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Disorder-induced topological phase 
transitions in two-dimensional 
spin-orbit coupled superconductors
Wei Qin1, Di Xiao2, Kai Chang3, Shun-Qing Shen4 & Zhenyu Zhang1

Normal superconductors with Rashba spin-orbit coupling have been explored as candidate systems 
of topological superconductors. Here we present a comparative theoretical study of the effects of 
different types of disorder on the topological phases of two-dimensional Rashba spin-orbit coupled 
superconductors. First, we show that a topologically trivial superconductor can be driven into a chiral 
topological superconductor upon diluted doping of isolated magnetic disorder, which close and reopen 
the quasiparticle gap of the paired electrons in a nontrivial manner. Secondly, the superconducting 
nature of a topological superconductor is found to be robust against Anderson disorder, but the 
topological nature is not, converting the system into a topologically trivial state even in the weak 
scattering limit. These topological phase transitions are distinctly characterized by variations in the 
topological invariant. We discuss the central findings in connection with existing experiments, and 
provide new schemes towards eventual realization of topological superconductors.

Topological superconductors (TSCs)1 have been intensively explored recently as candidate systems for realization 
of Majorana fermions, which in turn are expected to play an important role in future fault-tolerant topological 
quantum computation2,3 due to their exotic non-Abelian braiding statistics4,5. Many different schemes have been 
proposed to realize TSCs, including odd-parity pairing copper oxide superconductors6,7, surface states of top-
ological insulators8,9 or two-dimensional (2D) Rashba spin-orbit coupled semiconductors10 proximity coupled 
with an s-wave superconductor, and 1D ferromagnetic Shiba chain on top of a conventional superconductor with 
strong spin-orbit coupling (SOC)11. These different innovative proposals continue to stimulate active research 
efforts on definitive experimental realization of TSCs and observation of Majorana fermions.

In essentially all the compelling experimental demonstrations of TSCs and/or Majorana fermions reported 
so far11–15, the presence of certain types of disorder must be unavoidable. Indeed, the effects of random disor-
der on the properties of both conventional and unconventional superconductors have been extensively inves-
tigated16–19. Earlier studies had primarily evolved around disorder effects on the superconducting properties16. 
More recently, in 1D topological superconducting systems, a nontopological localized phase has been obtained 
when the strength of the introduced Anderson disorder is in the strong scattering regime17–19. In addition to these 
less desirable cases where the presence of disorder destroys the salient physical properties of the systems, there 
have also been numerous examples showing that properly introduced disorder can promote the emergence of 
intriguing phenomena in otherwise clean but ordinary host systems20–24. One such example is the recent discov-
ery of the topological Anderson insulating (TAI) state in HgTe quantum wells21. It was shown that the presence 
of Anderson disorder can convert a topologically trivial insulator into a topologically nontrivial insulator (or 
the TAI state), with a quantized conductance of G0 =​ 2e2/h22–24. In view of the widespread presence of disorder 
in realistic systems and the recent developments surrounding the TAI, it is naturally intriguing to investigate 
the feasibilities of disorder-induced topological phase transitions in otherwise normal superconducting systems, 
especially the potential realization of disorder-assisted TSCs.
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Here we carry out a comparative study using complementary theoretical approaches to explore the potential 
existence of topological phase transitions in 2D Rashba spin-orbit coupled superconductors by proper introduc-
tion of different types of disorder (see Fig. 1). First, we use the self-consistent Born approximation (SCBA) to 
investigate the disorder renormalized density of states (DOS) of the systems, and show that a topologically trivial 
superconductor can be driven into a chiral TSC upon diluted doping of isolated magnetic disorder. Secondly, 
whereas the superconducting nature of a topological superconductor is found to be robust against Anderson 
disorder, the topological nature is not, converting the system into a topologically trivial state even in the weak 
scattering limit. These topological phase transitions proceed via intricate narrowing-closing-reopening processes 
of the quasiparticle gap of the paired electrons in nontrivial manners, and are quantitatively characterized by 
the variations in the topological invariant. The central findings are also confirmed by solving the Bogoliubov-de 
Gennes (BdG) equations self-consistently within a tight-binding model. We discuss the validity of the present 
model studies in connection with existing experiments, and provide disorder-based new design schemes towards 
eventual materials realization of TSCs.

Results
Theoretical model.  To start, we consider a 2D electron gas with a Rashba-type SOC and a Zeeman field h. 
Discussions on potential experimental realizations of such systems will be deferred to near the end of this paper. By 
introducing a proper attractive interaction between the electrons, the system will enter a superconducting state, and can 
further be classified as a topologically nontrivial superconductor when the Zeeman field exceeds a critical value hc

25–28. 
The total Hamiltonian H of such a 2D system contains two parts. The first part is given as ∫ ψ ψ= †H dr (r) (r) (r)0 0 , 
where ψ ψ ψ= ↑ ↓

† † †(r) ( (r), (r)) and H � µ λ σ σ σ= − ∇ − − ∂ − ∂ −m i h(r) /(2 ) ( )e y x x y z0
2 2 . Here, me is the effec-

tive mass of the electrons, μ is the chemical potential, λ is the strength of the Rashba SOC, and σi (i =​ x, y, z) are the 
Pauli spin matrices. The second part is the on-site attractive interaction between the electrons, described by 

∫ ψ ψ ψ ψ= − ↑ ↓ ↓ ↑
† †H U dr (r) (r) (r) (r)a , where U is the attraction strength. In the momentum space, by treating the 

two-body interaction Ha within the mean-field approximation, the total Hamiltonian H can be written as 
= ∑ Ψ Ψ
† †H k1/2 ( )k k k, with

ε µ τ λ σ σ σ σ τ= − + − − + ∆


k k k h( ) ( ) ( ) , (1)k z y x x y z z x

where Ψ = ↑ ↓ − ↓ − ↑
† † †k c c c c( ) ( , , , )k k k k  are the field operators in the Nambu spinor basis, k =​ ħ2k2/2me, τi (i =​ x, y, z) 

are the Pauli matrices acting on the particle-hole degrees of freedom, and Δ​ =​ U∑​k〈​c−k↓ck↑〉​ is the mean-field 
superconducting order parameter. The system described by Eq. (1) is a topologically nontrivial superconductor 
when µ> = ∆ +h hc

2 2 29,30. Here we also differentiate the present model systems, where time-reversal sym-
metry is explicitly broken by the Zeeman term, with those considered in some earlier studies in which 
time-reversal symmetry is protected31,32.

To describe the interactions between the electrons and disorder introduced into the system, we consider a 
local scattering Hamiltonian Hin =​ −​∫​drψ†(r)Vinδ(r −​ r0)ψ(r), whose simple form is able to capture the essential 
physics to be exploited in the present study. In the case of magnetic disorder, we choose an isotropic form given 
by Vin =​ J(



S⋅​σ��), where J denotes the exchange coupling strength between the electrons and magnetic disorder, 
σ�� =​ (σx, σy, σz) is the electron spin, and 



S =​ (Sx, Sy, Sz) is the moment of a magnetic dopant. In the following stud-
ies, we adopt a typical value of about 2.45 Bohr magnetons for all the magnetic dopants. For usual Anderson 
disorder, Vin is the on-site disorder potential V distributed uniformly in the interval (−​V0, V0). In Nambu nota-
tions, the disorder scattering Hamiltonian can be rewritten as

∑= − Ψ Ψ
′

′
ˆ†H 1

2
,

(2)in
kk

k in k

where  τ=ˆ Vin z for the Anderson disorder and  α= ⋅
� ��ˆ JSin  for the magnetic disorder. Here the effective elec-

tron spin operator α�� is defined as α�� =​ 1/2[(1 +​ τz)σ
�� +​ (1 −​ τz)σz σ

�� σz]. Hamiltonian (2) is a general form describ-
ing the interaction between disorder and superconducting quasiparticles, and Eqs (1) and (2) provide the 

Figure 1.  Schematic of randomly distributed disorder on a 2D superconductor (2DSC) with spin-orbit 
coupling and the presence of a Zeeman field h. 
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framework for further studying the disorder-induced effects on the topological phases of such spin-orbited cou-
pled superconducting systems.

We adopt the Green’s function formalism to study the effects induced by multiple disorder in a supercon-
ductor. After averaging over the randomly distributed disorder, the Matsubara Green’s function of the system 
described by Eqs (1) and (2) is given as

ω ω= − − Σ
−  ˆ ˆG k i k( , ) ( ) , (3)n n

1

where ωn =​ (2n +​ 1)πkBT, kB is the Boltzmann constant, T represents the temperature, and Σ̂ is the self-energy. In 
the presence of disorder, the superconducting order parameter is determined by the self-consistent equation

∑∑ ω σ τ∆ = − .
ω

ˆUk T G k1
4

Tr[ ( , ) ]
(4)

B
k

n z x
n

And within the SCBA, Σ̂ is given by

∑ω ωΣ =
 ˆ ˆ ˆ ˆk n G k( , ) ( , ) ,

(5)n im
k

in n in 

where nim is the concentration of the disorder. Taking into account of the symmetry restriction and the matrix 
structure of Σ̂, the self-energy effects can be manifested as disorder-induced renormalizations of ωn, μ, h, and Δ​. 
As shown in Eq. (5), Σ̂ is independent of the momentum, leading to a renormalized form of the Green’s function 
as ω ω ε µ τ λ σ σ σ σ τ=  − − − − + − ∆ 


−� ���ˆ ˜G k i k k h( , ) ( ) ( )n n k z y x x y z z x

1
, obtained with the replacements of 

ω ω→
n n, µ µ→ , → h h, and ∆ → ∆

∼
. The solution of Eq. (5) gives rise to a set of self-consistent equations

ω ω α ω ω

α ω

α ω

= + ∆

= − ∆

∆ = ∆ + ∆ ∆

˜ ˜ ˜ ˜ ˜
˜ ˜ ˜ ˜ ˜
˜ ˜ ˜ ˜ ˜

F h
h h F h h

F h

( , , ) ,
( , , ) ,
( , , ) , (6)

n n n n

n

n

1 1

2 2

3 3

where = − =a a n J Sim1 3
1
4

2 2, α = + −n J S S S( )im x y z2
1
4

2 2 2 2  for the magnetic disorder, and α = n Vim1,2,3
1

12 0
2 for 

the Anderson disorder. The detailed analytical formulas for ω ∆



˜F h( , , )n1,2,3  are given in the method part. Here we 
also ignore the renormalization of µ as it simply changes the chemical potential, which can be preset suitably, 
unlike the TAI cases, where the renormalization of µ has significant effects22–24. The disorder-averaged Green’s 
function ω



Ĝ k( , )n  can then be obtained by solving the self-consistent equations of Eqs  (6) and (4) 
simultaneously.

Topological phase transitions.  To quantitatively characterize the disorder effects, we investigate the DOS 
defined by ρ ω π ω σ τ= − Ĝ( ) (1/2 )Im{Tr[ ( ) ]}r 0 0 , where ωĜ ( )r  is the retarded Green’s function obtained by per-
forming analytical continuation on ωĜ( )n . It is well known that a single magnetic impurity can lead to the appear-
ance of the Yu-Shiba states inside the superconducting gap33,34, and multiple magnetic impurities can also cause 
sizable renormalization of the superconducting gap even upon diluted doping16. In contrast, according to 
Anderson’s theorem35, a conventional s-wave superconductor can be barely influenced by potential disorder. 
However, recent studies show that a nonmagnetic potential disorder can also be able to induce mid-gap bound 
states in a TSC36,37. The present study extends these earlier understandings to topological aspects of such 
spin-orbit coupled superconducting systems in the presence of multiple disorders.

Here we first study the effects induced by the magnetic disorder. Bases on the study of DOS, Fig. 2(a) highlight 
the most striking finding of the present study, namely, an initial topologically trivial superconductor can be driven 
into a TSC via diluted doping of randomly distributed magnetic disorder. The quasiparticle of the system under-
goes a narrowing, closing, and reopening process upon increasing the concentration nim of the magnetic disorder. 
A critical concentration nc for such a topological quantum phase transition is clearly identifiable. Another feature 
of Fig. 2(a) is that the quasiparticle gap closes again upon further increasing nim. In this regime containing suf-
ficient magnetic impurities (with nim >​ 1.2% in the present study), the system is a gapless superconductor with 
non-vanishing superconducting order parameter16. However, below this concentration regime, we do have a siz-
able range of nim that supports the existence of TSCs with the other important parameters chosen from physically 
realistic ranges.

Once a TSC is achieved, it is intriguing to examine how robust the system is in the presence of other types 
of disorder. The most common type of disorder is the Anderson disorder, whose effects on both the topological 
and superconducting aspects of a TSC are investigated next. As shown in Fig. 3(a), we find a topological phase 
transition from the TSC state to a trivial superconducting state. Qualitatively, an increase in the strength V0 of the 
on-site Anderson disorder will gradually close the quasiparticle gap of the TSC. When V0 crosses a critical value 
Vc, the quasiparticle gap reopens, and the system enters a trivial superconducting state. These findings suggest 
that, as far as Anderson disorder is concerned, a cleaner superconducting system is better for the realization of 
TSC. We also note that further increase of V0 to the strong scattering regime is likely to transform the system into 
the Anderson localized state17–19.

To measure the occurrence of these topological phase transitions induced by disorder, we further calculate the 
topological invariant for various parameter regions. Due to the presence of the randomly distributed disorder, 
their interaction with the host system makes it impossible to calculate the Chern number using the standard 
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Berry phase approach based on a pure band picture38. Here we adopt an alternative and more general formula 
for evaluating the topological invariant, which relies on the full Green’s function of the interacting system as39–41:

N ε∫
π

π
=





 ∂ ∂ ∂





αβγ α β γ

− − −ˆ ˆ ˆ ˆ ˆ ˆd p G G G G G G
3 (2 )

Tr ,
(7)

2

3

3
1 1 1

where αβγ is the Levi-Civita symbol, ω=


p k( , )n , ∂ = ∂α αp  acting on the immediately following 
−

Ĝ
1
, and the 

summations over α, β, γ are implied. Here we note that  2 is the TKNN integer of a 2D system. The full Green’s 
function of such a disordered system can be obtained self-consistently, and the topological invariant can then be 

Figure 2.  Topological phase transitions induced by the magnetic disorder, with the initial superconducting 
state to be topologically trivial. (a) The DOS as a function of nim with J =​ 100 meV. The dashed (green) curves 
highlight the edges of the quasiparticle gap. (b) Topological invariant as a function of nim and the Rasgba SOC 
strength λ, with the solid (red) curve corresponding to the transition shown in (a). Other parameters include 
=S 6, me =​ 0.01 meV⋅​Å−2, h =​ 2.5 meV, and U =​ 160 meV, leading to Δ​ ≈​ 3 meV.

Figure 3.  Topological phase transitions induced by the Anderson disorder, with an initial topological 
superconducting state. (a) The DOS as a function of the disorder strength V0. The dashed (green) curves 
highlight the edges of the quasiparticle gap. (b) Topological invariant as a function of V0 and the Rasgba SOC 
strength λ, with the solid (red) curve corresponding to the phase transition shown in (a). Other parameters 
include me =​ 0.01 meV⋅​Å−2, and U =​ 160 meV, h =​ 3.5 meV, leading to Δ​ ≈​ 3 meV.
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straightforwardly calculated using Eq. (7). As shown in Fig. 2(b), the topological invariants jump from  = 02  to 
1 at the critical values of nim, which confirms that a topologically trivial SC ( = 02 ) can be driven into a chiral 
TSC ( = 12 ) via increasing magnetic doping. After the realization of TSC, Fig. 3(b) illustrates the topological 
phase transition from a TSC to trivial SC induced by increasing the V0 of the Anderson disorder. In addition, we 
also find that the enhancement of the SOC strength will promote these topological phase transitions in both cases 
of the magnetic and Anderson disorder. Collectively, these results offer strong evidence for the existence of rich 
topological phases induced by proper choices of multiple disorders.

Numerical BdG solutions.  In this section, we numerically investigate the disorder-induced effects within 
a corresponding tight-binding model of the system described by Eq. (1), which also enable us to gain further 
insights on the spatial distributions and in particular inhomogeneities in the superconducting and topological 
phases. By projecting Eq. (1) on a 2D square lattice, we have

∑ ∑

∑ ∑ ∑

∑

λ

σ µ

= − + . . + + . .

− − −

+

σ
σ σ

θ

σσ
σσ σ σ

σ
σ

σσ
σσ σ σ

↑ ↓

′
′ ′ ↑ ↓

′
′ ′

ˆ ˆ ˆ

ˆ

† †

†

†

H t c c e c c

h c c U n n n

V c c

( H c ) ( H c )

( )

( ) ,
(8)

ij
i j

ij

i
i j

i
z i i

i
i i

i
i

i
in i i

ij

where t is the nearest-neighbor hopping term, σ
†ci  and ciσ are the creation and destruction operators for an electron 

with spin σ on site ri of the square lattice, =σ σ σˆ †n c ci i i  is the particle number operator, and θij is the angle between 
(rj −​ ri) and the x axis. Here, we solve the disordered system characterized by Eq. (8) within the standard 
mean-field BdG approach,  Ψ = ΨE(r ) (r )n i n n iBdG , where

=







∆

−∆

−∆ −

∆ −







↑

↓

↑

↓

†

⁎ †

⁎

(r ) 0 (r )

(r ) (r ) 0

0 (r ) (r )

(r ) 0 (r ) (9)

s i i

s i i

i s i

i s i

BdGH

H R

R H

H R

R H

is the BdG Hamiltonian, En is the eigenenergy of the corresponding quasiparticle wave function 
ν νΨ = ↑ ↓ ↑ ↓u u(r ) [ (r ), (r ), (r ), (r )]n i n i n i n i n i

T
 defined in the Nambu spinor space. Here = − ∑σ σ

δ
σˆu t u(r ) (r )s i n i n

δ η µ+ + − σ
σ



ˆ V u(r ) ( ) (r )i in i n i ,  λ δ= ∑ + −σ
δ
θ σ σ− +ˆˆu e u V u(r ) (r ) (r ) (r )i n i

i
n i in n i , δ = ± ±ˆ ˆ ˆx y, , Δ​(ri) is the 

local superconductor order parameter, and µ µ= +σ σ−
ˆU ni i ,  is the modified chemical potential. We note that 

= ++V J S iS( )in x y  for the magnetic disorder and vanishes for the Anderson disorder. Starting with some initial 
guess values of Δ​(ri), we first numerically solve the BdG Hamiltonian on a N ×​ N square lattice with periodic 
boundary conditions. Next, we calculate the local pairing amplitudes and particle density given by

∑ ∑ν ν∆ = =σ
σ↓ ↑⁎U u n(r ) (r ) (r ), (r ) ,

(10)i
n

n i n i i
n

n i
2

and iterate this process until self-consistent values of niσ and Δ​(ri) at each site are achieved.
Numerical solutions of the BdG equation can yield the whole quasiparticle spectrum in the presence of the 

disorder. As shown in Fig. 4(a) and (c), there exists two regimes of the disorder strength showing nonzero qua-
siparticle gaps. Similar to the SCBA results, we also observe gap narrowing, closing, and reopening processes by 
increasing the strength of both the magnetic and Anderson disorder. These behaviors are qualitatively the same 
as that shown in Figs 2(a) and 3(a). We note that, in the numerical calculations, the magnetic disorder is treated 
as on-site spin with randomly oriented directions for computational convenience. From the quantitative perspec-
tive, as shown in Fig. 2(a), the critical concentration characterizing the topological phase transition is nc =​ 0.4%, 
translating into J =​ 3.2 meV for on-site disorder, which is comparable to the critical coupling strength Jc =​ 3.6 meV 
illustrated in Fig. 4(c). For the Anderson disorder, the critical value of V0 obtained here is about 26 meV, which 
is also comparable to Vc =​ 22 meV shown in Fig. 3(a). The agreements between the results of the numerical sim-
ulations and the earlier analytical solutions within the SCBA stem from the fact that both the magnetic and 
Anderson disordered systems are within the weak-scattering regime.

Based on these qualitative and quantitative comparisons between the results obtained analytically earlier and 
numerically here, we can conclude affirmatively that rich topological phases can indeed be induced by properly 
introducing disorder. In particular, a topologically trivial SC can be readily driven into a TSC upon diluted dop-
ing of independent magnetic impurities, and a topological phase transition from TSC to SC will be induced by 
Anderson disorder. In Fig. 4(b), we also plot the spatial variations of Δ​(ri) in the presence of magnetic disorder. 
It is natural to expect some regions to be TSC while others are topologically trivial SC. Therefore, the boundaries 
separating topologically distinct regions may offers a promising platform for observing and detecting Majorana 
fermions. In the present study, the Majorana edge states mix with the bulk states due to quantum size effects, mak-
ing it difficult to distinguish them from the total energy spectrum. However, such a difficulty may be overcome 
naturally in realistic superconducting systems with much larger topologically distinct regions.

Before closing, we assess the validity of the present model study by briefly discussing candidate systems for 
potential experimental observation of such disorder-induced topological phase transitions. We could consider 
a superconductor thin film with strong SOC, such as Pb11,42–44 or PbBi alloyed films grown on semiconducting 
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substrates. In particular, signatures of disorder effects on the superconducting gap have been observed in a very 
recent study, which has been attributed to the the effects of strong Rashba SOC in such systems due to the lack-
ing of the inversion symmetry caused by the substrates44. Therefore, by further doping magnetic elements into 
or on the surface of such 2D superconductors, those topologically trivial systems may be converted into TSCs. 
Our results may also be observed in the recently realized spin-orbit coupled 2D ultracold atomic Fermi gases of 
40K45 and 6Li atoms46, which are shown to be topological superfluids. Finally, the present findings can be naturally 
extended to 1D and 3D cases.

Discussion
In summary, we have theoretically explored the feasibilities of altering the topological properties of a 2D Rashba 
spin-orbit coupled superconductors by proper introduction of magnetic or Anderson disorder. We found that a 
topologically trivial SC can be driven into a nontrivial chiral TSC upon diluted doping of isolated magnetic disor-
der, which induces an intricate narrowing, closing, and reopening of the quasiparticle gap. Furthermore, whereas 
the superconducting nature of a TSC is found to be robust against Anderson disorder, the topological nature is 
not, converting the system into a topologically trivial state even in the weak scattering limit. The validity of the 
present model study has been discussed in connection with existing experiments. Collectively, the central find-
ings presented here provide disorder-based new design schemes towards eventual materials realization of TSCs, 
which in turn may find important applications in future quantum computation devices.

Method
The derivation of self-consistent equations.  In this part, we focus on the details of the analytical deri-
vations of ω ∆



˜F h( , , )n1,2,3  defined in Eq. (6). Taking into account of the symmetry restriction and the matrix 

structure of Σ̂, a set of self-consistent equations can be obtained as

Figure 4.  The upper and lower panels show the numerical results of a 60 × 60 square lattice in the presence 
of on-site Anderson and magnetic disorder, respectively. (a) Quasiparticle gap as a function of the on-site 
magnetic coupling strength J. (b) The spatial variations of ∆(ri) for randomly distributed magnetic disorder 
with J = 4.8 meV. (c) Quasiparticle gap as a function of the disorder strength V0. (d) The spatial variations of 
∆(ri) for the Anderson disorder with V0 = 10 meV. The error bars in (a) and (c) show the standard deviations of 
the mean for 10 samples, and the inserts give the averaged local superconducting order parameters. Other 
parameters include =S 6, U =​ 160 meV, and t =​ 50 meV, corresponding to me =​ 0.01 meV⋅​Å−2.
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 ξ λ λ= + + + ∆ ± + + ∆±


  ˜ ˜k h h k h( ) 2 ( ) (12)k k k
2 2 2 2 2 2 2 2 2 2 2

are the disorder-averaged energy spectrum of the superconducting quasiparticle. The defined functions g1,2,3(x) 
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Further simplification of Eq. (11) can be reached by performing the integration over the wave vector 


k , and 
defining = ∑

ω ξ ω ξ+ +∼ ∼
+ −
 ( )( )

Fl k
g k( )l

n k n k

2

2 2 2 2
, where l =​ 1, 2, 3. Fl can be rewritten as
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=
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by replacing the corresponding notations with

δ δ
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Consider the following Fourier transformation
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∫

∑

∑

π

=
− − − −

=
− − − −

=
−

− − − −

⋅

∞

=







( )

F r
g k e

a k x k x k x k x
g k kJ kr

a k x k x k x k x
dk

i
a

g x x x
x x x x x x x x

H s r x

( )
( )

( )( )( )( )

1
2

( ) ( )
( )( )( )( )

4
( )( )

( )( )( )( )
,

(19)

l
k

l
ik r

l

j

l j j j

j j j j
j j

2

2
1

2
2

2
3

2
4

0

2
0

2
1

2
2

2
3

2
4

1,2,3,4 1 2 3 4
0
(1)

where J0(x) is the Bessel function of the first kind, H0
(1) is the Hankel function, and = 



( )s xsgn Imj j  guarantees 

the contour integrations in Eq. (19) are performed in the up-half complex plane.
Taking r →​ 0 we thus find the following asymptotic forms of Fl

∑ π
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l

j

l j j j

j j j j

j j

1,2,3,4 1 2 3 4

where W is a large band cutoff, γ is the Euler constant, Fl is a function of ω
n, h, and ∆̃.
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