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A B S T R A C T   

Pancreatic cancer (PC) is one of the most fatal malignant tumors, and is commonly diagnosed at 
an advanced stage with no effective therapy. Metabolism-related genes (MRGs) and immune- 
related genes (IRGs) play considerable roles in the tumor microenvironment. Therefore, an 
effective prediction model based on MRGs and IRGs could aid in the prognosis of PC. In this study, 
differential expression analysis was performed to gain 25 intersectional genes from 857 differ-
entially expressed MRGs (DEMRGs), and 1353 differentially expressed IRGs, from The Cancer 
Genome Atlas database of PC. Cox and Lasso regression were applied and a five-DEMRGs prog-
nostic model constructed. Survival analysis, ROC values, risk curve and validation analysis 
showed that the model could independently predict PC prognosis. In addition, the correlation 
analysis suggested that the five-DEMRGs prognostic model could reflect the status of the immune 
microenvironment, including Tregs, M1 macrophages and Mast cell resting. Therefore, our study 
provides new underlying predictive biomarkers and associated immunotherapy targets.   

1. Introduction 

Pancreatic cancer (PC) is one of the most lethal tumors, and is set to become the second deadliest malignancy in the USA by 2025 
[1]. Currently, surgery is the only method to potentially cure PC. However, only up to 20% of patients have a chance of initial surgical 
resection due to the lack of sensitive diagnostic screening analysis for early stage PC. Even for those patients for whom surgery is 
successful, more than 80% of patients will eventually develop local recurrence or metastasis [2, 3]. Current interventions to prevent, 
diagnose, and treat PC are insufficient, leading to poor prognosis [4]. To date, models based on clinical and pathological parameters, 
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such as the American Joint Committee on Cancer (AJCC) staging system, have been applied to evaluate prognosis [5]. However, this 
cannot be dynamically adjusted as the patient’s condition changes. Additionally, this system does not reflect the biological behavior of 
the tumor at the molecular level [6]. Hence it is necessary to develop personalized prediction methods for PC patients. 

One of the emerging hallmarks of cancer is reprogrammed cellular energy metabolism [7, 8]. Dysregulated metabolism satisfies the 
requirements of ideal survival and rapid proliferation of cancer cells[9]. Furthermore, the Warburg effect (anaerobic glycolysis) 
permits cancer cells to take up glucose and convert pyruvate into lactic acid despite insufficient oxygen [10]. Recent studies have 
indicated that metabolic alterations can also promote tumorigenesis and metastasis of PC through epigenetic regulation [11, 12]. 
Therefore, the relationship between metabolism and PC is crucial for understanding the pathogenesis in tumorigenesis. However, few 
studies have analyzed the correlation of metabolism-related genes (MRG) and the prognosis and survival of PC by high-throughput 
biomarker sequencing. However, due to the complexity of the tumor microenvironment [13], a single prognostic biomarker may 
not be sufficient to predict the clinical outcomes of PC. 

The overgrowth of the extracellular matrix in PC had been discovered to lead to the formation of barriers against the immune 
system, drug delivery, oxygen and nutrients. In order to supply nutrients to survive, the cells develop mechanisms that alter the typical 
metabolic pathways [14]. Through reprogramming and improving the immune response, immunotherapy facilitates anti-tumor ac-
tivities [15]. Metabolic pathways can either inhibit or promote immune cell functions and the differentiation, and functions of immune 
cells have enormous impacts with metabolism, hence a combination of the two ways may be a more effective treatment option [16]. 

A recent study had developed a novel metabolic-related signature to predict the overall survival for PC [17], while another study 
constructed a prognostic model based on immune-related genes for the prediction of survival in PC [18]. However, there is no pre-
diction model that takes both metabolic and immune genes into account to establish a model. Since the metabolism and immune 
systems are both the significant hallmarks of cancer, they may take part in the development of PC to a certain extent together. Here, we 
aimed to identify differentially expressed metabolism-related genes (DEMRGs) and immune-related genes (DEIRGs) in PC. Further-
more, the intersectional genes from DEMRGs and DEIRGs were discovered, and a prognostic prediction model created from system-
atically analyses of intersectional genes expressions and their association with clinic and prognosis. A series of bioinformatics analyses 
revealed and validated the potential molecular mechanisms of this prediction model. This study could therefore provide prognostic 
value for patients and offer a new basis for tumor therapy of PC. 

2. Materials and methods 

2.1. Acquisition of gene expression and clinical data 

RNA sequencing transcriptomics data and clinicopathological characteristics were downloaded from The Cancer Genome Atlas 
(TCGA) database (https://portal.gdc.cancer.gov), including 4 normal cases and 178 tumor cases. In view of the small scale of the 
normal cases in TCGA database, we obtain extra 167 mRNA expression data of normal tissue from the Genotype-Tissue Expression 
(GTEx) cohort in the University Of Cingifornia Sisha Cruz (UCSC) Xena database (https://xenabrowser.net/datapages/). “normalize 
Between Array” function in R language (version 4.0.2) were applied to combined with the gene expression data from the above two 
databases. The Perl and the R programming languages and the original data and the converted data were shown in Supplementary **1, 
2, 3 and 4. The metabolism-related gene set (Supplementary **5) was downloaded from Molecular Signature Database (MSigDB) using 
Gene Set Enrichment Analysis tool (GSEA, https://www.gsea-msigdb.org/gsea/index.jsp). While immune related genes were obtained 
using the ImmPort database (http://www.immport.org/) (Supplementary **5). Besides, the cBioPortal tool (https://www.cbioportal. 
org) database was carried out to display the alternation characteristics of MRGs. 

Furthermore, mRNA expression data of PC were searched and downloaded from the ICGC-PAAD-US from International Cancer 
Genome Consortium (ICGC) database (https://icgc.org/) as well as the Gene Expression Omnibus (GEO) database (https://www.ncbi. 
nlm.nih.gov/gds/). GSE28735 dataset from the GEO database using the keywords “pancreatic cancer”, “PC”, “microarray” and 
“adjacent”. The datasets were selected for the following criteria: (1) human pancreatic tissue samples; (2) ≥30 samples; (3) tumor and 
adjacent non-tumor pancreatic control samples. 

2.2. Differential expression analysis 

The DEMRGs and DEIRGs in PC were detected using the “limma” package in R language. False discovery rate (FDR) < 0.05 by a 
Wilcoxon rank-sum test was considered as significant. The “pheatmap” package was run to screen the heat-maps in R language loaded 
with differentially expression gene files. 

2.3. Enrichment analysis 

Gene ontology (GO) along with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were selected by 
the “clusterProfiler”, “ggplot2”, “org.Hs.eg.db” and “enrichplot” packages. Additionally, p-values less than 0.05 of samples were 
considered to be significantly enriched. 

2.4. Protein–Protein Interaction network construction 

The Search Tool for the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database could provide the 
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interaction information of genes/proteins. We utilized this database to construct a Protein-Protein Interaction (PPI) network. Nodes 
where the interactive relationships were greater than 0.4 were selected to build the network. 

2.5. Prognostic-related MRGs 

To obtain prognostic-related MRGs in PC, we used the “survival” package in R language to perform the univariate Cox regression 
analysis (P < 0.001). Based on Hazard Ratio (HR), prognostic-related MRGs were categorized into high risk MRGs (HR > 1) and low 
risk MRGs (HR > 1). 

2.6. Construction and validation of the MRGs prognostic model 

The least absolute shrinkage and selection operator (Lasso) and multivariate Cox proportional hazard regression analysis were 
further developed to construct the prediction model with “survival” package in R language. The formula of the prognostic model of PC 
patients’ prognosis was as follows: risk score = the sum of the multivariate Cox regression coefficient variation of each mRNA. Also, 
“survival” package was employed for receiving the survivorship curve with the survival probability of two groups. Additionally, 
receiver operating characteristic (ROC) curve along with area under the curve (AUC) value were implemented by the package “sur-
vivalROC”. AUC values could evaluate the prognostic model to uncover the prognostic biomarkers in PC, with values between 0.5-0.7 
representing moderate, 0.7–0.9 standing for better, as well as more than 0.9 describing as superior. 

2.7. Independent analysis and correlation analysis of clinical characteristics and five-DEMRGs in prognostic model 

Univariate and multivariate independent prognostic analyses, loaded with the “survival” package in R language, were implemented 
to identify the potential role of MRGs in prognostic model. Based on the Kruskal-Wallis rank-sum test, the “ggpubr” package in R 
language was applied to explore the relationships between five-DEMRGs and the clinico-pathological parameters. Parameters with p <
0.05 were considered statistically significant. 

2.8. Gene Set Enrichment Analysis 

Served as the target set, C2.cp.kegg.v7.2.symbols.gmt was applied to run Gene Set Enrichment Analysis (GSEA) analysis of all 
tumor cases with GSEA (version 4.1.0) downloaded from the Broad Institute. Gene sets with NOM p-values < 0.05 were considered as 
statistically significant. 

2.9. Evaluation of tumor infiltrated immune cells in prognostic model 

The CIBERSORT algorithm was utilized to calculate the fractions of the tumor infiltrated immune cells of all tumor cases. Data with 
p-values less than 0.05 were filtered and selected for further analysis with the “limma” package in R language. Difference and cor-
relation analyses were carried out with the “limma”, “vioplot”, “gglot2”, “ggpubr” and “ggExtra” packages. Only p-values less than 
0.05 were regarded as statistically significant using the Wilcoxon rank-sum and Pearson coefficient tests. 

2.10. Cell lines and cell culture 

HPDE, a pancreatic normal ductal epithelial cell line, together with PC cell lines CFPAC-1, BXPC-3, PANC-1 and MIA PaCa-2 were 
all purchased from the Cell Bank of the Chinese Academy of Science (Shanghai, China). HPDE, PANC-1 and MIA PaCa-2 were cultured 
in DMEM basal medium while CFPAC-1 and BXPC-1 in RPMI-1640 basal medium (GIBCO, US). Besides, all cell lines were supple-
mented with 10% fetal bovine serum (GIBCO, US), 1% penicillin and 1% streptomycin (Beyotime, China) in cell incubator at 37 ◦C, 5% 
CO2. 

2.11. Protein extraction and Western blot analysis 

All cell line samples were collected in microcentrifuge tubes and treated with Triton-X100 lysis buffer for 20 min at 4 ◦C. Then, the 
samples were centrifuged at 12500 rpm for 15 min at 4 ◦C to gain the supernatants. The protein concentrations were determined by 
BCA protein concentration detection kit and boiled with sample buffer for 5 min at 95 ◦C. 20 μg of protein samples were separated on 
12% SDS-PAGE gels and transferred to 0.22 μm polyvinylidene fluoride (PVDF) membranes. Then, the membranes were blocked in 5% 
non-fat milk for 1.5 h at room temperature. The membranes were incubated with primary antibody overnight at 4 ◦C. Next day, the 
blots were washed with TBST buffer and then incubated for 1 hr with gently rinsing in the HRP-conjugated secondary antibodies 
solution. Western blots were incubated with ECL substrate for 1 min then visualized using ultra-sensitive multifunctional imager. 
PIK3CA (A16950, ABclonal), ARG2 (14825-1-AP, Protein technology Group), IDO1 (13268-1-AP, Protein technology Group), PTGS2 
(A3560, ABclonal), PLCG1 (A8899, ABclonal) and Actin (ACO26, ABclonal) were purchased and used in this study. 
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2.12. Statistical analysis 

All analyses were accomplished by R language version 4.0.2. Unless otherwise declared, p < 0.05 was considered to be significant. 

3. Results 

3.1. Identification of DEMRGs and DEIRGs 

A flowchart of the analysis procedure for this study is summarized in Figure 1. Differential expression analyses identified DEMGRs 
and DEIRGs. A heat-map indicates how PC cases could be distinguished from normal cases (Figure 2A, B). LogFC > 0 on behalf of the 
up-regulated genes while logFC < 0 represent the down-regulated genes. A total of 857 DEMRGs (782 up-regulated, and 75 down- 
regulated) and 1353 DEIRGs (1260 up-regulated & 93 down-regulated) were identified in tumor samples when compared with 

Figure 1. Flowchart of the data analyses procedure.  
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Figure 2. Identification of DEMRGs and DEIRGs. (A, B) Heat-map and volcano of significantly DEMRGs and DEIRGs in PAAD. The color from red to 
blue represents the progression from high expression to low expression. (C) Top 30 pathway from KEGG enrichment analysis of DEMRGs. 
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normal samples (Supplementary **6 and 7). The results of KEGG pathway enrichment analysis indicated that these DEMRGs were 
associated with signaling pathways related to material and synthesis metabolism (Figure 2C). 

3.2. Twenty five intersectional genes were discovered from the intersections of DEMRGs and DEIRGs 

Intersections between the up-regulated or down-regulated DEMRGs and DEIRGs were visualized in Venn diagrams (Figure 3A). 
Figure 3B shows 24 common differentially expressed genes that were up-regulated, and one common differentially expressed gene that 
was down-regulated in both DEMRGs and DEIRGs. In order to visualize potential interactions between these 25 DEMRGs, PPI network 
construction based on the STRING database was performed that covered 25 nodes and 43 edges (Figure 3C). Therefore, a total of 25 
DEMRGs may be crucial in the pathology of PC. 

3.3. Construction of the five-DEMRGs prognostic model for PC 

To further screen the genes related to the prognosis of PC, univariate Cox and Lasso regression analyses were employed from 25 
DEMRGs. And these two analyses screened out eight DEMRGs, which incorporated five high-risk DEMRGs and three low-risk DEMRGs 

Figure 3. Intersection and PPI network construction of 25 DEMRGs. (A, B) The international genes of up- and down-regulated DEMRGs and 
DEIRGs. (C) PPI network construction with hiding disconnected nodes. 
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(Figure 4A, B, C). Additionally, multivariate Cox regression proportional hazard analysis was applied among eight prognostic-related 
DEMRGs, which found five-DEMRGs could construct the prognostic model to independently predict the prognosis of PC (Figure 4D). 
Phosphatidylinositol-4,5-bisphosphate 3-kinase Catalytic Subunit Alpha (PIK3CA), Indoleamine 2,3-dioxygenase 1 (IDO1) and 
Prostaglandin-endoperoxide Synthase 2 (PTGS2) with HR > 1 were considered as oncogenes, whereas Arginase 2 (ARG2) and 
Phospholipase C Gamma 1 (PLCG1) with HR < 1 were regarded as tumor suppressors (Table 1). The risk scores calculated from the 
prognostic model were as follows: 

Risk score = 0.2378 * PIK3CA expression +0.0228* IDO1 expression + (− 0.2205) * ARG2 expression +0.0137 * PTGS2 +
(− 0.1870) * PLCG1 expression. 

Furthermore, we also validated the protein expressions of these five-DEMRGs by western blotting analysis and found that most 
were highly expressed in PC cell lines (Figure 5). 

3.4. General gene expression and alteration characteristics of five-DEMRGs 

The mRNA expression levels of five genes were significantly increased in PC samples from our data and GEPIA database (Sup-
plementary *1A and B). Supplementary *1C and D show the top ten GO terms and pathways of the above five genes by GO and KEGG 
enrichment functional analyses. Furthermore, genomic alterations and potential drugs of the five-DEMRGs were analyzed by the 
cBioPortal tool. Of the samples 12.1% presented with alterations in the five-DEMRGs, while PIK3CA and IDO1 were the most 
commonly altered genes; with amplification being the main type of genetic alteration (Supplementary *2). 

3.5. Validation of the accuracy of the five-DEMRGs prognostic model 

According to the median risk score, all samples were averagely divided into high- and low-risk groups. As survival analysis 
revealed, high-risk groups in PC were correlated with poorer prognosis compared with low-risk groups (p < 0.001; Figure 6A). ROC 
curve was performed to evaluate the specificity and sensitivity of the five-DEMRGs prognostic model. Additionally, AUC values at 
years 1, 2, and 3 were 0.755, 0.682 and 0.657, respectively (Figure 6B), indicating that the five-DEMRGs prognostic model showed 
better accuracy in survival prediction. A heat-map distribution of the five-DEMRGs is shown in Figure 6E. As the risk score increased, 
the amounts of surviving patients decreased while the number of dead patients increased (Figure 6C). Furthermore, the prognosis of 
the low-risk group sample is significantly better than that of the high-risk group (Figure 6D). 

ICGC-PAAD-US from the ICGC database and GSE28735 dataset from the GEO database were performed to validate the prediction 
performance of the five-DEMRGs model. Risk scores of all samples were calculated using the same formula. As shown in Figure 6F and 
G, high-risk groups had markedly worse survival than low-risk groups in other online databases. In addition, we also performed a Lasso 
regression analysis, a commonly used method in bioinformatics modelling, and found an eight-DEMRGs model of PC. According to the 
ROC analyses of the five- (based on multivariate Cox regression analysis) and eight-DEMRGs model (on the basis of the Lasso regression 
analysis), the AUC at 2 or 3 years of the former was more accurate than that of the latter (Figure 6B and Supplementary *5A). As such, 
these consequences demonstrated that the five-DEMRGs model could indeed accurately predict the prognosis of PC. 

3.6. Risk score from the five-DEMRGs prognostic model could be an independent predictor of PC 

Independent prognosis analysis was carried out to further verify the correlation of risk scores and PC prognosis. The hazard ratio of 
the risk score was 1.188 (1.115–1.267) with p < 0.001 from univariate independent prognostic analysis (Figure 7A), while multivariate 
independent prognostic analysis revealed a hazard ratio of the risk score of 1.173 (1.097–1.255) with p < 0.001(Figure 7B). The higher 
the risk score, the poorer the prognosis. These data were clinically and statistically significant, which indicated risk scores could be 
independent predictors of PC. Combined with age, gender, histological grade and stage, the five-DEMRGs prognostic risk score was 
applied to draw a ROC survival curve. Compared to other clinical characteristics, the five-DEMRGs prognostic risk scoring model was 
more accurate at predicting the 1, 2, and 3 year survival rate of PC samples (Figure 7C, AUC = 0.742, 0.657 and 0.611, respectively). 

Figure 4. Construction of the five-DEMRGs prognostic model with 25 DEMRGs. (A) Univariate Cox regression analysis of 8 DEMRGs. Red and blue 
dots indicate the high-risk and low-risk respectively. (B) Screening of optimal parameter (λ) at which the vertical lines were drawn. (C) Lasso 
coefficient profiles of the 8 DEMRGs with non-zero coefficients determined by the optimal λ. (D) Multivariate Cox regression analysis was applied to 
construct the five-DEMRGs prognostic model. 

Table 1 
Multivariate Cox regression analysis.  

ID coef HR HR.95L HR.95H p-values 

PIK3CA 0.2378 1.2685 1.0649 1.5110 0.008 
IDO1 0.0228 1.0231 1.0057 1.0408 0.009 
ARG2 − 0.2205 0.8021 0.6357 1.0121 0.063 
PTGS2 0.0137 1.0138 1.0031 1.0247 0.012 
PLCG1 − 0.1870 0.8295 0.7420 0.9272 0.001  
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Figure 5. The protein expressions of the five-DEMRGs in pancreatic cancer and normal cell lines. (A) The level of five genes were tested by western 
bolt analysis with antibodies against indicated molecules in HPNE, CFPAC-1, BXPC-3, PANC-1 and MIA PaCa-2 cell lines. (B–F) Quantitative 
analysis of the protein expression of the five-DEMRGs in pancreatic cancer and normal cell lines. Data are shown as Mean ± SD. n.s. no significance, 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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3.7. Five-DEMRGs are strongly correlated with prognosis and the clinico-pathological characteristics of PC patients 

The clinico-pathological statistics of PC patients in the TCGA database are listed in Table 2. Furthermore, the Wilcoxon rank-sum 
test was carried out and showed the correlation of five-DEMRGs and clinico-pathological characteristics (Supplementary **8). The 
heat-map presents the expression levels of the five-DEMRGs in high-risk and low-risk groups with clinical characteristics (Supple-
mentary *3A). As shown in Supplementary *3B, PIK3CA, ARG2 and PTGS2 expression levels were significantly associated with age, 
histological grade, stage and T classification respectively. Furthermore, Supplementary *4 displayed the correlation of 

Figure 6. Validation of the accuracy of the five-DEMRGs prognostic model. (A) The accuracy of prognostic model in TCGC database. OS curve for 
patients in high-risk group (red curve) and low-risk group (blue curve). (B) ROC curve analysis for the feasibility of five-DEMRGs prognostic model. 
(C–E) The risk score, survival status and a risk heat-map analyses for patients of high-risk group and low-risk group. (F and G) The accuracy of 
prognostic model in the ICGC and GEO databases. 
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Figure 7. Independent prognostic analyses and ROC curve of risk scores and clinical characteristics. (A) Forest plots of univariate independent 
prognostic analysis. (B) Forest plots of multivariate independent prognostic analysis. (C) ROC curve of 1-, 2-, and 3-year OS for multiple prognostic 
indicators of PPAD samples. 
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clinicopathological factors and prognosis., and we found T classification and N classification could affect the prognosis in PC. These 
data suggested that the five-DEMRGs were closely related to the clinical progression of PC. 

3.8. Gene Set Enrichment Analysis 

To further confirm the association of risk scores and the metabolism pathway, the C2 Kegg collection from MSigDB in GSEA was 
used to analyze data between the high- and low-risk groups. The high-risk group was enriched in starch and sucrose metabolism whilst 
the low-risk group was enriched in ABC transporters, the calcium signaling pathway, glycosaminoglycan biosynthesis chondroitin 
sulfate, glycosphingolipid biosynthesis ganglio series, GNRH signaling pathway, long term depression, MTOR signaling pathway, 
neuroactive ligand receptor interaction, and taste transduction (Figure 8A, B and Table 3). 

3.9. Risk scores impact the immune activity of the tumor microenvironment 

In order to explore the association between risk scores and the immune microenvironment, fractions of tumor infiltrated immune 
cells were analyzed via CIBERSORT. Figure 9A, B display the difference and correlation of tumor infiltrated immune cells. Through the 
intersection of these above two analyses, two kinds of tumor infiltrating immune cells were positively associated with risk scores, 
which included M1 macrophages and Mast cells resting. Regulatory T cells (Tregs) were shown to be negatively correlated with risk 
scores (Table 4). 

3.10. Risk scores are closely correlated with immune checkpoint genes 

Immune checkpoint genes (ICGs) play vital roles in circumventing self-reactivity and may be novel cancer targets [19]. The 
expression of 79 ICGs of PC (Supplementary ** 9), identified from the literatures [20, 21, 22], were downloaded from the TCGA 
database. We clustered the PC samples into different groups using the “ConsensusClusterPlus” package on the basis of the expression of 
the ICGs. There was the lowest crossover between the PC samples when the consensus matrix k value was equal to 3, which divided the 
PC patients cohort into three clusters, namely clusters 1, 2 and 3 (Supplementary *5B–D). According to a Kaplan-Meier survival 
analysis for the clustered samples, the survival curve revealed significantly better overall survival in cluster 3 compared with other 
clusters (Supplementary *5E), suggesting that the ICGs could classify the PC samples at a prognostic level. Furthermore, we also carried 
out a differential analysis of the ICGs between high- and low-risk groups (Supplementary *6). The ICGs listed in Supplementary ** 10, 
show a significant correlation between high- and low-risk groups. 

Table 2 
Clinico-pathological characteristics statistics of PAAD patients.  

Clinical characteristics  Mean ± SD Percentages 

Follow-up time  584.36 ± 464.72  
Survival status Alive 81 49.09%  

Dead 84 50.91% 
Age ≤65 79 47.88%  

>65 86 52.12% 
Gender Male 90 54.55%  

Female 75 45.45% 
Grade G1 27 16.36%  

G2 90 54.55%  
G3 44 26.67%  
G4 2 1.21%  
Not available 2 1.21% 

Stage I 19 11.52%  
II 137 83.03%  
III 2 1.21%  
IV 4 2.42%  
Not available 3 1.82% 

T T1 7 4.24%  
T2 21 12.73%  
T3 133 80.61%  
T4 2 1.21%  
Not available 2 1.21% 

M M0 73 44.24%  
M1 4 2.42%  
Mx 88 53.33% 

N N0 47 28.48%  
N1 113 68.48%  
Not available 5 3.03%  
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Figure 8. GSEA analysis of risk score of prognostic model in PAAD. (A) The enriched gene sets in C2 kegg collection by the high-risk group. (B) The 
enriched gene sets in C2 kegg collection by the low-risk group. Each color represented corresponding gene set. Genes on the right of X-axis had 
positive correlation with gene sets, while genes on the left of X-axis had negative correlation with gene sets. Only gene sets with NOM p value <0.05 
were considered as statistically significant. 
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4. Discussion 

Tumors have complex metabolic changes known as metabolic reprogramming, which has been highlighted as a core marker of 
cancer [23]. Including catabolic and anabolic processes, metabolism participate in carcinogenic pathways and affect the growth and 
proliferation of cancer cells. Numerous targeted therapies and immunotherapies fail to show satisfying outcomes in PC [24, 25, 26], 
while the effect of reprogramming metabolism have been conducted on the occurrence and progression of PC [3]. Besides, the 
metabolism of PC is closely associated with chemo-resistance, radio-resistance, and immunosuppression [27, 28, 29]. However, PC can 
be divided into different metabolic subgroups, which predict different outcomes and responses to therapy [30]. Considering the rapid 
development of current high-throughput technology, the sequencing of potential genes or the whole genome can be utilized by 
specialized laboratories. This makes genomics research more closely linked to clinical diagnostic and therapeutic applications, 
allowing the data construction of gene-related prediction practical. Given the progression of PC, metabolic markers can predict patient 
response to individualized therapy. Characteristic changes in metabolic processes may occur more earlier than symptoms in the clinic. 
In view of few studies have focused on the prognostic characteristics of PC patients based on MRGs and IRGs. Here, we aimed to 
construct a comprehensive prognostic model to precisely predict the prognosis of PC patients from the above two aspects. 

In this work, multiple bioinformatics analyses were carried out to construct a five-DEMRGs prognostic prediction model for PC. 
Furthermore, we also performed the western blotting experiment to validate all the five genes in model showed high protein expression 
in several PC cell lines. The PPI network indicated PTGS2 was the critical key gene. Upregulation of PTGS2 (also known as 
cyclooxygenase-2; COX-2) exerts its effect via the overproduction of prostaglandin E2 (PGE2). Therefore, the urinary PGE2 metabolites 
(PGE-M) may serve as a promising biomarker to predict PC risk [31]. As a COX-2 inhibitor, Celecoxib, together with Gemcitabine and 
Ironotecan, had been found to increase the overall survival of PC from about 6 months to 18 months [32]. And the mechanism of COX-2 
has been shown to include effects on angiogenesis as well as apoptosis. It is crucial that the expression of COX-2 present during the 
early neoplastic changes of PC, well before progression to invasive disease. This indicates the five-DEMRGs that include COX-2 can 
make earlier clinical diagnosis of the disease [33]. The cBioPortal tool indicated that PIK3CA and IDO1 were the most commonly 
altered genes. The clinical data of PC downloaded from the TCGA database exhibited PIK3CA, ARG2 and PTGS2 were significantly 
correlated with age, histological grade, stage, and T classification (Supplementary *B). Furthermore, the above three genes were 
considered as oncogenes with HR > 1 in this study. Regarded as a primary downstream target of the RAS family, PIK3CA involves in the 
regulation of proliferation and apoptosis in most cancers [34], and PIK3CA mutation had been reported in patients with carcinoma of 
pancreas [35]. Sivaram et al. demonstrated that tumor cell PIK3CA-AKT signaling could limit T cell recognition and clearance of PC 
cells [36]. By targeting PIK3CA to inhibit the phosphatidylinositol 3 kinase/AKT signaling pathway, miR-142-5p has been shown to 
inhibit pancreatic cancer migration and invasion [37]. In addition, a study displayed the PI3K/Akt/mTOR network signaling was 
activated in PC and the proliferation and drug resistance were regulated by this pathway. In IDO1 expressing tumors, tryptophan is a 
legitimate one-carbon source for the tetrahydrofoloc acid cycle. Also, IDO1 activity consumes tryptophan and the reduction of 
tryptophan decreases tumor-infiltrating T cell activity [38]. Interestingly, tryptophan is reported to be one of the most depleted 
interstitial nutrients in PC [39]. And a clinical trial had been proved the combination of navoximod (a IDO1 inhibitor) and atezoli-
zumab demonstrated acceptable safety and tolerability for advanced cancer patients [40]. And in PC, the tumor suppressors ARG2 and 
PLCG1, show mRNA expression and protein levels that are significantly higher than in normal cells. ARG2 which is an extrahepatic 
mitochondrial enzyme, can catabolize arginine into ornithine and urea to induce obesity. The loss or silencing of ARG2 in human or 
mouse tumors strongly suppresses PDAC growth, especially in obese hosts [41]. However, a recent study indicates that ARG2 is 
expressed in lung cancer but it does not induce tumor immune escape and does not affect disease progression probably due to the lack 
of concomitant NOS expression [42]. By activating PLCG1, a novel member of the TSPAN superfamily-tetraspanin 1 may affect PC cell 
migration and invasion as well as MMP2 expression [43]. However, in myelodysplastic syndromes, reduced PLCG1 expression is 
associated with inferior survival [44]. We therefore speculate that the paradox of the opposing effects of ARG2 and PLCG1 expressions 
may be due to the specific environmental ways in which these two genes regulate cellular processes through different regulatory 
networks. Furthermore, from our study, the evidence of validation (ICGC-PAAD-US and GSE28735 datasets) and independent prog-
nostic analyses further verified the feasibility of the prediction model, and risk scores from the model could act as independent 

Table 3 
Enriched gene sets.  

C2 kegg collection Gene set names NES NOM p-val 

High-risk group KEGG_STARCH_AND_SUCROSE_METABOLISM 1.47 0.048 
Low-risk group KEGG_MTOR_SIGNALING_PATHWAY − 1.70 0.008  

KEGG_TASTE_TRANSDUCTION − 1.67 0.004  
KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE − 1.62 0.022  
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES − 1.60 0.026  
KEGG_GLYCEROPHOSPHOLIPID_METABOLISM − 1.58 0.012  
KEGG_ABC_TRANSPORTERS − 1.58 0.024  
KEGG_CALCIUM_SIGNALING_PATHWAY − 1.56 0.006  
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION − 1.54 0.006  
KEGG_GNRH_SIGNALING_PATHWAY − 1.49 0.024  
KEGG_LONG_TERM_DEPRESSION − 1.45 0.045  
KEGG_MAPK_SIGNALING_PATHWAY − 1.43 0.050  
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Figure 9. Difference and correlation analyses of tumor infiltrated immune cells. (A) Comparisons of 22 kinds of tumor infiltrated immune cells 
between high-risk and low-risk groups. The blue violin diagram presented low-risk group, and the red violin diagram on behalf of high-risk group. 
(B) The correlation between tumor infiltrated immune cells and the risk score. 
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prognostic factors for PC. In addition, the AUC values at 2 or 3 years of the multivariate Cox regression analysis were more accurate 
when compared with the Lasso regression analysis, another commonly used bioinformatics model. The consequences of GSEA revealed 
that the high-risk group was enriched in starch and sucrose metabolism whilst the low-risk group was correlated with plentiful 
metabolic pathways, manifesting that an imbalance of the tumor metabolic microenvironment may affect the progression of PC. 

Regulating the distribution and proportion of immune cells, tumor infiltrated immune cells are closely correlated with angio-
genesis, metastasis, and proliferation of tumor cells. Tumor inflammation is extremely active, especially in the early stages of cancer 
[45]. In this study, we found the risk scores were associated with the early stages of PC, suggesting potential roles for risk scores in PC 
carcinogenesis. Infiltration of CD4+ CD25+ FOXP3+ Tregs is associated with immunologic tolerance and poor prognosis of PC [46]. 
Furthermore, circulating Tregs are regarded as prognostic factors for chemotherapeutic response in unresectable PC patients [47]. 
These phenomena demonstrate the vital role of Tregs in the PC tumor microenvironment. However, in this work, we discovered risk 
scores were negatively associated with Tregs. A previous study found that Tregs were dynamically distributed during tumorigenesis 
and progression. CD103+ was found to be recruited at day 7 but decreased with tumor progression [48]. Therefore, we speculated the 
association of risk scores and Tregs would be weakened during the development of PC. Acting as antitumor immune components, M1 
macrophages have been shown to prevent immune escape in PC [49]. In early tumors, macrophages are mainly M1 type, which play 
pro-inflammatory tumoricidal roles [50]. Combined with the data from our study, we hypothesized that the correlation between M1 
macrophages and risk scores may be an early event in PC carcinogenesis. Mast cells are the major component of the tumor immune 
microenvironment and regulate tumor progression by releasing pro-tumorigenic and anti-tumorigenic molecules [51]. Mediators such 
as IL-8, VEGF, and histamine are thought to promote tumor growth, while IL-1, IL-6 and TNF are thought to have anti-tumor growth 
properties. In our study, we found mast cell resting was greater in the high-risk group than the low-risk group, and risk scores were 
positively correlated with mast cell resting. Thus, these data further demonstrated that the association of risk scores and these immune 
cells is an early event in the progression of PC. Additionally, when exploring the correlation of the risk scores and ICGs, we found 12 
differential expressed ICGs, indicating a potential relationship between the risk scores model and immunotherapy response. Most of 
these genes were overexpressed in the low-risk group, among which TNFRSF4 was one of the most significantly expressed genes. High 
expression of TNFRSF4 (also known as OX40) has been correlated with better overall survival colon cancer. In lymphomas, OX40 
expression is significantly increased in CD4 T cells, and more specifically, OX40 expression can actually be used as a marker for tumor 
antigen-specific Tregs [52]. 

The five-DEMRGs model in this study proposed a new insight from tumor metabolism to predict PC prognosis when compared with 
previous studies. These five-DEMRGs were also immune genes, and these genes may achieve real-time detection of disease recurrence 
and treatment response after immune checkpoint inhibitor treatments and surgical resection. In addition, each of the five genes in this 
model has a close clinical correlation with PC. Screened by layers of bioinformatic analyses, this model can be more comprehensive, 
accurate and early to evaluate the prognosis and clinic of PC. 

5. Conclusion 

Collectively, our study identified and validated a five-DEMRGs model to independently predict PC prognosis. The prognostic 
significance of this model may contribute to monitor PC occurrence. Our study may also lead to individualized treatments, and 
provides new insights for PC prognosis. 
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