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Recently, cancer has been characterized as a heterogeneous disease composed of many

different subtypes. Early diagnosis of cancer subtypes is an important study of cancer

research, which can be of tremendous help to patients after treatment. In this paper, we

first extract a novel dataset, which contains gene expression, miRNA expression, and

isoform expression of five cancers from The Cancer Genome Atlas (TCGA). Next, to avoid

the effect of noise existing in 60, 483 genes, we select a small number of genes by using

LASSO that employs gene expression and survival time of patients. Then, we construct

one similarity kernel for each expression data by using Chebyshev distance. And also,

We used SKF to fused the three similarity matrix composed of gene, Iso, and miRNA,

and finally clustered the fused similarity matrix with spectral clustering. In the experimental

results, our method has betterP-value in the Coxmodel than other methods on 10 cancer

data from Jiang Dataset and Novel Dataset. We have drawn different survival curves for

different cancers and found that some genes play a key role in cancer. For breast cancer,

we find out that HSPA2A, RNASE1, CLIC6, and IFITM1 are highly expressed in some

specific groups. For lung cancer, we ensure that C4BPA, SESN3, and IRS1 are highly

expressed in some specific groups. The code and all supporting data files are available

from https://github.com/guofei-tju/Uncovering-Cancer-Subtypes-via-LASSO.

Keywords: cancer subtype, similarity Kernel fusion, LASSO, gene expression, miRNA expression, isform level

1. INTRODUCTION

Numerous studies have shown that cancer is a heterogeneous disease (Wang et al., 2005). Today,
doctors can use the special information contained in different cancers for more targeted treatment
(Fedele et al., 2014; Fu et al., 2014; Marino et al., 2017). Therefore, it is very meaningful to
be able to accurately identify cancer subtypes, including molecular subtyping as well as clinical
outcome-based clustering. For breast cancer, four major molecular subtypes include Luminal A,
Luminal B, Triple negative/basal-like, and HER2-enriched. However, clustering samples based
on therapy response and the aggressiveness level may not overlap with these subtypes. With the
development of whole-genome sequencing techniques in recent years, the diagnosis and treatments
have gained great development (Wang K. et al., 2014; Haase et al., 2015). We have obtained massive
cancer expression from database as The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015).
Thus, these expression data have positive influence on the development of the cancer subtype
identification tools (Sohn et al., 2017; Guo Y. et al., 2018).
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Generally, the machine learning method is now widely used
to solve clustering problem for cancer subtypes (Kourou et al.,
2015; Li et al., 2016; Mirza et al., 2019). Wang et al. (2018)
combined Monte Carlo feature selection (MCFS), random forest
(RF), and rough set-based rule learning to identify breast cancer.
Li and Ruan (2005) used support vector machine for cancer
recognition. Monti et al. (2003) combined resampling consensus
clustering. Also, there are many tools based on deep learning
method (Wang et al., 2016; Esteva et al., 2017; Miotto et al.,
2017). Chen et al. (2019) used RNN to identify some genes that
have an impact on cancer. Neighbor Ensemble-based Detection
(NED) proposed by Zhou et al. identified lung cancer cells (Zhou
et al., 2002). Karabatak and Ince (2009) identified breast cancer
through association rules (AR) and neural network (NN). Brunet
et al. (2004) proposed non-negative matrix factorization to find
cancer subtype.

Furthermore, many predictive models can identify cancer
subtypes by using single expression data (Verhaak et al.,
2010; Chen et al., 2013; Zhang et al., 2017). Verhaak et al.
(2010) employed gene expression to identify four subtypes in
glioblastoma multiforme (GBM). Brunet et al. (2004) used gene
expression to uncover subtypes on three datasets, including
Myelogenous leukemia, Medulloblastomas, and Central Nervous
System Tumors. Wong et al. (2012) proposed the Feature Set
Reduction method to select more important single nucleotide
polymorphism and classify cancer subtypes on three diseases
as sarcoma, lymphoma, and leukemia. Zhang et al. (2017) used
DNA methylation to find cancer subtypes on breast cancer. Pan
et al. (2018) used copy number variants to identify four cancer
subtypes on breast cancer. Zhao et al. (2009) used single-stranded
DNA (ssDNA) to find cancer subtypes on lung cancer.

However, since cancer is a heterogeneous disease,
independent analysis of a single type of data often results
in unsatisfactory consequence. Some studies take advantage of
various popular multiple kernel learning methods (Ding et al.,
2017; Jiang et al., 2018), mainly through the integration of
similarity networks among patients from multiple expression
data. Wang B. et al. (2014) integrated three expression data,
including gene expression, DNA methylation data, and miRNA
expression data, to calculate the patient similarity network by
using the similarity network fusion (SNF). Ma and Zhang (2017)
improved the SNF and proposed the affinity network fusion
(ANF) to cluster multiple cancer patients. The unsupervised
multiple kernel learning (UMKL) for multiple datasets was
proposed by Mariette and Villa-Vialaneix (2017). Jiang et al.
(2019) improved the SNF and proposed the similarity kernel
fusion (SKF) to combine three expression data including gene
expression, isoform data, and miRNA expression data, and first
collected five cancer datasets to verify the performance of model.
Jiang et al. used the Euclidean distance when constructing the
similarity kernels. The dimensionality of DNA and other features
is very large. The use of Euclidean distance may have a great
impact on the clustering results.

In this paper, we employ LASSO for gene selection and use
Chebyshev distance for constructing similarity kernels. The main
process of this article is roughly introduced as follows. First,
we extract five novel datasets (bladder cancer, blood cancer,

brain cancer, ovary cancer, and pancreas cancer) from The
Cancer Genome Atlas (TCGA). It’s worth noting that each cancer
has three expression data, including gene expression, isoform
expression, and miRNA expression. Second, we employed
LASSO (Tibshiranit, 1996) to identify the high-efficiency gene
expression data and fit survival time, in order to achieve the
purpose of feature selection. Since the original gene expression
data has high dimensions, the high dimensionality of the data has
a very negative effect on the clustering results of small sample size.
Third, the Chebyshev distance replaces the Euclidean distance to
construct the kernel of the patient’s similarity, which can further
mitigate the impact of the high-dimensional data. Forth, we used
similarity kernel fusion (SKF) to fuse three similarity kernels
into one synthetical kernel. Finally, we used spectral clustering
on the fused kernel to predict the patient’s cancer subtype. In
the experimental results, we found that our method achieves
outstanding P-value in the Cox model on five existing datasets
and five novel datasets. We also find the survival curve and the
heat map preform outstandingly well on each cancer subtype
according to our model.

2. MATERIALS AND METHODS

We select a group of significant gene expression to construct
three similarity kernels. Also, we fuse three similarity kernels into
one kernel for cancer subtype clustering. The whole process of
our method is shown in Figure 1.

2.1. Novel Dataset
Wang B. et al. (2014) have already extracted five datasets from
TCGA, but the number of patients is too small for each dataset.
The datasets of Jiang et al. (2019) have alleviated the problem
of fewer samples. To better verify the performance of model, we
extract five novel data sets, in addition to Jiang’s dataset. For each
dataset, we select three types of expression data, including gene
expression, miRNA expression, and isoform level. The number
of expression data is shown in Table 1. We can see that the Jiang’s
dataset includes stomach cancer, lung cancer, kidney cancer,
breast cancer, and colon cancer, Our Novel Dataset add five novel
cancer data to Jiang Dataset, which are bladder cancer, blood
cancer, brain cancer, ovary cancer, and pancreas cancer.

2.2. Gene Selection
The gene expression data have high dimensions in our
novel extracted datasets. Due to the curse of dimensionality,
high-dimensional data have a great influence on the experimental
results. Therefore, We use LASSO to select a part of important
genes. We give a formalized description of LASSO, as
Equation (1).

min
1

2

N
∑

n=1

(y(Xn·,ω)− Tn)
2 +

λ

2
‖ω‖1 (1)

We represent patient data as X ∈ Rn×m, where n is the number
of patients and m is the number of expression factors. Patient
survival time is defined as T ∈ Rn×1. We choose the gene

Frontiers in Genetics | www.frontiersin.org 2 September 2020 | Volume 11 | Article 979

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Li et al. SKFCS

FIGURE 1 | Flow chart of our proposed method for detecting cancer subtypes.

TABLE 1 | Description of Jiang dataset and Novel dataset from TCGA.

Disease Patients Gene Isoform miRNA

Jiang dataset

Stomach 1, 071 60, 483 183 1, 881

Lung 981 60, 483 174 1, 881

Kidney 868 60, 483 176 1, 881

Breast 1, 071 60, 483 183 1, 881

Colon 426 60, 483 186 1, 881

Novel dataset

Bladder 427 60, 483 211 1, 881

Blood 165 60, 483 166 1, 881

Brain 532 60, 483 239 1, 881

Ovary 374 60, 483 175 1, 881

Pancreas 177 60, 483 262 1, 881

expression with the coefficient more than zero as the selected
gene features.

2.3. Similarity Kernel Construction
We make use of Chebyshev distance (Krivulin, 2011) instead of
traditional Euclidean distance to construct the similarity between
two patients. The Chebyshev distance is a metric defined on
a vector space where the distance between two vectors is the
greatest of their differences along any coordinate dimension. The
Chebyshev distance between two vectors p and q, with standard
coordinates pi and qi, is defined as Equation (2):

DChebyshev(p, q) = max
i
(
∣

∣pi − qi
∣

∣) (2)

The expression data are denoted as E ∈ Rn×m, where n is
the number of patients and m is the number of expression
factors. The expression data have been centered and scaled to unit
variance, as Equation (3):

x′ =
x− X

S
(3)

where x is an element of E, x′ is corresponding elements of E after
standardization, X is the mean of E and S is standard deviation of
E. Here, we denote normalized expression data as E′.

Based on the processed expression data E′, we construct
similarity kernel K ∈ Rn×n for patients. Here, the similarity
between two patients is defined as Equation (4):

Ki,j = DChebyshev(ei, ej) (4)

where Ki,j is the similarity between i-th patient and j-th patient,
ei and ej are two vectors of i-th row and i-th row of E′.

Finally, we get three similarity kernels for a special cancer,
including similarity kernel K1 ∈ Rn×n by using gene expression,
similarity kernel K2 ∈ Rn×n by using miRNA expression, and
similarity kernel K3 ∈ Rn×n by using isoform level.

2.4. Similarity Kernel Fusion
We construct three similarity kernels for patients in the above
section. Then, we use similarity kernel fusion (SKF) to combine
these kernels into one kernel K∗ ∈ R

n×n.
First, we construct two kernels P ∈ R

n×n and S ∈ R
n×n for

each similarity kernel, where P is a normalized kernel and S is
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a sparse kernel that eliminates weak similarity, as Equations (5)
and (6):

P(i, j) =
Ki,j

∑n
k=1 Kk,j

(5)

where P satisfies
∑n

k=1 P(k, j) = 1.

S(i, j) =

{

0 if j /∈ Ni
Ki,j

∑

k∈Ni Ki,k
if j ∈ Ni

(6)

where S satisfies
∑n

k=1 S(i, j) = 1, and Ni is a set of top k nearest
neighbors of i-th patient including itself.

Second, we uncover more information by using multiple
iterations (Wang B. et al., 2014), as Equation (7):

Pt+1
l

= α(Sl ×
∑

r 6=l P
t
r

2
× STl )+ (1− α)(

∑

r 6=l P
0
r

2
) (7)

where Pt
l
(l = 1, 2, 3) is the status of l-th kernel after t iterations,

α is a coefficient and satisfies α ∈ [0, 1], and P0r (r = 1, 2, 3)
represents the initial status of Pr .

After t + 1 iterations, the overall kernel can be computed as
Equation (8):

K∗ =
1

3

3
∑

l=1

Pt+1
l

(8)

2.5. Mining Subtypes Using Spectral
Clustering
Through SKF, we have obtained the fusion kernel containing
multi-angle information, and the invention of spectral clustering
is to cluster through the kernel. So,We employ spectral clustering
on integrated similarity kernel to divide all patients into multiple
clusters. In order to ensure that the difference between each
pair of classes should be as large as possible, also the similarity
within one class should be as large as possible, this problem is
a relaxation of the NCut problem (Von Luxburg, 2007). The
detailed processes of spectral clustering model is introduced
as follows.

First, we calculate the Laplacian matrix L based on K∗. Then,
we compute the first k generalized eigenvectors {u1, . . . , uk} from
the generalized eigenproblem Lu = λDu, D is a diagonal matrix
whose diagonal element is the sum of the row elements ofK∗. We
define U ∈ R

n×k as the matrix containing k vectors {u1, . . . , uk}
as columns, and yi ∈ R

k as the vector corresponding to the i-th
row of U. Finally, we cluster the points {yi}i=1,...,n in R

k with the
k-means clustering algorithm into clusters {C1, . . .Ck}.

We define a matrix Y ∈ R
n×k, Yj = (y1,j, ..., yn,j) to represent

the cluster result (Von Luxburg, 2007), where yi,j = 1

vol(
√

Clusterj)

if patient pi belongs to j-th cluster, otherwise yi,j = 0. The whole
issue can be transformed into solving the optimization problem,
as Equation (9):

min
T∈Rn×k

Tr(T′D− 1
2 LD− 1

2T)

s.t.T′T = I

(9)

where D is the degree matrix of K∗, L is the Laplacian matrix of

K∗, T = D− 1
2Y , vol(A) =

∑

i∈A
∑n

j=1 K
∗
i,j.

Here, our proposed method can be shown in Algorithm 1.

Algorithm 1: Algorithm of our proposed method

Require: A patient data matrix X ∈ Rn×m, Patient survival time
vector T ∈ Rn×1.

Ensure: Y ∈ {0, 1}n×k to represent cluster result, where Y(i, j) =
1 if patient pi belong to j-th cluster.

1: Feature selection through LASSO, as Equation (1);
2: Normalize X and denote expression data as E′;
3: Get the similarity kernels K1,K2,K3 ∈ Rn×n, as

Equation (4);
4: Use SKF algorithm for kernel fusion, as K∗ ∈ Rn×n;
5: Minimize Equation (9) to obtain Y ∈ {0, 1}n×k.

3. RESULTS

In this section, we analyze the performance of our method on
the dataset in several ways. First, we introduce an evaluation
criteria and a verification method that are used to evaluate the
significant performance of cancer subtypes prediction. Second,
we analyze the performance of SKF on the Jiang’s dataset. Third,
we analyze the performance of LASSO on the Jiang’s dataset.
Fourth, we compare our method with other methods. Fifth, we
apply five novel data sets to evaluate our new method. Finally, we
plot survival curves and heat maps for some cancers.

TABLE 2 | Comparison between SKF and the single kernel on Jiang Dataset.

Cancer Gene miRNA Isoform SKF

Stomach (C = 10) 0.196 0.076 0.327 0.002

Lung (C = 7) 0.005 0.173 0.241 1.586× 10−6

Kidney (C = 10) 0.082 0.642 0.585 0.018

Breast (C = 5) 0.009 0.680 0.322 1.116× 10−5

Colon (C = 11) 0.046 0.050 0.099 1.117× 10−6

TABLE 3 | Comparing SKF with different kernels.

Cancer Euclidean Chebyshev

Stomach (C = 10) 0.043 0.002

Lung (C = 7) 0.089 1.586× 10−6

Kidney (C = 10) 0.175 0.018

Breast (C = 5) 0.042 1.116× 10−5

Colon (C = 11) 0.130 1.117× 10−6

Bladder (C = 5) 0.147 0.001

Blood (C = 7) 0.805 0.029

Brain (C = 9) 0.040 0.076

Ovary (C = 7) 0.681 0.001

Pancreas (C = 7) 0.243 0.008
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FIGURE 2 | Comparison between SKF and other fusion models.

FIGURE 3 | The number of genes selected by LASSO.

3.1. Evaluation Criteria
In this paper, we use the P-value of Cox regression model and
survival curve to evaluate the performance of our method, while
the lower P-value indicates higher performance significance.
Here, we use 0.05 as a standard for evaluating the performance
of clustering results. The actual significance of P-value is the
difference in survival rates among cancer subtypes. In addition,
survival curve is the change of survival rate with survival time.
We can find from the survival curve that different cancer
subtypes have different survival odds. We can focus on cancer
subtypes with high mortality.

3.2. Performance of SKF
In this section, we compare our approach on the use of SKF with
the same model on the use of SNF, UMKL, the average kernel
fusion or the direct use of single kernel on the Jiang’s dataset.
There are two important parameters α and K in SKF. We chose
K = 30 and α = 0.9 through experiments. Because the parameter
space is very large, we mainly adjust K by fixing α first, and then
fix K to adjust α to get an a local The optimal value.

3.2.1. Comparing SKF With Single Kernels
On the Jiang’s dataset, we separately record the results of using
SKF and using a single kernel, as shown in Table 2. We can see
that the P value of some diseases is<0.05, despite using the single
kernel. However, after using SKF for the kernel fusion, the effects
of Lung, Breast, and Colon have been significantly improved. It
can be seen that it is necessary to fuse the similarity kernels.

3.2.2. Comparing SKF With Different Kernels
In SKF, the choice of kernel is a very important factor.
In most cases, we will choose Euclidean distance as
the kernel generation formula, but considering that
the dimensionality of biological data is generally large,
using Euclidean distance will not have a good effect,
we choose Chebyshev distance to construct the kernel.
Specifically, it can be seen from the Table 3 that choosing
the Chebyshev distance has a significant improvement in
the results.
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FIGURE 4 | Comparison between the performance of expression data before and after selection by LASSO.

TABLE 4 | Performance of different methods on Jiang’s dataset.

Cancer Our method Jiang’s method

Stomach (C = 10) 0.002 8.86× 10−14

Lung (C = 7) 1.586× 10−6 3.81× 10−4

Kidney (C = 10) 0.018 0.120

Breast (C = 5) 1.116× 10−5 6.1× 10−6

Colon (C = 11) 1.117× 10−7 0.025

3.2.3. Comparing SKF With Other Fusion Models
We compare the results using SKF with the results of SNF,
UMKL, and the average kernel fusion, as shown in Figure 2

and X axis is the number of clusters and Y axis is the value
of − log10(Pvalue). Red, green, yellow, and purple represent
the results of using SKF, SNF, UMKL, and average kernel,
respectively. And the horizontal line represents the p-value of
0.05. We can see that there is a better performance on Stomach,
Lung, and Colon by using SKF. The use of SKF for the kernel
fusion on Breast is very similar to that of SNF. It is not as good as
SNF on Kidney, but similar to the results of other kernel fusions.
Therefore, it can be found that the use of SKF for kernel fusion
has an effect on most datasets.

3.3. Performance of LASSO
We observe that the original gene expression data has high
dimension. Therefore, we use LASSO to identify the high-
efficiency gene expression data. In Figure 3, we list the
dimensions of gene reduction, and the size of gene is greatly
reduced, which is very helpful for later experiments. In Figure 4,

TABLE 5 | Performance of our method on Novel dataset.

Cancer Gene miRNA Isoform SKF

Bladder (C = 5) 0.006 0.010 0.378 0.001

Blood (C = 7) 0.011 0.329 0.258 0.029

Brain (C = 9) 1.934× 10−7 0.392 0.585 0.076

Ovary (C = 7) 0.011 0.907 0.167 0.001

Pancreas (C = 7) 0.014 0.507 0.099 0.008

we compare the performance of expression data before and
after selection by LASSO. The X-axis represents the number
of clusters, the Y axis represents − log10(Pvalue), the red line
represents the data obtained after selection, the blue line
represents the data obtained before selection, and the horizontal
line represents the P-value of 0.05. We can find that the selection
of expression data has a certain influence on the P-value on
Stomach, Kidney, while the P-value is greatly improved on Lung,
Breast, Colon. Therefore, it can be found that the use of LASSO
for selection of expression data has an effect on most datasets.

3.4. Comparing With Other Existing
Methods
We compare our approach with the method of Jiang et al. (2019),
as shown in Table 4. We find that the clustering results of Lung,
Kidney, and Colon that using LASSO to select expression data
before constructing the kernels and using Chebyshev distance
instead of Euclidean distance to construct the kernels, have
achieved outstanding performance.
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FIGURE 5 | Survival curve on the novel dataset.

FIGURE 6 | The heat map of essential gene expression data.

3.5. Performance of Our Method on Novel
Dataset
In the above section, our method has outstanding
performance on Jiang Dataset. To further evaluate this
model, we extract five novel datasets from the TCGA

website and apply our method to these novel datasets.

The detailed results are shown in Table 5. We can

find that our method performs outstandingly well on
Brain, and still has good performance on the remaining

four diseases.
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FIGURE 7 | The box plot of essential gene expression data for breast cancer.

FIGURE 8 | The box plot of essential gene expression data for lung cancer.

3.6. Survival Analysis
From above, we have better measured the performance of
clustering results on P-value. In this section, We list the
survival curves of five cancers on the novel dataset, as shown
in Figure 5. We can find that the difference of tendency
between each subtype is very obvious on two cancers. It

demonstrates that the clustering results have positive guidance
for clinical treatment.

3.7. Analysis of Essential Genes
We analyze the importance of essential genes on Lung and
Breast datasets. The association between clustering results and
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expression data are shown in Figure 6. The X-axis is the patient,
the Y-axis is the gene, and each color of the upper color block
represents a category. We find that some essential genes have an
effect on the identification of cancer subtypes, most of them can
be confirmed by the GEO Profile Database.

For breast cancer, we select five essential genes, such as CTSA,
HSPA2, RNASE1, CLIC6, IFITM1. We analyze the box plot
of essential gene expression data in five categories, as shown
in Figure 7. We find that, HSPA2A is highly expressed in 5-
th group, RNASE1 is highly expressed in 1-th group, CLIC6 is
highly expressed in 4-th group, and IFITM1 is highly expressed
in 3-th group.

For lung cancer, we select five essential genes, such as PYGB,
C4BPA, SESN3, MMP10, IRS1. We analyze the box plot of
essential gene expression data in seven categories, as shown in
Figure 8. We find that, C4BPA is highly expressed in 3-th and 5-
th groups, SESN3 is highly expressed in 2-th and 7-th groups, and
IRS1 is only highly expressed in 2-th group.

4. CONCLUSION

In this paper, we extract five novel datasets (bladder cancer, blood
cancer, brain cancer, ovary cancer, and pancreas cancer) from the
TCGA website. We find that our method not only works well on
the Jiang’s dataset, but also performs well on our newly extracted
five datasets. In addition, we obtain some important genes that
are related to a special cancer.

In the future, we will try to employ more kinds of expression
data to further uncover cancer subtype because cancer is a multi-
factors disease (Guo F. et al., 2018). We can also consider other
machine learning methods or deep learning methods to uncover
cancer subtype rather than spectral clustering (Ding et al., 2019;
Shen et al., 2019).
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