GPU-accelerated version (the accelerated version of the graphical processing
unit) of the pmemd (pmemd.cuda) script in AMBER16 was used to run our pre-BFE
calculations [95,96]. First, the solvated complexes were energy minimized using a 4000-
cycle minimization in two steps; (2000 cycles of steepest descent followed by 2000 cycles of
a conjugate gradient) with restraints (force constant of 10 kcal*mol−1*Å−2) on the protein,
zinc and ligand atoms, while the solvent molecules and counter-ions were free. A further
4000 cycles (2000 cycles of steepest descent followed by 2000 cycles of a conjugate gradient)
minimization without restraints of the entire systems was performed to remove any steric
clash in the initial geometry of the protein. Subsequently, the system was heated over
100 ps from 0 to 300 K while restraining the solute (force constant of 10 kcal*mol−1*Å−2)
and the density then evaluated. An equilibration step over a period of 200 ps was launched
to equilibrate the systems before the MD step. Afterwards, a 1-ns MD simulation with
a time step of 2 fs was applied using the Particle Mesh Ewald method [97,98]. During
the equilibration and MD steps, the systems were kept at constant temperature of 300 K
regulated with a Langevin thermostat with a collision frequency of 2 ps−1 and pressure of
1 bar maintained using isotropic position scaling with a relaxation time of 2 ps. The SHAKE
algorithm was applied to constrain all bonds involving hydrogens. Frames were written
every 0.002 ns. Finally, a third energy minimization process using 4000 cycles (2000 cycles
of steepest descent followed by 2000 cycles of a conjugate gradient) of the free systems
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after the MD step was performed. Snapshots for analysis were written every 2 fs and the
CPPTRAJ program inbuilt in AMBER16 was used to analyze the systems. A nonbonded
cutoff distance of 10 Å was used in all steps.

3.3.2. MM-PB/GBSA and QM/MM Based BFE Prediction

To estimate the respective binding free energies of the docked molecules against
smHDAC8, molecular mechanics Poisson–Boltzmann/Generalized-Born Surface Area
(MM-PB/GBSA) and the merged Quantum Mechanics/Molecular Mechanics (QM/MM)
calculations were performed using the AMBER16 simulation package [90]. The MMPBSA.py
script which utilizes the trajectory of complex only to create ensemble average of both the
receptor and the ligand was used to estimate the BFE for each ligand–protein complex [99].
Various MM-PB/GBSA methods using different GB models, namely GBHCT (igb = 1),
GBOBC (igb = 2), GBOBC2 (igb = 5), and GBn (igb = 8), as well as the MM-PBSA method
with different bond radii (bondi and PARSE) were utilized [55–66]. Additionally, the semi-
empirical methods including Parameterized Model number 3 (PM3) and Austin Model 1
(AM1) in combination with the GB1 solvation model were used in the hybrid QM/MM
step to estimate the interaction energy between the receptor and ligand [61,62,100,101]. In
this QM/MM approach, QM potentials were applied on the ligand and catalytic Zn2+ ion
(constituting part of the receptor) while we apply MM force fields to remain part of the
ligand–protein complex system. For the different methods listed, BFEs were computed at
various stages of our protocol as described in Section 3.3.1, i.e., after each energy minimiza-
tion step (Emin1 output structure of first minimization step used, Emin2: output frame of
second minimization step used, and Emin3: output structure of minimization step of MD
simulation last frame) and over different intervals of the MD simulation step (MD_p1; 1 to
50, MD_p2: 51 to 100 and MD_p3: 101 to 500 frames).

Generally, correctly predicting binding free energies of compounds to their target
assist in directing the synthesis of new and promising compounds towards a particular
path. Interestingly, several methods have been proposed and some are being applied to
computationally predict the relative binding affinities of small molecules to their target
protein. In this study, the MM-PB/GBSA and the QM/MM were used to estimate the
BFE which takes into account changes in the gas-phase energy, solvation free energy and
configurational entropy upon complex formation. The predicted BFE is estimated from the
contributions obtained from the deltaGgas and deltaGsol (with additionally the estimated
Self-Consistent-Field Energy (ESCF) for QM/MM) components as shown in Equations (5)
and (6) for MM-PB/GBSA and QM/MM, respectively [102–108].

∆G = deltaGgas + deltaGsol (5)

∆G = deltaGgas + deltaGsol + ESCF (6)

The energy contributions are further broken into different terms/components; van
der Waals energy (VDWAALS) and Electrostatic energy (EEL) for Ggas phase and polar sol-
vation energy (EGB) and Non-polar solvation energy (ESURF) for GB calculations to obtain
Gsol (or polar solvation energy (EPB) and Non-polar solvation energy (ENPOLAR) for PB).
Thus, Equations (5) and (6) can then be expanded to Equations (7) and (8), respectively.

∆G = VDWAALS + EEL + EGB(EPB) + ESURF(ENPOLAR) (7)

∆G = VDWAALS + EEL + EGB(EPB) + ESURF(ENPOLAR) + ESCF (8)

3.4. Quantitative Structure–Activity Relationship (QSAR) Model Development and Selection

For the development of the models, a training set of 34 molecules whose selection is
described above (see Sections 3.1.1 and 3.2.1) was used. Correlating the biological activities
with the estimated BFE and calculated theoretical descriptors of the ligands, QSAR-models
were generated and studied using the Partial Least Square (PLS) method implemented in
MOE. It is important to note that the quality of QSAR models depends on the selection
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of molecules in the dataset, distribution of the property being evaluated (in this case
biological activity) and the chosen descriptors. In general parlance, models in the form of
equations that provide a relationship between the dependent variable (usually biological
activity) and independent variable (computed descriptors) are constructed using regression
methods. In the current study, QSAR models were developed using either the different
terms summing-up to the overall BFE or the total computed BFE (see Section 3.3.2. above).
Several validation methods were used to validate the models developed using the training
set. Models were selected based on the quality of their regression coefficient (r2), root
mean squared error (rmse), leave-one-out cross-validated explained variance (q2) and
crossed-root mean squared error (qmse). Acceptable models were based on high r2 (>0.5)
and q2 (>0.5) values with low rmse (≤0.3) and qmse (≤0.3) values. In general, models
derived using QM/MM methods were not selected due to low r2 and q2 values. Further
robust verification and internal validation of the selected models from the MM-PB/GBSA
calculations were done using leave-three-molecules-out (Leave-3out) as well as a 3fold
cross-validation [109,110]. Final models employed in this study were models that could
maintain a low qmse (<0.3) and q2 (>0.5) values upon the robust validations. The final
models were then prospectively validated through the design, synthesis and biological
validation of novel set of molecules (referred to as “test set” in this paper).

3.5. Test Set Prediction

To explore the reliability of the selected QSAR models, we further evaluated the
predictive power of the models on an external set of molecules, which were synthesized
and evaluated for their inhibitory activity on smHDAC8. The predictive power of the
developed models was evaluated using the experimentally determined IC50 values which
were converted to pIC50 (x-variable) and the computed BFE (y-variable). It is worth noting
that the predictions were all done using the MOE software [68].

4. Conclusions

Although several efforts have been put in place to eradicate schistosomiasis (bilharzia);
the disease continues to ravage hundreds of millions of humans in underprivileged commu-
nities. Reports on drug resistance against praziquantel (the current drug of choice) stands
as a factor forcing researchers to design and develop novel anti-schistosomial compounds,
especially those capable of interfering with the parasite’s epigenome. In our previous
publications [52–54], we showed that smHDAC8 inhibitors could be used to target the
pathogen. In the current study, we explored different methods to develop several QSAR
models to explain the variation of the observed biological activity using 34 previously
reported smHDAC8 inhibitors from our research group as our training set [54]. Initially, we
performed docking studies to test the ability of the utilized docking settings to reproduce
the binding pose of the already crystallized molecules and suggest the most probable
binding pose for molecules with no crystal structures based on confirmed interactions for
this chemical scaffold. However, the inability of the Glide-SP docking score to explain
the variation of the reported experimental activity of the molecules prompted us to use
post-processing methods (BFE calculations) to re-score the docking pose. Further attempts
using predicted BFEs from different GB models, namely GBHCT (igb = 1), GBOBC (igb = 2),
GBOBC2 (igb = 5), and GBn (igb = 8), as well as PB_mbondi (mbondi), PB_bondi (bondi),
PB_Parse (PARSE) using our docked poses led to the development of several QSAR models.
The QSAR model (model 94) consisting of the computed BFE at the MD step using 10
frames (every fifth frame from the first frame for frames 51–100) of the PB_bondi radii
calculation was selected for investigation. Further improvement of this model using a 2D
descriptor and/or the removal of outliers led to models 95–97 (with correlation coefficients
of 0.61, 0.62 and 0.73, respectively) that were better in ranking and explaining the variation
of the observed biological activity in the training set. Moreover, the predictive strength of
models 95–97 were further validated on a set of newly designed and synthesized molecules
which occupy a similar chemical space as the molecules in the training set. The predicted
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biological activities of the newly designed molecules using the models were in good ac-
cordance with the experimentally determined activity of the molecules, proving that our
models possess reliable predictive power. Therefore, the models completely fulfill the
requirements for the suggestion of new smHDAC8 inhibitors. We intend to use the infor-
mation with regard to the binding energy of proposed smHDAC8 inhibitors to continue
the chemical optimization in order to identify new smHDAC8 inhibitors.

The prediction of HDAC selectivity based on calculated interaction energy is still
challenging and was not addressed in the current manuscript. It requires high quality
data, also for selectivity, obtained for a large series of compounds. Often selectivity is only
measured between individual isoforms and only for a few highly promising compounds,
as we did in the current study of smHDAC8 inhibitors. We observed good selectivity of the
compounds for smHDAC8 in comparison to human HDAC1 and 6, but since the activity
of most of the inhibitors is rather low on these enzymes we did not determine an IC50
value for hsHDAC1/6 (only for a few compounds). Therefore, the data set included here is
not suitable to do a quantitative modelling of HDAC selectivity. In case of the selectivity
between human and smHDAC8 we obtained only low to moderate selectivity so far, which
means the range of selectivity is not high enough for quantitative modelling. Therefore,
novel more selective sm/hsHDAC8 inhibitors have to be developed that might be used to
develop predictive BFE/QSAR models for sm/hsHDAC8 selectivity.

Supplementary Materials: Table S1: Summary of re-docking and crossed-docking rmsd between
the atomic coordinates of the co-crystalized ligands pose and the docked pose based on the different
smHDAC8 crystalized proteins used in this study. Table S2: Summary of generated moldels. (Terms
are described after the table). Table S3: summary of prediction results based on Models 95 and 96.
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