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ABSTRACT
Clubroot is an economically important disease affecting Brassica plants worldwide.
Plasmodiophora brassicae is the protist pathogen associated with the disease, and its soil-borne
obligate parasitic nature has impeded studies related to its biology and the mechanisms involved
in its infection of the plant host. The identification of effector proteins is key to understanding
how the pathogen manipulates the plant’s immune response and the genes involved in resis-
tance. After more than 140 years studying clubroot and P. brassicae, very little is known about the
effectors playing key roles in the infection process and subsequent disease progression. Here we
analyze the information available for identified effectors and suggest several features of effector
genes that can be used in the search for others. Based on the information presented in this
review, we propose a comprehensive bioinformatics pipeline for effector identification and
provide a list of the bioinformatics tools available for such.
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Introduction

Clubroot disease is without doubt the most devas-
tating disease affecting Brassicas, including the oil-
seed plant canola (Brassica napus) [1]. Brassica
crops are widely cultivated and economically
important for many countries around the world,
with economic losses exceeding billions of dollars
per year [1,2]. Clubroot disease, although it appears
to have been first identified in Western Europe,
today has been reported in countries as widely dis-
tributed as Brazil, South Africa, Australia, New
Zealand, China, and Russia, across six of the seven
continents [2,3]. Clubroot is caused by
Plasmodiophora brassicae, a soil-borne pathogen
member of the Order Plasmodiophorales, which
are obligate intracellular parasites of fungi, algae,
or higher plants [4]. In 2010, phylogenetic analysis
also placed P. brassicae in the protist subgroup
Rhizaria [5], one of the more poorly understood
subgroups of the eukaryotes [5,6]. Plants affected
by P. brassicae develop galls (abnormal outgrowths
similar to tumors) on their roots to support the
development of secondary plasmodia during the
pathogen life cycle (Figure 1A)7. Gall formation
leads to wilting associated with difficulties in
water and nutrient uptake by the plant, and subse-
quent death [7]. Mature secondary plasmodia, the

last stage of the pathogen life cycle, develop into
resting spores that are released into the soil where
they can resist severe environmental conditions for
up to 20 years [7], making it almost impossible to
prevent the disease through crop rotation and/or
chemical treatments [1].

Breeding of clubroot-resistant cultivars is an
important management strategy for controlling the
disease, but in many countries such as Canada, there
is a narrow genetic background with which to work
[8–10]. Although there are some commercial club-
root-resistant (CR) canola and cabbage cultivars
available, this resistance is associated with single
dominant CR genes [11], as reported in Chinese
cabbage [12] and oilseed rape [13], and leads to
rapid breakdown. Two resistance genes have been
isolated from Chinese cabbage (Brassica rapa), CRa
and Crr1 [14,15], while genetic mapping and iden-
tification of clubroot resistance has been also
achieved in Brassica oleracea [16–19].

Most studies into the interaction between P. bras-
sicae and its hosts have focussed on the plant,
mainly because the pathogen is a soil-borne obligate
biotroph impossible to study outside of the plant
host. This pathogen life style is the reason why key
knowledge pertaining to the identification of effec-
tor proteins mediating infection and subsequent
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disease progression is still unavailable. The recent
draft genomes for European and North American P.
brassicae pathotypes have provided the opportunity
for the identification of putative effector proteins
through comparative genomics [20,21]. However,
low levels of similarity to known sequences at either
the nucleotide and/or amino acid level has meant
that annotating P. brassicae genes has proven to be
extremely difficult.

Effectors from well-studied biotrophic plant
pathogens such as the Basidiomycete rusts and the
Ascomycete powdery mildews have been extensively
studied and characterized as the basis of disease
resistance breeding strategies [22]. Among these
well-characterized biotrophic pathogens are: (i)
Puccinia monoica [23] which, similar to aster yellows
phytoplasma [24], can induce floral mimicry in order
to promote its own sexual reproduction; (ii)
Melampsora lini [25], which produces effector pro-
teins in haustoria that are recognized inside the plant
cell [26]; and (iii) Cladosporium fulvum, the tomato
pathogen which, during infection, secretes the chitin-
binding virulence factor Avr4 that is thought to pro-
tect the fungal chitin cell wall from hydrolysis by
plant produced chitinases [27]. Extensive studies
with P. graminis f. sp. tritici have identified race-
specific avirulence factors (Avr) such as AvrSr35
that mediates resistance against the highly virulent
wheat stem rust race Ug99 [28] and AvrSr50, recog-
nized by the Sr50 resistance protein, that provides
resistance against all race groups of P. graminis f. sp.
tritici worldwide, including Ug99 [29,30].

This review provides an overview of our current
knowledge of putative effector proteins and suggests
strategies for better annotation of the P. brassicae
draft genomes with respect to effector proteins.

What is known so far?

In order to manipulate plant defenses and enable para-
sitic colonization, many eukaryotic biotrophic plant
pathogens have evolved advanced strategies to deliver
effector proteins into the host cell during infection [31].
Successful infection relies primarily on the success of
the release of the effectors, which in many cases are
responsible for the suppression of plant immunity [32].
The initial recognition of conserved microbial features,
known as pathogen – associated molecular patterns
(PAMPs), leads to PAMP-triggered immunity (PTI) in
the host [31]. PAMP-triggered immunity is a first level
of immune response that can be overcome by effector
proteins produced by adapted pathogens. Resistance
(R) to adapted pathogens is achieved through specific
recognition of effectors, also known as avirulence pro-
teins, by corresponding R proteins produced by the
plant host. This effector-R protein recognition consti-
tutes the second level of immune response, effector-
triggered immunity (ETI) [32]. P. brassicae is a well-
adapted pathogen of Brassica hosts; though indirect
evidence suggests lack of either response [33], both
PTI and ETI have not been well-characterized in the
host-P. brassicae pathosystem.

Understanding and identifying the proteins that
comprise the secretome of P. brassicae is an

Figure 1. Brassica plant root affected by Plasmodiophora brassicae. A. Canola root with typical galls after 1 month of inoculation with
P. brassicae resting spores. B. Life cycle of P. brassicae showing the steps involved in infection through to the production of
secondary plasmodia in the host plant cortical cells. Scheme based on that of Kageyama and Asano [7], representing spindle-shaped
resting spores, biflagellate primary zoospores, zoospores, and primary and secondary plasmodia (oval black figure in root hairs and
cortical cells, respectively). Further steps in P. brassicae´s life cycle, such as the formation of resting spores in cortical cells and its
ejection to the soil, are not shown in this scheme.
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important step towards identifying the complemen-
tary R proteins in the plant host. Putative effectors
from biotrophic plant pathogens such as oomycetes
and fungi are emerging from the sequencing and
assembly of their genomes or transcriptomes, fol-
lowed by comparative analysis with candidate effec-
tor genes [34,35]. This was precisely the strategy
followed by Schwelm et al [20]. and Rolfe et al
[21]. to identify putative effectors released by P.
brassicae during the infection process. However,
the obligate parasitic nature of P. brassicae has
made it impossible to obtain a complete genome,
with six draft genomes barely annotated for five
Canadian pathotypes and one European pathotype
[20,21]. Transcriptomes of P. brassicae infecting B.
napus and Arabidopsis thaliana in the Canadian
study, and infecting B. rapa, B. napus, and B. oler-
acea var. capitata in the European study, have iden-
tified some candidate effectors [20,21]. However,
while the information obtained in both studies is a
good start, the effectors specifically responsible for
P. brassicae infection and subsequent disease pro-
gression have still to be identified.

A common finding in both studies was the over-
expression of a benzoic acid/salicylic acid methyl-
transferase-encoding gene [PBRA_T000444 in P.
brassicae European pathotype 3(Pbe3), PbPT3Sc00
026_A_1.308_1 in P. brassicae pathotype 3 (Pb3)
draft genomes; Genbank accession number
AFK13134] during the second week of infection,
with expression peaking three and four weeks after
infection [20,21,36]. Salicylic acid (SA) is essential
for the activation of plant defence [37]. In the plant
cell, regulation of active SA is managed through the
maintenance of different inactive forms of SA, such
as methyl salicylate (MeSA) [38]. The methyltrans-
ferase identified in P. brassicae has been character-
ized in detail by Ludwig-Müller et al [36].,
identifying its role in the methylation of salicylic,
benzoic and anthranilic acids, thereby contributing
to the suppression of the salicylic acid-induced
defense in a plant host. This is the first and only
well-characterized putative effector for P. brassicae
and for this reason, we suggest that it is necessary to
use a less conservative approach in this endeavour.

Where and how to look for effectors?

The concept of an effector is constantly evolving
with the understanding of plant-pathogen interac-
tions. The basic criteria to identify candidate

secreted effector proteins are: proteins with a signal
peptide (within the initial 60 amino acids at the
N-terminus), no trans-membrane domains, small
size between 300 to 450 amino acids, and mostly
species-specific [32,39,40]. These parameters were
those used in the identification of putative P. bras-
sicae effectors in the previously mentioned studies
(Table 1). In addition, several other characteristics,
motifs, and domains have been associated with
effector proteins and have been used to improve
identification and functional characterization of P.
brassicae effectors.

Cysteine-rich proteins

Cysteine rich small proteins have been identified as
effectors in several plant pathogens, especially fungi,
such as Cladosporium fulvum (syn. Passalora fulva),
an asexual extracellular fungal pathogen of tomato
[41]. In C. fulvum, cys-rich effectors can inhibit and
protect against plant hydrolytic enzymes, such as
proteases, glucanases, and chitinases [32]. Cys-rich
small-secreted proteins have also been identified as
major effectors in the obligate biotrophic pathogens
Melampsora larici-populina [35], and the Asian soy-
bean rust fungus Phakopsora pachyrhizi [42], where
one of the cys-rich small proteins identified as an
effector has been shown to suppress plant immu-
nity [43].

Rxlr motifs

The motif RxLR, arginine-any amino acid-leucine-
arginine, has been identified in the N-terminal of

Table 1. Steps to identify putative effectors within the secre-
tome of P. brassicae in the European strain Pbe3 and the
Canadian strain Pb3.

Europe strain
(Pbe3)

Canadian strain
(Pb3)

Signal Peptide/No trans-membrane
domaina

533* 590*

D score > 0.7 NA 431
Size (Small secreted proteins) b 416 221
Over-expression c 300 NA
Plant-free library d 92 NA

NA, Not applied
a In the Canadian strain, other subcellular localization signals were also used
to remove putative proteins from further analysis.

b For the European strain the cutoff was < 450 aa, while for the Canadian
protein proteins < 300 aa were selected.

c At least 10 expected fragments per kilobase of transcript per million
fragments (FPKM)

d FPKM log2 fold change > 5 in plant-free library
* Putative secreted proteins.
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some oomycete and fungal effectors [43,44].
Although the function of the RxLR motif in effector
proteins remains unclear, it has been shown to be
necessary for translocation into the host cell [45]
and to elicit immune responses in plant cells [46].
Curiously, despite the divergence between P. brassi-
cae and oomycetes, RxLR motifs have been reported
in effectors in both the P. brassicae Canadian strain
Pb3 and the European strain Pbe3 [20,21], but the
IDs of these RxLR protein-encoding genes have yet
to be determined. Many putative effectors contain-
ing the RxLR motif also contain the second con-
served motif, DEER (aspartate-glutamate-glutamate-
arginine), located toward the C-terminus [47].

Chitin-binding domains

Chitin, a recognized microbial PAMP, is a major
structural component of fungal cell walls. Some
fungal effectors have been shown to contain chitin-
binding domains that are able to protect the patho-
gen against plant chitinases [48,49]. These effectors
can also act as scavengers of chitin fragments
released by the pathogen during infection [50],
thereby avoiding a PAMP-triggered immunity
response by the host plant. The resting spores of
P. brassicae, formed at the end of the pathogen life
cycle, contain chitin in their cell walls [20]. The
presence of the carbohydrate/chitin-binding
(CBM18) domain, enriched in the plasmodiophorid
secretome, suggests that these putative effectors
might be involved in the formation and possibly
the germination of resting spores. A blastp (https://
blast.ncbi.nlm.nih.gov) search with a chitin-binding
domain protein, identified in the genome of
Canadian strain Pb3 (PbPT3Sc00048_S_5.266_1),
showed identity with a Fusarium fujikuroi chitinase
(Genbank accession number CCT72994) [15]. In the
Pbe3 genome, chitin recognition proteins, like the
protein encoded by the PBRA_002543 gene, have
also been identified [20].

Protease/protease inhibitors

Sequence identity between plant pathogen effectors and
other protein sequences is often low such that the assess-
ment of functions based on putative orthology alone has
been limited [31,50]. In many cases, the three-dimensional
structure of the protein, the disulfide bond pattern, and
the cysteine spacing have been used to identify protease

and/or protease inhibitors as putative effectors in obligate
biotrophic soil-born plant pathogens [34,51,52]. These
effectors target host proteins/proteases during infection,
thereby manipulating the host response to infection.
During resting spore formation, Pbe3 overexpresses
Kazal-like (e.g. PBRA_001430) and papain protease inhi-
bitors [20]. The Kazal family of serine protease inhibitors,
characterized by the presence of ten cysteine residues
including the characteristic CX7CX6YX3CX2–3C signa-
ture, have been reported as effectors in fungi and oomy-
cetes [53,54].

A putative serine protease (GenBank accession num-
ber AM411657) was identified among the P. brassicae
genes that were expressed during infection [55]. This
protease carried a predicted signal peptide sequence but
lacked homologs in other plant pathogens. Further stu-
dies identified the serine protease as Pro1 [56], a member
of the S28 family of proteases that, due to its proteolytic
activity, may play a role during clubroot pathogenesis by
stimulating resting spore germination [56]. Curiously,
none of these studies suggested that this protein was an
effector, probably because its suggested role occurs out-
side of the plant cell.

Nuclear localization domains

Differing from many fungi and oomycetes, P. bras-
sicae is an intracellular pathogen [57]. Another cri-
terion used to identify putative effectors from
obligate intracellular pathogens has been the pre-
sence of nuclear localization domains, which allows
effectors to directly modulate plant gene expression
[58,59]. For many years, effectors capable of migrat-
ing to the plant cell nucleus have only been
described in bacteria [58–60], but more recently
these motifs together with nuclear localization of
effectors has been described in fungi [61,62] and
nematodes [63]. In bioinformatics pipelines
designed to identify putative effectors, the inclusion
of steps to remove proteins containing subcellular
localization signals will remove these effectors,
although researchers could analyze these amino
acid sequences directly using the online tool
TargetP 1.1 Server (http://www.cbs.dtu.dk/services/
TargetP). To date, none of the studies on the secre-
tome and putative effectors of P. brassicae have
detected or identified secreted proteins with such
domains and none of the putative secreted proteins
reported for P. brassicae have been identified as
containing nuclear localization domains [20,21].

VIRULENCE 1347

https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov
http://www.cbs.dtu.dk/services/TargetP
http://www.cbs.dtu.dk/services/TargetP


Pexel motif

P. brassicae is evolutionarily closer to the malaria
parasite, Plasmodium spp., than to oomycetes or
fungal pathogens [5]. While there are many differ-
ences between the immune system of animals and
plants, they both share the common characteristic of
being targeted by pathogen effectors [64]. The dis-
covery of the Pexel motif (Plasmodium export ele-
ment) was a ground breaking finding that
contributed to the understanding of the infection
process of Plasmodium [65]. Pexel is a pentameric
motif present in the N-terminal portion of all the
proteins translocated through the parasitophorous
vacuole membrane. It is comprised of a positively
charged, hydrophilic amino acid in position one
(Arg or Lys), a hydrophobic amino acid in position
three (Leu or Ile), and another less conserved amino
acid in position 5 (predominantly Asp, Glu, or Gln),
with non-charged amino acids in positions two and
four (Ser, Thr, Cys, Met, Asn, or Gln) [65]. The
N-terminal domain of an effector protein from the
soybean cyst nematode Heterodera glycines, contain-
ing unique sequence similarity to domains of an
effector of Plasmodium spp [66]., indicates that the
use of analogous effectors by highly diverse parasites
of plants and animals occurs and is worth exploring.

Plant pathogenic plasmodiophorids

P. brassicae is not the only plant pathogenic protist [67],
nor is it the only plasmodiophorid affecting economically
important crops: the group includes Spongospora subter-
ranean, the causal agent of powdery scab on potato tubers,
and Polymyxa spp., Polymyxa graminis and Polymyxa
betae, which affect graminaceous plants and
Chenopodiaceae plants, respectively [68,69].

Genomic sequences, although limited, are avail-
able from S. subterranea [70–72] and comprehensive
S. subterranea transcriptomic datasets are available
from root galls [5,20]. These data suggest intron-
rich genes and an enrichment of chitin-related
enzymes in the S. subterranean transcriptome.
Transposable elements are more expressed in S.
subterranea than in P. brassicae [20,70,71], but evi-
dence for recombination in S. subterranea is limited
and there is little understanding of sexual recombi-
nation in phytomyxids [73]. A study of secreted
proteins in S. subterranea has been carried out,
identifying the benzoic acid/salicylic acid

methyltransferase-encoding gene over-expression
that was previously described [20]. To date, there
is no genomic data available for Polymyxa spp [67]..

Life cycle and effectors

P. brassicae has three main stages to its life cycle, (i)
survival in the soil and germination of resting
spores, (ii) root hair or epidermal cell infection,
and (iii) cortical infection (Figure 1B), although
the pathogen has also been observed in phloem
(Reviewed in Kageyama and Asano [7]). The serine
protease, Pro1, is thought to be involved in step 1
(Figure 1B), the germination of resting spores [56].
From step 2 to 5 of the life cycle (Figure 1B), it is
expected that other proteases and protease inhibi-
tors, such as cys-rich proteases and methyltrans-
ferases will be produced to suppress plant
immunity, thereby preventing the host plant from
mounting responses such as programmed cell death
and increasing the probability of success of the
infection process [33]. During the formation of pri-
mary and secondary plasmodia, infected root tissues
develop into swollen galls; it is expected that P.
brassicae will secret an array of effector proteins
triggering growth, expansion and differentiations of
infected host cells. During zoospore maturation
(Figure 1B), as expected, P. brassicae effectors with
chitin-binding domains will express to remove
chitin fragments that otherwise could trigger
PAMP–associated immunity during late stages of
the P. brassicae life cycle (Figure 1). Based on pre-
vious studies, might be also expected over expres-
sion of effectors implies on manipulating plant
defense such as PbBSMT [36] and effectors disturb-
ing plant meristematic activity during the formation
of secondary zoospore and secondary plasmodia
[74]. While there are still steps in the life cycle of
P. brassicae that remain to be clarified, the study of
effectors and their roles in life cycle completion and
clubroot disease progression is an arena waiting to
be explored.

A coherent pipeline to identify effectors

Computational prediction is an excellent starting point to
screen for putative effectors, to identify functional
domains and to help us understand the evolution, distri-
bution and characteristics of effectors [75,76]. Utilizing the
information presented in this review we have designed a
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coherent pipeline aimed at identifying putative effectors
involved in the infection process by P. brassicae and sub-
sequent clubroot disease progression in its plant host
(Figure 2). The pipeline makes use of tools to identify

the origin of reads, and identify motifs and functions of
the predicted secreted proteins. The bioinformatics tools
referred to in the pipeline, together with their descriptions
and websites, are listed in Table 2. This pipeline is only a

Figure 2. Coherent pipeline to identify putative effector proteins of Plasmodiophora brassicae. The pipeline assumes: (1) Researchers
are starting with RNA-Seq reads from a host plant infected with P. brassicae; (2) The draft genomes available for P. brassicae, other
plasmodiophorids, oomycetes, and other plant pathogens are used; (3) Motifs mentioned in the review or structural similarities with
previously described effector proteins were identified.
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suggestion based on our previous experience [77], and
although key parameters should be set in order to run it
properly, it is a good starting point.

Concluding remarks

Bioinformatics analysis is the route to the identification
of candidate effector proteins, but laboratory confirma-
tion of function will always be required. Validation of the
RNA-seq data through qPCR [77] or ddPCR [78], iden-
tification of the subcellular localization of the candidate
effector proteins [20] through transient expression or
stable transformation [21,79] and identification of the
plant proteins interacting with the pathogen effectors
are some of the logical next steps towards the identifica-
tion of P. brassicae effector proteins. The work with
pathogen effectors in general is challenging, but the
work with intracellular, biotrophic pathogens appears to
be even more so, requiring creativity and novel solutions.
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