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Ultrahigh specificity in a network of
computationally designed protein-interaction pairs
Ravit Netzer1, Dina Listov1, Rosalie Lipsh1, Orly Dym2, Shira Albeck2, Orli Knop1, Colin Kleanthous 3 &

Sarel J. Fleishman 1

Protein networks in all organisms comprise homologous interacting pairs. In these networks,

some proteins are specific, interacting with one or a few binding partners, whereas others are

multispecific and bind a range of targets. We describe an algorithm that starts from an

interacting pair and designs dozens of new pairs with diverse backbone conformations at the

binding site as well as new binding orientations and sequences. Applied to a high-affinity

bacterial pair, the algorithm results in 18 new ones, with cognate affinities from pico- to

micromolar. Three pairs exhibit 3-5 orders of magnitude switch in specificity relative to the

wild type, whereas others are multispecific, collectively forming a protein-interaction net-

work. Crystallographic analysis confirms design accuracy, including in new backbones and

polar interactions. Preorganized polar interaction networks are responsible for high specifi-

city, thus defining design principles that can be applied to program synthetic cellular inter-

action networks of desired affinity and specificity.
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In the evolution of multicellular organisms, pairs of interacting
signaling proteins are duplicated and diversified to generate
elaborate interaction networks. An illuminating example of

expansion through evolution is seen in the fibroblast growth
factor (FGF) family and their receptors (FGFRs)1, which in
humans include 18 homologous FGFs and seven homologous
FGFRs2. In this network, some ligands are highly specific and
effectively bind and activate just one receptor, whereas others are
multispecific and bind at least four receptors. This hierarchical
network architecture, allowing both insulated signaling through
specifically interacting pairs and simultaneous and parallel sig-
naling through multispecific interactions, underlies the many
different roles of FGFs in development and physiology. To date,
however, the ability to computationally design artificial networks
of such complexity has not been demonstrated. Protein-network
engineering has therefore relied on fusion to natural protein
interaction modules3–6 that may exhibit suboptimal stability,
affinity, or undesired cross-reactivity with other cellular compo-
nents. Design of protein-interaction networks is therefore a
challenge of both fundamental and practical importance.

The present work focuses on bacterial colicin endonuclease
(colE)/immunity (Im) pairs as a model system7. It demonstrates
how pairs with hugely varying affinities and specificities can be
designed from as single complex, collectively forming a protein-
interaction network. The colE proteins are nonspecific DNases,
which are produced by Escherichia coli to eliminate neighboring
bacteria. To avoid autotoxicity, the producing cells co-express Im
proteins, which tightly bind and inhibit colE’s activity8. In the
colE/Im system, comprising four homologous pairs (colEwt2/
Imwt2, colEwt7/Imwt7, colEwt8/Imwt8, and colEwt9/Imwt9), each
cognate pair forms an ultrahigh affinity complex (KD < 10−13 M),
whereas the non-cognate pairs show non-protective affinities (KD

> 10−10M)9,10. Due to their ultrahigh pairwise specificity (4–10
orders of magnitude specificity switch among homologs), the
colicins have served as models for computational specificity
design. Previous studies mutated interfacial amino acids and
changed the rigid-body orientation of the colEwt7/Imwt7 pair to
block binding to the wild-type partners11,12. These and other
computational specificity-design studies yielded at most two
orders of magnitude difference in affinity between the newly
designed partners and undesired interactions between the
designed and wild-type proteins11–19.

The much larger specificity switches observed in natural sys-
tems2,10,20 compared to previous computational design studies
suggest that sequence and rigid-body changes alone are insuffi-
cient to effect large changes in protein-interaction specificity.
Indeed, previous structural analyses highlighted the role of
backbone changes, including amino acid insertions and
deletions (indels) in loop regions, in determining interaction
specificity2,21–23. Moreover, backbone changes at an interface add
many options for encoding alternative interactions among pairs
and may facilitate the construction of a diverse network from a
single starting pair. The design of new loops and indels, however,
is a major unmet challenge in computational protein design due
to the many conformational degrees of freedom that the protein
backbone can adopt, and in all design of new folds, loops have
been too short to support active sites24–28. Backbone design at
binding sites is further complicated by the requirement to balance
protein stability, affinity, and specificity, which can be mutually
exclusive outcomes of the design process22. Thus, although suc-
cess was demonstrated in grafting natural binding epitopes from
one protein to another29–34 and designing loop backbones that
lack molecular activity35,36, accurate design of loop backbones
that encode new interactions at binding sites has remained
elusive.

To solve the problem of designing multiple new high-
specificity pairs, we first develop a method for binding-site
backbone design. Previous specificity-switch methods relied on
“explicit” negative design; that is, designing sequence features,
such as steric overlaps, to explicitly block pairing with undesired
partners, which therefore required atomic structures11–13,37. In
the design of multiple new high-specificity pairs, by contrast,
experimental structures of the designed pairs are not yet available
and therefore cannot be used to explicitly design against unde-
sired non-cognate interactions. We hypothesized, however, that
design of preorganized, substantially different backbone con-
formations at the binding interface would be sufficient for
encoding binding incompatibility among pairs. This strategy is
known as “heuristic” negative design, as it encodes general fea-
tures (in this case, rigid and different backbones) that destabilize
undesired bound states rather than explicitly countering these
states24. Our results demonstrate that the design of substantially
different backbone conformations, orientations, and sequences at
the binding site generates dozens of new interaction pairs from a
single starting one. Heuristic negative design does not strictly
guarantee that all resulting pairs exhibit high specificity. Indeed,
the designed pairs collectively form an interaction network
comprising ultrahigh specificity binders, four of which exhibit
1000-fold to >100,000-fold pairwise specificity switches relative to
the wild-type proteins or other designs, whereas other designs are
multispecific and interact with other partners with nearly equal
affinity. By contrasting ultrahigh specificity binders and multi-
specific ones we infer molecular principles which code for spe-
cificity and multispecificity.

Results
A method for binding-site backbone design. Similar to FGF/
FGFR and many other protein–protein interactions2,38, the
molecular structure of the colEwt2/Imwt2 interface (Protein Data
Bank [PDB] entry 3U43) comprises a conserved core, known as
the interaction hotspot (comprising Tyr54 and Tyr55 on Imwt2

and Phe86 on colEwt2), which encodes much of the binding
affinity, and peripheral interactions, where binding incompat-
ibility toward other natural colicins is encoded9,39,40. Addition-
ally, rigid-body orientation and backbone-conformational
differences in loop I, which connects helix I and helix II of the Im
protein and is at the periphery of the binding interface, make
important contributions to specificity23,41–43 (Supplementary
Fig. 1). Inspired by this modularity of binding interfaces, we
reasoned that specificity design should focus on designing new
backbones, including indels, in loop I, while conserving the
interaction hotspot and optimizing the rigid-body orientation and
sequence of other interfacial regions for the new conformation.
Structural analysis identified a pair of geometrically conserved
and spatially proximal positions on Im helices I and II that form a
stem for loop I (Ile22 and Leu36; Fig. 1a). Since loop I is at the
periphery of the binding interface, we hypothesized that backbone
designs that retained the stem geometry would allow the
remainder of the Im protein, including the essential hotspot, to
fold to the native conformation, thereby maintaining high-affinity
binding.

Recently, we described a backbone-design method, called
AbDesign44, and demonstrated that it could assemble backbone
fragments from a homologous protein family and design the
amino acid sequence to yield functional and atomically accurate
antibodies45 and enzymes46. AbDesign reiles on high structural
diversity in the homologous protein family, however, and the
limited diversity in colicin immunity proteins (only four
molecular structures are available) precluded its effective
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application in this case. We therefore extended AbDesign to
incorporate backbone fragments from non-homologous proteins,
searching the PDB for alternative loop backbones that were
geometrically compatible with the loop I stem. We identified
2776 segments of 9–21 amino acids (compared to 15 amino acids
for loop I of Imwt2) that originated in proteins of unrelated folds
and functions (Fig. 1b). For each matching segment from the
PDB, we used AbDesign to exchange loop I from Imwt2 with the
matched backbone44, resulting in 2657 designed low-energy Im
backbones (Fig. 1c). We then relaxed the designed complexes by
rigid-body docking. Each docking step rotated the colE/Im design
around the hotspot, which served as a pivot12,42, conserving the
essential hotspot interactions and opening new design opportu-
nities due to the displacement of loop I (Fig. 1d). Furthermore,
docking moves were interspersed with sequence-design steps
applied to the entire binding surfaces of both the colE and the Im
proteins (two-sided design), including loop I (Fig. 1e).

Sequence design, however, was not allowed to sample all amino
acid choices. Rather, Position-Specific Scoring Matrices (PSSMs)
were constructed from multiple-sequence alignments of colE and
Im homologs of >50% sequence identity, and at each position,
only mutations to evolutionarily frequent identities (PSSM scores
≥ 0) were allowed44,45,47. The designed loop I segments, however,
were not homologous to Im proteins, and PSSMs were therefore
built from alignments of non-homologous sequences from the
PDB with a similar backbone conformation. Although the
multiple-sequence alignments comprised segments extracted
from non-homologous proteins of different folds and molecular
functions, we noted that the resulting loop I PSSMs were
conserved at positions that were likely responsible for preorga-
nizing the loop backbone, for instance, through hydrogen bonds;
conversely, the solvent-exposed positions were variable (Fig. 2).
We therefore surmised that the sequence-conservation patterns,
which arose through convergent evolution of similar backbone
conformations evolving in different structural and functional

contexts, provided important design constraints for loop back-
bone preorganization. Solvent-exposed amino acids, by contrast,
exhibited high diversity and could be designed to encode new
interactions with the designed colE.

The design algorithm thereby searches sequence-conformation
space for solutions that balance the demands of binder design,
including affinity, specificity, and protein stability22. The result of
applying this algorithm was 636 designed colE/Im pairs with
computed energy and structure characteristics, such as binding
energy and interface shape complementarity, that were on par
with the natural colicins.

Ultrahigh specificity among designed pairs. Following visual
inspection, we selected 59 diverse, low-energy colE/Im pairs that
exhibited favorable interfacial interactions for experimental test-
ing (Supplementary Data 1). Each gene encoding a designed colE/
Im pair was cloned in tandem into the pET21d expression vector,
with the colE gene followed by the Im gene with an intervening
two base-pair frameshift41. The plasmids were then cloned into
T7 Express lysY/Iq E. coli strain (NEB), which tightly regulates
protein expression. The colE proteins are potent bacteriocins, and
clonal sequencing revealed that even under non-inducing con-
ditions, 41 designed colE proteins accumulated spontaneous
inactivating mutations. Sequences of the remaining 18 pairs
matched the designs, suggesting that in these 18 pairs, the Im
proteins either blocked the activity of their colE targets as
designed, or that the colE designs were inactive. To resolve this
uncertainty, the plasmids containing the colE/Im pairs were
transformed into the overexpression E. coli strain BL21 and no
viable colonies were observed, indicating that the colE proteins
were active and toxic in vivo. We next introduced an inactivating
point mutation at the colE DNase active site in all designs
(His127Ala)48 and overexpressed and purified each of the 18
pairs, observing that each colE protein copurified with its Im
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Fig. 1 Key steps in the design of high-specificity protein pairs. The algorithm was implemented on the bacterial colicin colEwt2/Imwt2 complex. a Loop I
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partner at roughly stoichiometric concentration (Fig. 3a). We
therefore concluded that these 18 designed colE/Im pairs indeed
formed the cognate interactions in vitro, and that the Im proteins
were protective against endonuclease activity in vivo but had
lower affinities than cognate wild-type colE/Im complexes.

We next characterized the binding affinity of eight designed
pairs that represented high diversity in loop I conformations,
including indels. In fact, among these eight, the designed loop I
backbones and sequences were more different from one another
than those of the wild-type Im2 and 9 (Supplementary Fig. 2).
The designed pairs and the parental pair colEwt2/Imwt2 were
expressed (with the inactivating His127Ala mutation), purified,
and subjected to all-against-all binding analysis using surface-
plasmon resonance (SPR). The resulting 9 × 9 protein-interaction
matrix revealed that the designed-cognate affinities spanned four
orders of magnitude, from high picomolar to low micromolar.
The non-cognate interactions further extended the affinity range
to high micromolar affinities (Fig. 3b; Supplementary Table 1,
Supplementary Figs. 3 and 4) (see Methods for details on SPR
analysis). Viewed as a network of interacting proteins (including
all 8 × 8 cognate and non-cognate interactions), the designed
pairs spanned at least seven orders of magnitude in affi-
nity (Fig. 3c), covering the entire range of non-obligatory
interactions observed in biology at the physiological concentra-
tions of cellular proteins.

The affinity matrix revealed large differences in pairwise
specificity, that is the ratio between the non-cognate and the
cognate binding affinities. For instance, the cognate-designed
colEdes1/Imdes1 exhibited high binding affinity (KD= 0.58 nM),
whereas the affinity of Imdes1 for other colE proteins was at least
59-fold and up to 170,000-fold weaker (>5 orders of magnitude
pairwise specificity switch) (Fig. 3d). Notably, the affinity of the
non-cognate complex colEwt2/Imdes1 was below the SPR detection
limit and was estimated at >105 nM. Moreover, design pairs
colEdes2/Imdes2 and colEdes3/Imdes3 showed at least three orders

of magnitude pairwise specificity switches relative to either one or
both of the colEwt2 and Imwt2 proteins; they also exhibited such
high specificity switches relative to three and four other designs,
respectively, confirming that the design algorithm reproducibly
generated high-specificity pairs (Figs. 3e and 4 and Supplemen-
tary Fig. 5). These pairwise specificity switches exceeded those
attained by past design studies by as much as three orders of
magnitude11–13,15. Nevertheless, not all designed pairs exhibited
ultrahigh pairwise specificities. For example, colEdes7/Imdes7

exhibited relatively high cognate affinity (51 nM), but Imdes7

bound three non-cognate colE proteins with similar or up to two
orders of magnitude higher affinities (Fig. 4). Thus, collectively
the designed pairs yielded a complex interaction network
comprising both ultrahigh specificity interactions and multi-
specific binders.

To quantify the network specificity for each designed Im and
colE protein, we computed the parameter α, which expresses the
steady-state fraction of protein that binds cognate-designed
ligand relative to the non-cognate ligands when all ligands
compete for binding the protein at a constant predefined
concentration49 (Supplementary Table 2). The highly specific
Imdes1, for instance, shows an α1nM value of 11.8, meaning that at
1 nM concentration, the fraction of Imdes1 bound to colEdes1

exceeds by more than an order of magnitude the fraction bound
to the other seven designed colE proteins, combined. Imdes6,
Imdes7, and Imdes8, by contrast, exhibit α1nM values <0.1 and are
expected to bind multiple colE proteins at this concentration.

Optimization of affinity and specificity by design. While two
designed pairs (colEdes1/Imdes1 and colEdes2/Imdes2) exhibited
subnanomolar affinities, the majority had affinities in the range of
30–200 nanomolar, orders of magnitude weaker than those of
natural colicin cognate pairs. To test whether cognate affinity
could be improved, we focused on colEdes3/Imdes3, which
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exhibited KD= 73 nM and at least three orders of magnitude
pairwise specificity relative to colEwt2/Imwt2 (Fig. 4). Current
methods for experimental in vitro evolution of pairs of interacting
proteins lack robustness, however, and have not been broadly
applied, particularly to cytotoxic proteins such as endonucleases.
We therefore developed a computational affinity-design method
that introduced mutations simultaneously to both interacting
proteins. Briefly, we used Rosetta to model 105 unique colEdes3/
Imdes3 mutants, each encoding a different combination of 3–7
mutations on both the Im and the colE binding surfaces and
ranked them by computed binding energy (details in Methods).
Following visual inspection, we selected 19 low-energy mutants
that exhibited high diversity relative to one another and cloned
these designs into the high-expression E. coli strain BL21. One of
the designs, colEdes3.5/Imdes3.5 with five mutations relative to
colEdes3/Imdes3 (Fig. 5a) was as viable as the wild-type pair
colEwt2/Imwt2, compared to complete inviability in this bacterial
strain for any of the previously designed pairs, suggesting that this
design exhibited the highest affinity in the designed set. SPR
analysis confirmed that colEdes3.5/Imdes3.5 improved affinity by
two orders of magnitude (KD= 0.86 nM, Fig. 5b) through 52-fold
decrease in off-rate and twofold increase in on-rate relative to

colEdes3/Imdes3 (Supplementary Fig. 3). Furthermore, the affinity
of the non-cognate pair colEwt2/Imdes3.5 remained weaker than
the SPR detection limit (KD > 105 nM), translating to >5 orders of
magnitude pairwise specificity switch. The affinity of colEdes3.5 for
non-cognate Im proteins was increased compared to colEdes3, and
yet the pairwise specificity was either improved by an order of
magnitude or remained unchanged. For example, the pairwise
specificity of colEdes3.5 against binding Imdes2 was 1900-fold,
compared to 140-fold specificity of colEdes3 against Imdes2

(Fig. 5c). Hence, cognate affinities of the designed pairs could be
substantially improved through another round of design, while
retaining, and even improving, specificity.

Note that this automated design method achieved substantial
affinity and specificity enhancement by testing only 19 mutants,
and we recently showed that a similar method applied to enzyme
active sites can result in orders of magnitude improvement in
promiscuous catalytic efficiencies50. The affinity enhancement we
observed here is comparable to that achieved in past binder
design studies only through laborious iterations of random or
focused mutagenesis, deep sequencing, and selections51–53. To
enable wide access to this affinity-enhancement design method,
we developed a web server, which we called the Affinity Library or
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AffiLib (http://AffiLib.weizmann.ac.il). AffiLib starts from the
molecular structure of an interacting pair and designs a library of
potentially enhanced binders (either both interacting proteins are
designed, as exemplified here, or only one of them, depending on

the user’s choice). We anticipate that AffiLib may in some cases
eliminate the laborious iterations of affinity maturation or deep
mutational scanning that are a requirement in most current
binder design and engineering studies54,55.
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(120,000)

colEwt2/Imdes3.5

Fig. 5 Large gains in affinity and specificity using AffiLib affinity-enhancement design. a Low-energy combinations of mutations (sticks) were designed at
the colEdes3/Imdes3 interface. Model structure of the starting colEdes3/Imdes3 pair and model of the higher-affinity colEdes3.5/Imdes3.5 are shown in salmon
and yellow, respectively. b SPR analysis for colEdes3.5/Imdes3.5 shows cognate affinity of 0.86 nM (data in light purple; fits in gray), relative to 73 nM for
colEdes3/Imdes3 (Supplementary Fig. 3). KD was determined by fitting to a single-exponential kinetic model (kon=4.15 × 105 M−1 s−1, koff=3.57 × 10−4 s−1).
c Improved pairwise specificity in colEdes3.5/Imdes3.5 relative to the original design pair. colEdes3.5 shows 10–104-fold affinity difference between cognate
(light purple) and non-cognate interactions (colEdes3 pairwise specificity values in parentheses). The SPR sensograms were collected at 0.96 nM Im
concentrations. Inset: Imdes3.5 shows no detectable binding to colEwt2 in concentrations up to 56.7 μM, translating to a pairwise specificity switch of 105 (in
parentheses)
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The structural basis of specificity. The molecular underpinnings
of specificity in natural protein-interaction networks are often
obscured by evolutionary drift and functional constraints outside
the binding interfaces. Among the designed pairs, by contrast,
changes were localized to the designed interfaces only, and all
designs were >80% sequence identical to the wild type, allowing
us to focus attention exclusively on the binding interface (Sup-
plementary Data 1). Visual inspection suggested that among the
Im designs that exhibited high network specificity, most had polar
binding surfaces. For instance, the highly specific Imdes1 (α1nM=
11.8) bound its cognate colEdes1 using a buried positive charge
(Lys31) that was stabilized by a countercharge (Glu78) on
colEdes1 and by hydrogen bonds; colEdes2/Imdes2 (Imdes2 exhib-
ited network specificity α1nM=3.7) formed a hydrogen-bonding
network within each partner and across the interface, including a
hydrogen bond with the Im hotspot residue Tyr52 that is not seen
in the parental interaction (Fig. 6a). Since polar contacts are
geometrically highly constrained, such interactions may enhance
specific molecular recognition. Note that the strategy of burying
charged or polar residues that are not compensated by non-
cognate partners is also observed in natural ultrahigh-specificity
pairs56. Nevertheless, design of polar interactions at binding sites

was until now only demonstrated in homo oligomeric coiled
coils57 and was considered a major unmet challenge for binder
design24–26,51.

The objective of our study was to design new high-specificity
pairs. Indeed, both the Im and the colE proteins of design pairs
1–3 showed >3 orders of magnitude pairwise specificity switches
relative to at least one of the non-cognate proteins (Fig. 4). Other
designs, by contrast, interacted with several non-cognate partners
with similar or even higher affinities, allowing us to also examine
the molecular basis of high specificity versus multispecificity. We
first focused on high-specificity Im designs, since they could
reveal relationships between backbone design and binding
specificity. Visual inspection suggested that high-specificity Im
design models had more preorganized loop I backbones. For
instance, in loop I of Imdes3, Pro28 constrained the conformation
space of neighboring amino acids, and in Imdes2, Ser25 stabilized
the backbone by hydrogen bonding to the backbone amide
nitrogen of Asp27 (Fig. 6b). To systematically quantify pre-
organization in backbone design, we used Rosetta to compute a
putative conformational landscape for each designed loop I. We
threaded each of the designed Im sequences on all of the Im
conformations of the same sequence length in our backbone

a

K31 

E78 

S24 

I22 

des1

colE

Im

Y52 

Q31 

F86 

N78 

des2

colE

Im

b

Q34 

L25 

P28 

Y55 

Imdes3

D27 
E29 

Q31 
S25 

Imdes2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

–140

–120

–100

0

300

600

900

rmsd to design (Å)

E
ne

rg
y 

(R
.e

.u
)

c
Imdes3

(Z-score=5.61)

Imdes7

(Z-score=1.50)

d Imdes3.5 colEwt2 colEwt2

Imdes1

Fig. 6 The structural basis of specificity and multispecificity among designed pairs. a Structure models show high polarity in designed, high-specificity
interfaces. Imdes1 buries positively charged Lys31 at the interface, which is compensated by negatively charged Glu78 on the cognate colEdes1 and by
hydrogen bonding to backbone atoms on Im loop I. colEdes2/Imdes2 interact through a hydrogen-bond network that involves hotspot residue Tyr52. b, c Im
Loop I preorganization predicts Im specificity. b Structure models show that stabilizing interactions within loop I of the high-specificity designs preorganize
the loop I backbone in the designed conformation. Loop I of Imdes3 is configured by Pro28 and side chain-backbone hydrogen bonds. Loop I of Imdes2 is
stabilized by a network of side chain-backbone polar interactions. c Modeling the sequence of the high-specificity Imdes3 on alternative backbone
conformations observed in the Protein Data Bank converges on low-energy conformations only in the vicinity of the designed backbone conformation (blue;
vertical cyan line at 0.9Å rmsd). Models of the multispecific Imdes7, by contrast, diverge to multiple minima away from the designed conformation (red). Z-
scores indicated in parentheses. d Models of the relaxed non-cognate colE/Im pairs suggest that low binding affinity results from cavities, electrostatic
repulsion and unsatisfied polar atoms at the interface. The model of colEwt2/Imdes3.5 (left), with KD ≥ 100,000 nM, shows a large cavity (yellow) in loop I
region and reorientation of the hotspot Phe86 (cognate colEdes3 orientation in gray). Model of colEwt2/Imdes1 (right), with KD≥ 100,000 nM, shows
positively charged Lys on colEwt2 that faces the positively charged loop I region on Imdes1 (surface colored according to the electrostatic potential), and a
negatively charged Glu that faces a surface of the same charge on helix II of Imdes1. The computed binding energies for these non-cognate interactions are
poor (−12.4 Rosetta energy units [R.e.u] for colEwt2/Imdes3.5 and −15.8 R.e.u for colEwt2/Imdes1) compared to tight binding of the cognate colEdes3.5/
Imdes3.5, colEdes1/Imdes1, and colEwt2/Imwt2 counterparts (−36.0, −39.9, and −34.6 R.e.u, respectively)
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database and computed the energy of the resulting Im models in
isolation from their colE partners, thus generating for each
sequence a landscape of conformations and their associated
energies. For each landscape, we calculated the Z-score (see
Methods), which reflects how well the designed loop I backbone
conformation is energetically discriminated from alternative
conformations; a large energy gap between the designed
conformation and alternatives (large Z-score) predicts that the
sequence is more stable in its designed conformation relative to
alternatives and hence is more preorganized58. The Im proteins,
Imdes1, Imdes2, and Imdes3, showed a large energy gap (Z-scores
2.6, 3.3, and 5.6, respectively), as was observed for the natural
Imwt2 (Z-score 3.6). By contrast, multispecific designs, such as
Imdes6 and Imdes7, exhibited low Z-scores (1.4 and 1.5,
respectively), including, in some cases, alternative backbone
conformations of lower energy than the designed conformation
(Fig. 6c and Supplementary Fig. 6). These results therefore
suggested that preorganized backbone conformations were more
likely to result in high-specificity binding.

We next tested whether computational modeling could provide
structural insights into the remarkable incompatibility between
some of the non-cognate pairs. To allow reliable modeling, we
focused on colE/Im pairs that showed high-affinity cognate
binding and for which our conformational-landscape analysis
suggested that the Im loop I backbone was preorganized (Imdes1,
Imdes2, Imdes3, Imdes3.5, and Imwt2). Using Rosetta, we computed
models for both cognate and non-cognate pairs. As expected,
models of the cognate pairs (KD < 80 nM) showed favorable
predicted binding energy (<−34 Rosetta energy units [R.e.u]).
Interestingly, design pairs 3 and 3.5, which differed by five
mutations and exhibited experimentally determined cross-
binding affinities similar to those of the cognates (Supplementary
table 1) were also predicted to have cognate affinities for their
cross-interactions (<−35 R.e.u; Supplementary Fig. 7 and
Supplementary Table 3). As expected, Rosetta did not discrimi-
nate between non-cognate pairs of high (KD < 100 nM) and
intermediate affinities (KD 100–1000 nM); these pairs generally
showed computed binding energies of approximately −27 R.e.u,
higher than cognate pairs but lower than the weak non-cognate
ones. In contrast, non-cognate pairs with weak affinities (KD >
1000 nM) had much higher predicted binding energies (>−27 R.
e.u). Furthermore, the interactions of colEwt2 with Imdes1, Imdes3,
and Imdes3.5 (KD ≥100,000 nM) showed extremely unfavorable
calculated binding energies (>−16 R.e.u). Visual inspection of
these non-cognate models revealed substantial packing defects
and in some cases same-charge repulsion and unpaired polar
amino acid side chains. Thus, preorganized and incompatible
backbone conformations precluded the formation of the hotspot
region and peripheral polar networks at the interface of non-
cognate colE and Im proteins, providing a possible molecular
explanation for the observed low affinities in these non-cognate
pairs (Fig. 6d).

To verify the atomic accuracy of the design procedure, we
determined the structures of two designed pairs by X-ray
crystallography: colEdes3/Imdes3 with >3 orders of magnitude
pairwise specificity relative to the wild-type colEwt2/Imwt2 and
colEdes7/Imdes7 with low Im specificity. In both structures, the
conserved hotspot region formed as predicted. Furthermore, the
high-specificity design, colEdes3/Imdes3 showed high accuracy
throughout loop I (0.5 Å Cα rmsd over all Im side chains). The
designed rigid-body orientation and side-chain conformations at
the interface were also atomically accurate, except two polar side
chains (Asn31 and Gln34) that reoriented due to a water
molecule that was not modeled by Rosetta. Apart from this
difference, the polar interaction network in this complex formed
with remarkably high accuracy compared to the designed one

(Fig. 7a). In the multispecific colEdes7/Imdes7, however, we noted
a conformational change in loop I localized around Ala25, while
the rest of the loop was atomically accurate (0.7 Å Cα rmsd on all
Im side chains). Nevertheless, this local difference relative to the
design conception prevented the formation of a designed
hydrogen-bond network (Fig. 7b). This local conformational
change was partly predicted by the conformational-landscape
analysis above, according to which multiple low-energy con-
formations were compatible with the designed sequence (Fig. 6c).

Thus, structural and computational analyses collectively
suggest that interface polarity and backbone preorganization
underlie ultrahigh pairwise specificity in the designs. Due to
backbone preorganization, the designed polar interactions can
only form accurately in the cognate pairs as seen in the
crystallographic analysis of the high-specificity pair colEdes3/
Imdes3 (Fig. 7a and Supplementary Table 2). Conversely, in the
non-cognate pairs that exhibit preorganized backbones, the
presence of polar but unsatisfied groups leads to frustrated
binding as seen in the computational docking analysis (Fig. 6d).
Finally, backbone flexibility may disrupt the formation of the
designed polar interactions, as seen in the crystal structure of
colEdes7/Imdes7 (Fig. 7b), enabling alternative binding modes and
leading to multispecific molecular recognition as for Imdes7

(Fig. 6c and Supplementary Fig. 5). We therefore conclude that
“heuristic” negative design24, in which each designed pair is
optimized individually for rigid and substantially different
backbone conformation than the other pairs, can result in
ultrahigh specificity pairs without explicitly designing incompa-
tible interactions among them.

Interaction networks exhibiting diverse specificity patterns.
The designs can be viewed as a protein–protein interaction net-
work comprising 8 × 8 high-homology pairs. We plotted the
expected steady-state binding patterns for two subnetworks, one
5 × 5 and another 4 × 4 (Fig. 8). The first network revealed an
architecture similar to some of the most complex signaling net-
works in humans, such as the FGF/FGFR network2. In both the
natural and computed networks, some proteins selectively bound
one or two partners, whereas others bound multiple partners. The
computed network, however, spanned a wider range of affinities,
potentially providing greater room for molecular control. The
other subnetwork appeared highly hierarchical, reminiscent of a
“Russian-doll” pattern, where one Im selectively bound only one
colE, a second bound two, a third bound three, and a fourth
bound four. Hundreds of other subnetworks can be constructed
from these data at different protein concentrations and compo-
sitions (Supplementary Data 2), providing a large resource for the
design of binding modules of different affinities and specifi-
cities (Fig. 8).

Discussion
Design of high-specificity interactions must consider multiple
molecular objectives, including protein affinity for a variety of
molecular targets22,49. It furthermore requires an ability to design
substantial conformational changes at the binding interface,
including indels21. We presented an algorithm that uses mole-
cular structures of natural proteins to design new binding-site
backbone conformations. Sequence alignments of non-
homologous but structurally similar backbone conformations
provided constraints that restricted design calculations to form
stabilizing side chain-backbone contacts that are essential for
backbone preorganization. This procedure resulted in several
ultrahigh specificity pairs as well as multispecific ones and
therefore in a large and complex network of homologous inter-
action pairs. We also demonstrated that affinity and specificity

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07722-9

8 NATURE COMMUNICATIONS |          (2018) 9:5286 | https://doi.org/10.1038/s41467-018-07722-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


could be readily enhanced in the designed pairs by applying the
automated, web-accessible AffiLib method. More generally,
AffiLib may in some cases eliminate the reliance on tedious
experimental affinity maturation in protein design and engi-
neering studies54,55.

In many cellular interaction networks, individual binding
modules, such as SH2 and SH3, exhibit low specificity, and large
specificity switches are realized by tethering multiple binding
modules49,59,60. In the designed pairs, by contrast, ultrahigh
specificity relative to the starting pair did not require tethering
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Fig. 8 Diverse interaction networks among the designed pairs. The network specificity of each Im for its cognate colE (αKD; Eq. (3)) is noted on top. The
width of the line that connects each colE/Im pair is proportional to the steady-state fractional occupancy of the bound state of this colE by the Im (Eq. (2)).
Interactions with fractional occupancy <1% are not shown. Network I: a complex network architecture exhibiting both high specificity (Imdes2) and
multispecificity (Imdes7). Network II: Imdes1 binds only its cognate colE; Imdes5 binds two colE proteins; Imdes7 binds three; and Imdes8 binds to all colE
proteins in the network, thereby exhibiting a hierarchical, “Russian-doll” like network architecture. Scripts for generating interaction networks between
selected sets of designed pairs are provided in Supplementary Data 2
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multiple domains. We are unaware that a relationship between
preorganization and specificity was previously noted in natural
cellular interaction networks, but it has been demonstrated, for
instance, in antibody–antigen recognition. Specifically, the back-
bones of germline antibodies are often flexible, enabling low-
affinity recognition of multiple antigens by adopting different
backbone conformations. During affinity maturation, by contrast,
mutations preorganize the backbone and enhance antigen speci-
ficity61,62. Since our results demonstrate that design of new and
preorganized backbones at an interface can lead to multiple new
high-specificity interactions, we speculate that a similar
mechanism may have been exploited by evolution in at least some
natural cellular interaction networks.

Many other challenging protein design problems may gain
from our specificity-design approach, including design of ortho-
gonal signaling modules13,18,37 and enzyme selectivity
switches46,63. Indeed, binding specificity and enzyme selectivity
switches in natural protein evolution are often accompanied by
indels at interface backbone segments, as in our design algorithm,
rather than just by surface sequence changes2,21,64.

We anticipate that the designed network of colE/Im pairs may
also be used to program synthetic interaction networks by serving
as protein–protein interaction modules or adaptors that facilitate
specific or multispecific interactions, as desired. In nature, pro-
teins involved in the same signaling or metabolic pathway are
often tethered to a scaffold protein, increasing pathway pro-
ductivity3,65. The affinity matrix provides a resource, from which
one could draw subsets of pairs with desired combinations of low
or high affinity, as well as insulated or multispecific binding, to
design desired wiring diagrams for synthetic multienzyme path-
ways. The designs are, to the best of our knowledge, orthogonal to
eukaryotic cellular systems, thereby providing a highly controlled
system for accurate pathway programming. The rules we defined
for generating a large network from a single pair of interacting
proteins can be applied, in principle, to any interacting pair of
proteins of known structure.

Methods
A database of alternative conformations for Im loop I. We implemented an
algorithm in RosettaScripts66 called SSMotifFinderFilter that searched all high-
resolution (≤2.2 Å; 60,422 PDB entries) crystal structures in the PDB for pairs of α
helical amino acid positions separated by 9–21 positions on the primary sequence
that furthermore superimposed the backbone atoms of the Imwt2 loop I stem (Ile22
and Leu36) and the preceding and succeeding positions (six positions in all) within
0.61 Å root mean square deviation (rmsd). Specifically, the rmsd calculation was
performed on the backbone heavy atoms (N, Cα, C, O) of six pairs of positions:
Imwt2 21–23 and 35–37, and three amino acids at the beginning and the end of
each matched loop.

PSSMs for colE, Im, and Im loop I. For the colE and Im proteins, we generated
multiple-sequence alignments (MSAs) that were based either on the four sequences
of the natural colicin Im and colE 2, 7, 8, and 9 proteins, or on sequences of >50%
identity to colEwt2 and Imwt2 that were collected using BLASTP67 on the non-
redundant (nr) database. The PSSMs were generated as described in ref. 47. For
each of the alternative loop I conformations, we generated a PSSM using PSI-
BLAST68 with one of the following inputs: (i) sequences that encoded a similar
backbone conformation that were identified based on pairwise alignment to the
input sequence of the backbone heavy atoms (N, Cα, C, O) with rmsd <2 Å for each
amino acid. The pairwise alignment algorithm (RotLibOutMover) is implemented
in RosettaScripts. The resulting sequences were clustered using cd-hit69, with a
clustering threshold of 90% sequence identity and default parameters. (ii) For
singleton conformations (no conformational homologs with <2 Å pairwise rmsd)
we used the BLOSUM62 scoring matrix as a PSSM70.

Im loop I backbone exchange. The structure of Ewt2/Imwt2 (PDB entry 3U43) was
minimized in Rosetta using the protocol described in ref. 47, and the structures of
the monomers were separated. We used AbDesign44 to exchange Imwt2 loop I
(amino acids Ile22 to Leu36) with each of the backbone conformations in the
database, and the structure was relaxed using cyclic-coordinate descent (CCD).
During this process, conservative mutations (sequence design) were allowed to
accommodate loop I to the context of Imwt2 with PSSM score ≥2 at each position.

The Im stem region is compatible with both the Im backbone and the backbone
derived from the conformation database, and accordingly we encoded three dif-
ferent options for the sequence space of allowed mutations on the Im stem: (1)
based on the PSSM of Im proteins; (2) based on the PSSM generated for the
alternative loop conformation; and (3) a hybrid, in which the Nʹ stem region was
based on the Im PSSM and the Cʹ stem region was based on the PSSM of the
alternative loop conformation. For each designed Im backbone, all three options of
stem PSSM were used for loop I backbone exchange, and the Im design with the
lowest energy among the three was selected. In total, 2657 of the conformations in
the database were successfully placed on Im2 instead of the wild-type loop I, with
backbone heavy-atom rmsd<0.5 Å between each loop conformation in its natural
protein context and after placement.

colE/Im interface design. During design, we used two versions of the Rosetta
energy function: the all-atom energy function (talaris2014)71 which is dominated
by van der Waals, implicit solvation, Coulomb electrostatics, and hydrogen
bonding, and a soft-repulsive energy function, in which the van der Waals overlaps
and residue conformational strain are attenuated. The energy functions were
modified to favor amino acids with higher PSSM scores and with harmonic
restraints on the Cα coordinates of the Im to prevent large backbone movements
during minimization. In the first step, the structure of colEwt2 was added to the
model of each Im conformation using the rigid-body orientation of colEwt2/Imwt2.
Then, a new orientation was sampled randomly by rotating the colE around the Im
by up to 10o around a pivot that connects the amide nitrogen of hotspot residue
Tyr55 on the Im and the Cα of Ala87 on colE. This step preserved the hotspot
interaction and generated orientations that were different from the wild-type
structure. Next, the sequences of both colE and Im at the interface (up to 10 Å)
were designed to optimize binding energy using the soft-repulsive energy function,
followed by all-atom docking with soft-repulsive energy. Last, sequence-design and
model refinement were performed through four iterations of mutations (except in
hotspot residues), side-chain packing and backbone, side chain, and rigid-body
minimization using the talaris2014 hard-repulsive energy function. The allowed
amino acids for design at each position on the colE and Im were those with PSSM
score ≥0. For each of the starting 2657 Im models, the design protocol was applied
100 times.

Design evaluation. For each of the starting 2657 Im conformations, the structure
with lowest colE/Im binding energy was selected among the 100 design trajectories.
A set of filters was then applied to select designs with favorable energies and
structural characteristics (values for colEwt2/Imwt2 in parentheses): Im stability<
−140 R.e.u (−148 R.e.u); colE stability<−215 R.e.u (−242 R.e.u), colE/Im binding
energy<−32 R.e.u (−40.5 R.e.u), colE/Im interface shape complementarity (Sc)
72>0.64 (0.66), colE/Im packing statistics (Packstat)73>0.69 (0.694) and solvent
accessible surface area buried upon complex formation (SASA) >1600 Å2 (1723
Å2). In total, 636 colE/Im designs passed these filters and were sorted by their
binding energy.

Pairwise specificity. The specificity of an Im or colE protein for its cognate
counterpart relative to another non-cognate one is defined as the ratio between the
dissociation constants of the non-cognate interaction and the cognate one, as given
by the equation

KD; non� cognate
KD; cognate

: ð1Þ

Network specificity parameter (ɑ). We define the fractional occupancy (f) as the
fraction of Im (or colE) bound to a colE (or Im) ligand at a predefined ligand
concentration, as given by the equation

f ¼ 1

1þ KD
½L�
; ð2Þ

where KD is the experimentally determined KD of this particular colE/Im
interaction and [L] is the ligand concentration. The network specificity parameter α
is then defined as the fraction of Im (or colE) bound to its cognate colE (or Im)
ligand (f1nM,cognate) relative to all non-cognate ligands (f1nM,non-cognate) at a chosen
concentration, for example 1 nM

α1 nM ¼ f1 nM; cognateP
noncognates f1 nM; noncognate

� ð3Þ

These equations hold under the assumption that the Im (or colE) concentration
is much lower than ligand concentration, which therefore remains constant49.

Computational affinity-design. Visual inspection identified seven positions on the
colEdes3/Imdes3 interface that formed close contacts (Asn83, Thr97, Thr98 on
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colEdes3 and Asn31, Gln34, Ile35, Val38 on Imdes3). We defined the “tolerated
sequence space” at these positions as all identities that had PSSM scores ≥−1 and
for which Rosetta ΔΔGbind calculations for each individual mutation were at most
mildly destabilizing (<2 R.e.u). We next enumerated all possible combinations of
mutations within the tolerated sequence space that differed from the starting pair
by at least three mutations (103,752 sequences), modeled them in Rosetta and
relaxed the models by side-chain packing and backbone, side chain, and rigid-body
minimization with harmonic restraints on the Cα coordinates. Many of the top-
ranking designs were very similar to one another in sequence. We therefore chose
variants that differed from one another by at least three mutations, ranked them by
binding energy, and selected 19 variants from the top 50. A web-accessible version
of the algorithm is available in the AffiLib web server (http://AffiLib.weizmann.ac.
il), which provides user control over amino acid positions for design, the allowed
sequence space at each position, and whether to design one or more of the
interacting proteins. The web server uses the more recent Rosetta energy function
ref201574 and allows selection of different ΔΔGbind and PSSM cutoffs when
computing the tolerated sequence space for design. The MSA and PSSM are
generated automatically for the entire protein sequence (see ref. 50 for details), and
are based on sequence homologs above a certain identity threshold, which can be
set by the user.

Conformational-landscape analysis. The sequence of each query Im design was
modeled on the backbone conformation of all Im proteins in the database with the
same loop I length as the query. The models were relaxed by four iterations of side
chain packing and backbone and side-chain minimization using the talaris2014
energy function, and the resulting models’ energies were plotted against the root
mean square deviation (rmsd) of their backbone heavy atoms relative to the query
Im design. Conformations with rmsd<0.9 Å from the query were defined as near-
native. For each resulting conformational landscape, we defined

Z�score ¼ μnonnative �minnear�native

σnonnative
; ð4Þ

where μnonnative is the average on all non-native energies; minnear-native is the
minimum-energy conformation within the native set; and σnonnative is the standard-
deviation of the non-native conformations’ energies.

Structural and energetic analysis of non-cognate complexes. For each Im
protein with Z-score >2.5 that had high experimentally measured cognate affinity
(des1, des2, des3, des3.5, and wt2), all cognate and non-cognate colE/Im pairs were
modeled in Rosetta by rigid-body docking and side-chain optimization as described
above in the colE/Im interface design section.

Interaction networks. In a selected set of designs, the steady-state fractional
occupancy of each colE/Im interaction was calculated in ligand concentration that
is equal to the experimentally determined cognate KD. For the Im interaction
networks plotted in Fig. 8, the cognate was defined relative to the Im of each pair.
The width of the line that represents each interaction is proportional to the frac-
tional occupancy (values below 1% occupancy were neglected). The network spe-
cificity parameter α was calculated for each Im within the network as described
above, given a colE concentration that is equal to the cognate interaction KD.
Scripts for generating interaction networks between selected sets of designed pairs
as well as all possible interaction networks are provided in Supplementary Data 2.

Plasmids and bacterial strains. pET21d plasmid harboring colEwt2 gene followed
by Imwt2 gene (separated by a 2-bp frameshift) with a C-terminal His6-tag41 was
used as basis for cloning. The 59 cognate colE/Im designs were ordered from Gen9
Inc. (Cambridge, MA). The genes were ligated into a linearized pET21d plasmid
using NcoI and XhoI restriction sites, transformed into T7 Express lysY/Iq E.coli
cells (NEB), and five colonies of each design were sequenced. Designs with at least
one colony that contained the designed colE/Im sequence were considered
potentially active and forming the designed complex. Viability was also tested by
transformation to the BL21 DE3 E. coli cells. In order to purify the designs, the
endonuclease His127Ala inactivation mutation48 was introduced by Quick-
Change75. For Im expression, the Im gene with C-terminal His6-tag was cloned in
the absence of the colE into pET21d plasmid.

Protein expression and purification. BL21 (DE3) cultures were grown in Luria
Broth (LB) medium at 37 °C to OD600=0.6–0.8 and induced with 1 mM IPTG at
16 °C overnight. Cells were harvested and stored at −20 °C. Pellet was resuspended
in 30 ml lysis buffer for 1 liter culture containing 50 mM Tris (pH 7.5), 50 mM
NaCl, 10 mM imidazole and 1 mM MgCl2, sonicated and centrifuged as previously
described41. The supernatant was loaded onto a column packed with 4 ml Ni-NTA
beads for 1 liter culture, equilibrated with lysis buffer, washed with lysis buffer
containing 20 mM imidazole, and eluted with lysis buffer containing 500 mM
imidazole. For SPR, the colE was separated from the Im by dissociating the ColE
from the His tagged Im with 6 M guanidine-HCl23 instead of lysis buffer, dialysis in
water (×1000 v/v) followed by 50 mM phosphate buffer (pH 7.5). The colE was

further purified on a cation-exchange column (SP HP; GE Healthcare) with a linear
gradient to buffer containing 50 mM phosphate buffer (pH 7.5) and 1M NaCl. The
Im gene was expressed and purified on Ni-NTA as described above, followed by
purification using gel filtration (HiLoad 16/600 Superdex 200 PG; GE Healthcare)
equilibrated with 50 mM Tris (pH 7.5) and 150 mM NaCl. Before SPR, the colE
and Im proteins were each dialyzed to buffer containing 50 mM MOPS (pH 7.5),
200 mM NaCl and 0.005% Tween-20. For crystallization, the colE/Im complex was
co-expressed and purified as for Im alone, with the gel filtration buffer containing
50 mM Tris (pH 7.5) and 50 mM NaCl. The complex crystallized at a con-
centration above 70 mg/ml.

Surface plasmon resonance. SPR experiments were performed using BIAcore
T200 (GE Healthcare) at 25 °C in buffer containing 50 mM MOPS (pH 7.5), 200
mM NaCl, and 0.005% Tween-20 (running buffer). ColE proteins were attached to
CM5 chips (GE Healthcare) by amine coupling to a total of roughly 500 response
units (RU). In the final stage of immobilization, the surfaces were blocked by 1M
ethanolamine (pH 8.0). Empty flow cells were used as concurrent negative controls.
Im proteins were injected at 20 μl/min for 240–360 s association (depending on
binding kinetics) followed by 720 s dissociation. A series of 8–12 Im concentrations
was used, in most designs, using threefold dilutions starting from 18.9 μM, and in
the remainder, twofold dilutions from starting concentrations that varied between
10 and 10,000 nM, depending on the design affinity. Regeneration was performed
between cycles using 1–1.7 M guanidine hydrochloride. The data were analyzed
using Biacore T200 evaluation software 3.0.

As a measure of confidence in the reported binding affinities, we chose 48 of the
81 pairs and repeated the SPR measurements exactly as explained above with
freshly prepared reagents and SPR chips (repeat affinities are reported in
parentheses in Supplementary Table 1). In all cases, the inferred dissociation
constants exhibited less than tenfold differences between the repeats and mostly
exhibited less than twofold differences (Supplementary Fig. 4). Furthermore, at the
end of each series of cognate and non-cognate measurements for a given colE, we
retested the designed-cognate Im protein at an intermediate concentration, and
verified that the colE was still active and exhibited a similar binding response as at
the start of the experiment.

Due to the vast heterogeneity in binding affinities and kinetics among designed
pairs (at least six orders of magnitude), it was not possible to use a single fitting
procedure to infer all of the dissociation constants. Specifically, all but two of the
cognate dissociation constants and many of the high-affinity non-cognate ones
were determined kinetically, by fitting the data to a single exponential or a two-
state reaction model (Supplementary Fig. 3 and Supplementary Table 1). By
contrast, for two cognate pairs (colEdes4/Imdes4 and colEdes8/Imdes8) and most of
the non-cognate ones, kinetic models did not produce reliable fits for the data, and
we therefore inferred the affinities using the steady-state analyte binding levels
(Req) at different concentrations (Fig. 3d and Supplementary Table 1). The KD

values for the repeat measurements were obtained using the same fitting procedure.
For comparison, Fig. 3d and Supplementary Fig. 5 present all the cognate and non-
cognate interactions using affinity fitting, including for the interactions that were
determined kinetically.

Structure determination and refinement. Crystals of colEdes3/Imdes3 and
colEdes7/Imdes7 were obtained using the sitting-drop vapor-diffusion method with a
Mosquito robot (TTP LabTech). Crystals of colEdes3/Imdes3 were grown from 25%
PEG 200, 50 mM sodium phosphate dibasic/citric acid pH=4.2 and 100 mM NaCl.
The crystals formed in the orthorhombic space group C2221, with two copies per
asymmetric unit. A complete dataset to 2.25 Å resolution was collected at 100 K on
a single crystal on in-house RIGAKU RU-H3R X-ray. The crystals of colEdes7/
Imdes7 were grown from 12% PEG 1500 and 0.05M MMT buffer pH=8.0 (mixing
DL-malic acid, MES and Tris base in the molar ratios 1:2:2—DL-malic acid). The
crystals formed in the orthorhombic space group P212121, with one complex per
asymmetric unit. A complete dataset to 1.56 Å resolution was collected at 100 K on
a single crystal on in-house RIGAKU RU-H3R X-ray.

Diffraction images of the colEdes3/Imdes3 and colEdes7/Imdes7 crystals were
indexed and integrated using the Mosflm program76, and the integrated reflections
were scaled using the SCALA program77. Structure factor amplitudes were
calculated using TRUNCATE78 from the CCP4 program suite. The colEdes3/Imdes3

and colEdes7/Imdes7 structures were solved by molecular replacement with the
program PHASER79. The model used to solve colEdes3/Imdes3 and colEdes7/Imdes7

structures was colEwt2/Imwt2 complex (PDB code 3U43).
All steps of atomic refinement of both structures were carried out with the

CCP4/REFMAC5 program80 and by Phenix refine81. The models were built into
2mFobs−DFcalc, and mFobs−DFcalc maps by using the COOT program82. Details
of the refinement statistics of colEdes3/Imdes3 and colEdes7/Imdes7 structures are
described in Supplementary Table 4.

Code availability. Rosetta is available free of charge to all academic users (http://
www.rosettacommons.org). Rosetta git version 627f7dd22223c3074594934b789ab
b4f4e2e3b10 was used for all design simulations. All Rosetta modeling and design
was done using RosettaScripts66 that are available with their command lines and
flag files in Supplementary Data 2.
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Data availability
The amino acid sequences and the computed Rosetta scores of the 59 designs that
were tested experimentally and the wild type are available in Supplementary
Data 1. The coordinates of the designs colEdes3/Imdes3 and colEdes7/Imdes7 are
available from the RCSB Protein Data Bank with accession codes 6ERE and 6ER6,
respectively. Plasmids encoding the 18 successful designs and designed pair 3.5
were deposited in the AddGene repository (https://www.addgene.org/
Sarel_Fleishman/).
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