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ABSTRACT

Background. We re-analyzed data from the Systolic Blood Pressure Intervention Trial (SPRINT) trial to identify features of
systolic blood pressure (SBP) variability that portend poor cardiovascular outcomes using a nonlinear machine-learning
algorithm.

Methods. We included all patients who completed 1 year of the study without reaching any primary endpoint during the
first year, specifically: myocardial infarction, other acute coronary syndromes, stroke, heart failure or death from a
cardiovascular event (n¼8799; 94%). In addition to clinical variables, features representing longitudinal SBP trends and
variability were determined and combined in a random forest algorithm, optimized using cross-validation, using 70% of
patients in the training set. Area under the curve (AUC) was measured using a 30% testing set. Finally, feature importance
was determined by minimizing node impurity averaging over all trees in the forest for a specific feature.

Results. A total of 365 patients (4.1%) reached the combined primary outcome over 37 months of follow-up. The random
forest classifier had an AUC of 0.71 on the testing set. The 10 most significant features selected in order of importance by
the automated algorithm included the urine albumin/creatinine (CR) ratio, estimated glomerular filtration rate, age, serum
CR, history of subclinical cardiovascular disease (CVD), cholesterol, a variable representing SBP signals using wavelet
transformation, high-density lipoprotein, the 90th percentile of SBP and triglyceride level.

Conclusions. We successfully demonstrated use of random forest algorithm to define best prognostic longitudinal SBP
representations. In addition to known risk factors for CVD, transformed variables for time series SBP measurements were
found to be important in predicting poor cardiovascular outcomes and require further evaluation.
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INTRODUCTION

Hypertension management decreases cardiovascular morbidity
and mortality [1–4]. Recently, the Systolic Blood Pressure
Intervention Trial (SPRINT) reported that targeting a systolic
blood pressure (SBP) <120 mmHg compared with <140 mmHg
resulted in a lower rate of a combined primary outcome of fatal
and nonfatal major cardiovascular events. The primary out-
come occurred in 1.65% of the intensive-treatment group com-
pared with 2.18% in the standard-treatment group [5]. When
data from the SPRINT trial were made publicly available [6], we
sought to identify additional features of the originally collected
clinical variables that could further predict poor cardiovascular
outcomes.

Serial standardized SBP measurements were performed in
SPRINT, allowing for characterization of variability over time [5].
Since long term variability in SBP, a.k.a. visit-to-visit variability
(VVV), has been shown in a recent meta-analysis and two sub-
sequent studies to predict cardiovascular outcomes including
death [7–9], we hypothesized that longitudinal changes and var-
iability in blood pressure will have prognostic clinical signifi-
cance. The need for parsimony in conventional statistical
model building has created an arduous process of variable se-
lection and limited use of conventional representations of
trends and variability such as mean/median, standard deviation
(SD) and coefficient of variation, and less commonly slope, vari-
ation independent of the mean and root mean squared error [7].
We previously demonstrated that incorporating multiple SBP
trends in a machine-learning model significantly improved
mortality prediction in patients on hemodialysis, compared
with using only standard SBP representation including the
mean and selected individual SBP values [10]. Therefore, we fur-
ther hypothesized that we could overcome limitations of con-
ventional statistical methodology by evaluating a wide range of
representations of the features of longitudinal changes in SBP
concurrently within a novel machine-learning framework.

To optimize analysis of the SPRINT data, we elected to utilize
a nonlinear machine-learning algorithm, random forest search,
to classify patients into a binary grouping of either event-free or
having the SPRINT primary outcome. Random forest is a method
for classification using multiple classification trees that are com-
bined in an ensemble [11]. Multiple trees are trained and fitted to
bootstrapped training data obtained through random sampling
with replacement. The goal is to decrease the correlation between
individual trees, which results in diminished variance when the
trees are aggregated. Random forests accommodate sparsity [12],
which is favorable in this case, due to a low percentage of
patients who reached the primary outcome. The individual trees
are designed to overfit on features (making very specific decisions
that only account for part of the data set), whereas the voting
strategy mitigates these effects by generalizing over the decisions
of multiple trees. We sought to determine the best representation
of time series SBP, with an assumption that one or more repre-
sentations of SBP will be significant prognostic factors because
the primary SPRINT trial result indicated that SBP targets were
significantly related to outcome.

MATERIALS AND METHODS
Study population

We retrospectively analyzed data from SPRINT, which included
9361 patients with a SBP of 130 mmHg or higher and an in-
creased cardiovascular risk, but without diabetes. A priori, we

limited this analysis to include all patients who completed 1
year of the study without reaching any primary endpoint during
the first year, specifically myocardial infarction, other acute cor-
onary syndromes, stroke, heart failure or death from a cardio-
vascular event (n¼ 8799; 94%). This 1-year period represented
our study baseline. Waiver of consent was granted for this de-
identified data set (previously approved for release by the
SPRINT committee) and the study was deemed ‘exempt’ by the
Partners Healthcare Institutional Review Board.

Feature inclusion and calculation

All variables in the SPRINT baseline data were utilized in the
analysis, including the binary variable indicating whether the
patient was assigned to the intensive or usual care treatment
group. Derived variables were computed using Tsfresh
(Copyright 2016 Maximilian Christ, Blue Yonder GmbH), a
Python package available through unrestricted software license
and funded in part by the German Federal Ministry of Education
and Research [13]. Tsfresh calculates and returns features from
time series data, including mean, median and mode, SD, counts
above mean for a time series (i.e. number of SBP values above
mean for a patient over time), counts below mean, sum of abso-
lute value of consecutive SBP change, variance, maximum and
minimum values, SBP values above different percentiles (e.g.
90th percentile), linear regression slope, entropy and coeffi-
cients for continuous wavelet transform (CWT) of the SBP signal
over time (Appendix Table S1). From these features, Tsfresh per-
forms standard univariate analysis to predict the outcome, in-
cluding Fisher’s exact test, Kolmogorov–Smirnov test and the
Kendal rank test. It takes into account multiple testing by using
the Benjamini–Yekutieli correction. Figure 1a illustrates several
variables that were automatically computed from time-series
data. Significant features that predicted poor outcomes were all
automatically identified within the advanced machine-learning
framework. Figure 1b illustrates time series SBP data from two
patients in the study: although the initial and last recorded SBP
values were similar, variation in SBP, the maximum-recorded
SBP and the number of SBP dips evident in the graph are not
routinely used in conventional analyses.

Random forest algorithm

All features were normalized and included in a random forest
algorithm implemented in Python (Scikit learn, BSD license).
Random forest fitted several decision tree classifiers on sub-
samples of the data set and used averaging to measure the
model’s predictive accuracy. We varied the node splitting crite-
rion for the decision tree classifiers using Gini index [14] and en-
tropy [15], with entropy performing better. We then optimized
hyperparameters of the random forest including number of
trees and the minimum leaf size (i.e. the minimum number of
training examples that may be at any leaf of a classification
tree) by implementing hyperparameter grid search using 10-
fold cross validation. A random forest with 50 trees and a mini-
mum leaf size of 46 was the final result.

Feature importance determination

Finally, feature importance was determined using the Scikit al-
gorithm for minimizing node impurity averaging over all trees
in the forest for a specific feature. Specifically, every time a split
of a node is made on a feature, the Gini impurity for the two de-
scendent nodes is less than the parent node. That is, the
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descendant nodes contain similar values in terms of the study
outcome. The formula for Gini impurity is as follows:

G ¼
Xnc

i¼1

pið1� piÞ

where nc is the number of classes in the target feature and pi is
the ratio of this class. Adding up the decreases in Gini impurity
for each individual variable over all trees in the forest gives an
efficient measure of variable importance. Using this algorithm
for minimizing node impurity for each feature allows automatic
selection of important features to include in the model. This au-
tomatic feature selection precludes our having to manually
choose features for modeling.

Evaluation

The data set was randomly divided into two sets—70% for train-
ing and 30% hold-out as the testing set. Using the 70% training
set, an ensemble of random forests was created. For each ran-
dom forest in the ensemble, the minority class (patients who
reached the primary outcome) was repeatedly sampled so that
there was equal number of samples in each class. Random for-
ests were trained, each with their own subset, and their predic-
tions were ensemble. Ten-fold cross-validation was performed
on the training set to select hyperparameters of the model.
Finally, the best hyperparameters were used on the entire

training set, and the final model was evaluated on the hold-out
data in the testing set. Area under the curve (AUC) was mea-
sured for the final model.

RESULTS

Among 8799 patients included in the study, 365 patients (4.1%)
reached the combined primary outcome over an average of
37 months of follow-up. Characteristics of patients who reached
the endpoint relative to the rest of the cohort are shown in
Table 1. These patients were older and had more smokers. In
addition, there were more patients with history of cardiovascu-
lar disease (CVD) as well as chronic kidney disease (CKD). As
expected, there were fewer patients on intensive management
among patients who reached the primary outcome.

The best random forest classifier had an average AUC of 0.68
on the training data set, measured using 10-fold cross validation
(95% confidence interval 0.57–0.79), as shown in Table 2. Using
this model with 27 significant variables, the random forest clas-
sifier had an AUC of 0.71 on the test (hold-out) data set.

The 10 most significant features selected in order of impor-
tance by the automated algorithm included the urine albumin/
creatinine (CR) ratio, estimated glomerular filtration rate, age,
serum CR, history of subclinical CVD, total cholesterol, a vari-
able representing time-series SBP signals using wavelet trans-
formation, high-density lipoprotein (HDL), the 90th percentile
SBP and triglyceride. The SPRINT treatment assignment labeled

FIGURE 1: (a) Sample time-series data; (b) time series data for two patients.
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‘intensive’ (a yes/no binary variable referring to the SBP goal)
was significant albeit was nearly ranked the lowest (26th)
among the 27 significant variables identified by the model.
Additional features of the SBP time series data and other clinical
variables were also included. A ranked list of all significant vari-
ables in the final model is shown in Figure 2.

Nine of the 27 significant variables (33%) that were automati-
cally selected by the algorithm were related to SBP. The SBP fea-
ture labeled SBP_cwt_coefficient_1 represents amplitude and
duration of a particular SBP wave pattern that was reflected as a
significant wavelet coefficient. In particular, four wavelet scales
were used (2, 5, 10 and 20), and a coefficient for the wavelet with
a scale of 2 was selected as a feature. Two additional SBP coeffi-
cients were also included in the model, representing other dis-
cernable wave patterns in the data. Furthermore, the 90th
percentile of SBP values was ranked more significant, although
the median and 60th to 80th percentiles as well as the last base-
line SBP were also significant in the model.

DISCUSSION

This study successfully combined next generation automated
machine-learning algorithms selected for optimal handling of
time series data with low event outcomes to demonstrate that
features of time series variables that are unaccounted for in
conventional statistical models have prognostic significance.
The identification of several significant features of time series
of SBP also highlight the nonlinear nature of the random forest
algorithm utilized herein. This study extends beyond central
tendency and variability information previously used to

Table 1. Characteristics of patients who reached and did not reach the primary outcome

Characteristics
Patients who reached
primary outcome

Patients who did not
reach primary outcome

Demographics
Mean age, years (SD) 71 (10) 68 (9)
Female sex, n (%) 104/365 (28) 2943/8296 (35)
Race, n (%)
White 245 (67) 4782 (58)
Black 91 (25) 2480 (30)
Hispanic 23 (6) 886 (11)
Others 6 (2) 148 (2)

Other patient characteristics
Mean baseline SBP (mmHg) 141 140
Mean baseline DBP (mmHg) 76 78
Mean BMI 29 30
Smoking status, n (%)
Never 134 (37) 3700 (45)
Former 173 (47) 3514 (42)
Current 58 (16) 1074 (13)
Subgroup with history of clinical/subclinical CVD, n (%) 128 (35) 1578 (19)
Subgroup with CKD (eGFR <60 mL/min/1.73 m2), n (%) 152 (42) 2251 (27)

Medications
Mean number of medications prescribed 2 2
Participants on no antihypertensive agents, n (%) 22 (6) 805 (10)
Aspirin use, n (%) 223 (61) 4199 (51)
Statin use, n (%) 125 (34) 3587 (43)

Mean laboratory parameters
eGFR (mL/min/1.73 m2) 66.5 72.2
Serum CR (mg/dL) 1.2 1.1
Total cholesterol (mg/dL) 185.8 190.2
Glucose (mg/dL) 99.7 98.8
HDL direct (mg/dL) 50.8 52.9
Triglycerides (mg/dL) 131.3 125.8
Urine albumin (mg/g CR) 96.3 38.1

Intervention
Intensive, n (%) 152 (42) 4187 (50)

DBP, diastolic blood pressure; BMI, body mass index

Table 2. AUC measured using 10-fold cross-validation on the train-
ing data set and on the test data set for the best model

Data set AUC

Training set (10-fold cross-validation)
1 0.60
2 0.62
3 0.70
4 0.75
5 0.71
6 0.68
7 0.74
8 0.69
9 0.71
10 0.59

Mean (95% confidence interval) 0.68 (0.57–0.79)
Test set 0.71
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characterize long term fluctuations in SBP readings in studies
reporting VVV. The constraints posed by linear models include
collinearity, which leads to inflation of the variance as variables
that overlap in distribution relative to each other and to the out-
come is input into the same model [16]. We have overcome
such constraints, allowing for a greater use of the different fea-
tures of time series data that we believe will open the door to an
entire spectrum of time series predictive analytics using clinical
data usually available in electronic health records. The random
forest method, which relies on multiple classification trees,
uses nonparametric classification for recursively partitioning
data per the value of a predictor variable until observations in a
partition become increasingly homogenous. The random forest
model is protected from highly collinear variables because even
if two of the variables in a tree provide the same child node ho-
mogeneity, it simply selects one without affecting model qual-
ity. In other words, while some level of collinearity may be
present, the random forest method ignores overlap between po-
tentially collinear variables, leading to an overall increase in
discrimination. This is a key advantage over generalized linear
models in conventional statistics, which calculate a marginal
contribution for each variable in the model.

Therefore, we are able to include several representations of
the time trend of SBP data including transformations (e.g.
Fourier and wavelet) [10, 17, 18] that have resulted in novel fea-
tures of the SBP time series emerging as potentially useful pre-
dictors of outcome. The current study results are proof of
concept for utilizing SBP because it was the only time series
data available in SPRINT, but we believe that we are now able to
use multiple variables available longitudinally in future analy-
ses, which will further expand capabilities of clinical prognostic
models and predictive analytics.

We utilized data from the SPRINT study, which was made
publicly available for a SPRINT Data Challenge, as our vehicle to
model and identify features that are associated with poor car-
diovascular outcomes in hypertensive adults. A nonlinear clas-
sifier was utilized to model the primary outcome to deal with
possible nonlinearity in predicting outcomes, as exemplified by
the ‘J-curve’ often reported in hypertension outcome studies
[19]. In addition, the random forest classifier has the capacity to
account for data sparsity associated with the low number of
patients who achieved the primary outcome. Several machine
learning algorithms have been utilized to predict poor outcomes

in medicine [20–26], including for predicting mortality using
blood pressure trends as features [10, 18].

To our knowledge, a unique advance of the current study
which has not been reported in any previous clinical predictive
study that incorporated time-series data with multiple time du-
ration granularity (e.g. 1 month intervals, 3 month intervals)
was: (i) models that simultaneously represented multiple time
durations in continuous wavelet transformation, as well as (ii)
variables that reflected multiple aspects of time-series data
with features that included SBP values for specific deciles, sum
of consecutive SBP changes and number of SBP values above
mean. Indeed, automatic data transformation for time-series
data has been used in other domains and has been shown to
predict hemodynamic deterioration in Intensive Care Unit (ICU)
patients, when used up to 2 h prior to deterioration [18]. In addi-
tion, it has been used for visual representation and analysis of
time-series Electroencephalography (EEG) data [17, 27, 28].
Wavelets, in particular, have been used for signal de-noising
and data compression algorithms [29–33]. However, there are
no previous studies that have combined various transforma-
tions of time-series data for predicting clinical outcomes. Our
method that incorporated these techniques into an algorithm
fit into the random forest classifier achieved reasonable dis-
crimination for patients who were observed to have poor car-
diovascular outcomes on the hold-out data set. We believe that
the model could have been optimized further if the data set had
contained more time series predictor variables.

Several variables in the top 10 list sorted by model
importance that were automatically selected by the feature im-
portance classifier were known risk factors for poor outcomes—
measures for kidney dysfunction, baseline cholesterol profiles,
age and prior CVD. It automatically selected estimated glomeru-
lar filtration rate (eGFR) and serum CR as the 2nd and 4th most
important variables—both measures of kidney dysfunction,
which are known predictors of cardiovascular outcomes in hy-
pertensive patients. Other variables included values for CWT
coefficients of time-series SBP measurements and the SBP value
above the 90th percentile for each patient. The last feature high-
lights the importance of individual patients’ high SBP measure-
ments, corresponding to the value above the 90th percentile, as
a predictor of poor cardiovascular outcomes. The CWT coeffi-
cients reflect changes in the SBP signal over several time dura-
tions, explained further below.

FIGURE 2: Feature importance for all features included in the model.
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CWT uses an analyzing function called wavelets to decom-
pose time-series signals into coefficients at several different
time durations, commonly referred to as scales. Wavelets are
localized in time, and can thus be used to model localized
changes in time-series signals. To illustrate, a smaller-scale
wavelet corresponds to a more compressed wavelet, whereas a
larger-scale wavelet corresponds to a more stretched wavelet
(see Figure 3). These various wavelets can then be shifted in
time to model signal changes. An acute change over a short
time will thus be reflected as a larger coefficient in a smaller-
scale wavelet. The specific CWT coefficient features in the
model corresponding to coefficients at different scales and
shifting of a wavelet. Thus, it is important to understand how
transformation of time-series data can best inform decisions re-
garding patient management, especially when they play an im-
portant role in predicting poor outcomes.

A model able to reliably predict and identify patients at risk
for poor cardiovascular outcomes can be utilized for prognosti-
cation, informed decision making, triage, adjusting case-mix,

projecting resource utilization and public policy. More impor-
tantly, understanding specific features that are associated with
poor outcomes allow clinicians to intervene and personalize pa-
tient management, in the context of hypertension and CVD.
The current approach fully incorporated different representa-
tions of the same clinical variable to extract the most highly
predictive combination(s) to optimize the model for predicting
poor cardiovascular outcomes. This model can include multiple
representations of other clinical variables that are already col-
lected in most Electronic Medical Records (EMRs). The model
optimizes the predictive contribution from data we currently
collect, potentially alleviating the current drive to keep collect-
ing more clinical variables (a heavy administrative burden for
overworked clinicians) to improve predictive models’ discrimi-
nation ability.

The SPRINT investigators concluded that intensive blood
pressure treatment achieved improved cardiovascular out-
comes, compared with standard blood pressure management.
In contrast, another recent trial from the Action to Control
Cardiovascular Risk in Diabetes (ACCORD) Study Group demon-
strated that intensive blood pressure control in patients at high
risk for CVD did not reduce the rate of a composite outcome of
fatal and nonfatal major cardiovascular events [34, 35]. Several
more studies raise concerns that blood pressure reduction be-
low a certain threshold may pose dangers, the so-called ‘J-
curve’, which affects groups of individuals who are older and
with comorbidities [19, 36, 37]. All these highlight the impor-
tance of personalized management, considering individual risks
and benefits in managing hypertension. Identifying which fea-
tures portend poor cardiovascular outcomes is a critical step in
individualized management. Finally, incorporating changes in
management and adherence as part of the time series data in
the model may further provide insight into individualized opti-
mal therapy.

Limitations

This work highlights the utility of modeling multiple time dura-
tion granularities. This study, however, did not consider a lon-
ger time forecasting horizon and was limited to 1 year from the
beginning of SPRINT. Moreover, using time series transforma-
tion for other time-series data (e.g. laboratory values) was not
applied in conjunction with SBP measurements because those
data were not available for analysis. Changes in kidney func-
tion, some of the features deemed important in modeling out-
comes, might be useful in further increasing the model’s
accuracy. Other serial/episodic clinical patient data would also
be valuable. Finally, prospective validation of the model in a
separate data set would be prudent to further assess the mod-
el’s generalizability.

CONCLUSION

Features that predict poor cardiovascular outcomes were identi-
fied using an automated random forest algorithm. In addition
to known risk factors for CVD, transformed variables for time
series SBP measurements were found to be important in pre-
dicting poor cardiovascular outcomes and require further evalu-
ation. Serial measurements of more clinical variables in
addition to blood pressure, such as medication use, body
weight, laboratory results and other relevant factors in the elec-
tronic health record, may now be studied concurrently utilizing
this novel algorithm utilizing next generation automated ma-
chine-learning and signal-processing algorithms.FIGURE 3: Ricker wavelets at increasing scales.
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