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Objective: With the recent development of various MRI-conditional cardiac implantable electronic devices (CIEDs), the 
accurate identification and characterization of CIEDs have become critical when performing MRI in patients with CIEDs. We 
aimed to develop and evaluate a deep learning-based algorithm (DLA) that performs the detection and characterization of 
parameters, including MRI safety, of CIEDs on chest radiograph (CR) in a single step and compare its performance with other 
related algorithms that were recently developed.
Materials and Methods: We developed a DLA (X-ray CIED identification [XCID]) using 9912 CRs of 958 patients with 968 
CIEDs comprising 26 model groups from 4 manufacturers obtained between 2014 and 2019 from one hospital. The performance 
of XCID was tested with an external dataset consisting of 2122 CRs obtained from a different hospital and compared with the 
performance of two other related algorithms recently reported, including PacemakerID (PID) and Pacemaker identification 
with neural networks (PPMnn).
Results: The overall accuracies of XCID for the manufacturer classification, model group identification, and MRI safety 
characterization using the internal test dataset were 99.7% (992/995), 97.2% (967/995), and 98.9% (984/995), respectively. 
These were 95.8% (2033/2122), 85.4% (1813/2122), and 92.2% (1956/2122), respectively, with the external test dataset. 
In the comparative study, the accuracy for the manufacturer classification was 95.0% (152/160) for XCID and 91.3% for 
PPMnn (146/160), which was significantly higher than that for PID (80.0%,128/160; p < 0.001 for both). XCID demonstrated 
a higher accuracy (88.1%; 141/160) than PPMnn (80.0%; 128/160) in identifying model groups (p < 0.001).
Conclusion: The remarkable and consistent performance of XCID suggests its applicability for detection, manufacturer and 
model identification, as well as MRI safety characterization of CIED on CRs. Further studies are warranted to guarantee the 
safe use of XCID in clinical practice.
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INTRODUCTION

Cardiovascular diseases (CVDs) are leading causes of 
global mortality and major contributors to disability. The 
burden of CVD has increased in most countries over the 
past decades [1]. The indications for cardiac implantable 
electronic devices (CIEDs), including pacemakers (PMs) and 
implantable cardiac defibrillators (ICDs), have been extended 
based on recent clinical trials, especially for the primary 
prevention of sudden cardiac death and improvement of left 
ventricular dysfunction [2-4]. Therefore, CIED implantations 
have increased dramatically over the past several years [5-9]. 
Meanwhile, rapid growth in engineering and manufacturing 
has led to various MRI-conditional CIEDs that have been 
widely approved [10-13]. MRI is the most commonly used 
standard imaging modality because of its excellent spatial 
resolution, tissue characterization, and lack of radiation 
[14]. However, MRI for a patient with a CIED still causes 
trepidation among health practitioners, given the concerns 
about the interaction between the electromagnetic fields 
of MRI and CIED. Denying these patients an MRI has grave 
consequences since an estimated 50%–75% of patients with 
CIEDs require MRI during their lifetime [15]. Furthermore, 
when patients visit a hospital for an emergency, in the 
absence of a dedicated cardiologist or specific information 
about the patient’s CIED, important medical decisions, 
including whether to obtain an MRI scan, may be delayed 
[16]. Therefore, easy assessment of MRI compatibility with 
CIEDs in such circumstances can facilitate medical decision-
making, as well as allow safe and prompt patient care. 

Chest radiography (CR) offers an untapped easily available 
tool that facilitates reliable identification of the type and 
manufacturer of CIED. Each CIED has certain distinctive 
morphological features that make radiological identification 
possible [17]. To date, there have been a few approaches 
for CIED identification that involve the manual comparison 
of the radiographic appearances of a device with a flow 
chart or deep learning-based device identification from 
cropped and magnified CRs [18-20].

However, for physicians and radiologists who are 
unfamiliar with CIEDs, manipulating CRs to detect 
components of the CIED and determining the MRI safety 
after CIED-type identification may be rate-limiting tasks 
in an emergency setting. Therefore, we developed a 
deep learning algorithm (DLA) designed to process CIED 
detection in a CR and determine MRI safety.

The purpose of this study was to develop and evaluate a 

DLA that detects and characterizes parameters, including 
MRI safety, of CIEDs on CRs in a single step and compare 
its performance with those of other related algorithms that 
were recently developed.

MATERIALS AND METHODS

This retrospective study was approved by the Institutional 
Review Boards of both hospitals (IRB No. 10-2019-29). 
The requirement for informed patient consent was waived 
because the data were analyzed retrospectively and 
anonymously.

Datasets
This study analyzed data that comprised dataset 1 (for 

model training, tuning, and test sets) from Hospital 1: 
Seoul National University Hospital and dataset 2 (for an 
independent external test) from Hospital 2: SMG-SNU 
Boramae Medical Center. Figure 1 illustrates the flowchart 
of the study inclusion process. For algorithm development, 
we retrospectively collected 12444 CRs with CIEDs obtained 
between January 2014 and December 2019 at Hospital 1. 
Among them, 2375 CRs with invalid labels and 13 CRs for 
which the conversion of digital imaging and communications 
in medicine (DICOM) files to portable network graphics (PNG) 
files had failed were excluded. Training a neural network 
requires an adequate number of examples of each class to 
be identified; therefore, only device models for which at 
least 20 CRs were available were included. The final dataset 
1 consisted of 9912 CRs of 958 patients with 968 CIEDs 
(male:female, 436:522; mean age ± standard deviation 
[SD] for male and female, 61.9 ± 12.5 and 62.6 ± 11.7 
years, respectively; PM:ICD = 766:202). Among the patients 
with PMs, 10 patients underwent CIED changes during the 
target period of this study. Both portable and departmental 
CRs with anterior-posterior/posterior-anterior projections 
were included. Lateral CRs were not included. A maximum 
of 15 images were extracted from a patient to minimize 
class imbalance [21]. All CRs were anonymized according 
to the Health Insurance Portability and Accountability Act 
Safe Harbor standards. Thereafter, the final CR data were 
randomly assigned to one of the following three datasets: a 
training dataset consisting of 7925 CRs to optimize network 
weights, a tuning dataset consisting of 992 CRs to optimize 
hyperparameters, and a test dataset consisting of 995 
CRs to evaluate the detection performance of the trained 
network. Independent dataset 2 included 2122 CRs of 198 
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patients (male:female, 102:96; mean age ± SD for male and 
female, 62.9 ± 12.1, and 69.3 ± 8.9, respectively; PM:ICD 
= 159:39) and was obtained from a different hospital for 
external testing of the DLA. The patients in the datasets did 
not overlap. 

We categorized the CIEDs into 26 model groups and 
counted the number of instances of devices in each model 
group. We filtered the CRs containing the model groups 
that did not contain at least 20 CIEDs for both datasets 
1 and 2. Next, we randomly split dataset 1 into training, 
tuning, and internal test sets with a ratio of 8:1:1 for model 
development. Dataset 2 was used for the independent 
external test. The distribution of datasets 1 and 2 is 
presented in Supplementary Table 1. Information about 
the MRI safety (i.e., compatibility) of the devices was 
confirmed by each manufacturer in April 2020.

Model Development
Figure 2 illustrates the data flow of the proposed DLA, 

X-ray CIED identification (XCID). XCID consisted of two main 
networks: 1) a class-agnostic CIED detector (CCD) and 2) a 
multi-task learner (MTL) for simultaneous CIED identification 
and MRI safety characterization. First, the CCD receives the 
input CR and outputs the candidate positions of the CIED 
with confidence scores. If a confidence score was lower than 
a preset threshold, the position corresponding to the score 
was discarded (we empirically set the threshold as 0.5) [22-
24]. Next, the CIED region was cropped, resized to 224 x 
224 pixels, and normalized. Subsequently, the MTL was used 
in the preprocessed CIED region, and 1) the manufacturer, 
2) the model group, and 3) the MRI safety of the device 
were identified. Further detailed engineering methodologies 
for the development of CCD and MTL are described in the 
Supplement (Materials and Methods).

Fig. 1. The flow chart of the study inclusion process. We refined the collected data in three steps. In the first step, the validity of each 
label was investigated and CRs with invalid labels were removed. Next, CRs with failure to convert DICOM files to PNG files were excluded. Last, 
CRs whose group did not include 20 instances were filtered out. Data set 1 is further split into three sets for model development: training, 
tuning, and test sets. BMC = SMG-SNU Boramae Medical Center, CR = chest radiograph, DICOM = digital imaging and communications in medicine, 
PNG = portable network graphics, SNUH = Seoul National University Hospital
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Evaluation of XCID Performance with Internal and 
External Test Datasets

First, the performance of XCID was evaluated using an 
internal test dataset; that is, part of development dataset 
1 that was not used for training. Thereafter, an external 
test was performed using independent dataset 2 to confirm 
the consistency of XCID performance. After analysis of the 
radiographs using the algorithm, performance measurement 
was assessed through the use of binary and multiclass areas 
under the curve (AUC) through the analysis of the receiver 
operating characteristics for manufacturer classification, 
model group identification, and MRI safety characterization. 
Accuracy, sensitivity, precision, and F1 scores were also 
evaluated for the three tasks.

Comparison with Available CIED Identification 
Algorithms

PM identification with neural networks (PPMnn) was 
developed by Howard et al. [19] using chest X-rays in the 
United Kingdom with the availability of the algorithm 
at http://ppm.jph.am [19]. The PPMnn was trained with 
1676 device images obtained from the Imperial College 
Healthcare NHS Trust. Weinreich et al. [20] developed 

PacemakerID (PID; available at http://app.pacemakerid.
com/) using chest X-rays in the United States [20]. The 
algorithm was developed using cropped images from 
1509 chest X-ray images of CIED obtained from a single 
institution, Montefiore Medical Center.

We randomly selected a total of 160 CRs from dataset 
2, considering class balance (40 CRs per manufacturer) 
in comparing the performance when classifying the 
manufacturer between XCID and the two other algorithms. 
The manufacturer classification was analyzed for all three 
algorithms. The predictions of each algorithm showed 
the prediction certainty percentages. The prediction 
was considered correct if > 75% predicted certainty was 
assigned to the correct manufacturer [25]. The model group 
identification was evaluated for XCID and PPMnn because 
the PID did not return the model identification. The MRI 
safety characterizations could not be compared, as PID and 
PPMnn did not have a predictive function.

Statistical Analysis
All the statistical analyses were performed in June 2020 

using Python 3.6.7 with Numpy library version 1.17.3 and R 
version 4.0.2 (The R Foundation for Statistical Computing). 

Fig. 2. The data flow of XCID. The input CR passes through two main networks: the CCD and the MTL. The CCD locates the CIED region and 
the MTL identifies the manufacturer, model group, and MRI safety of the CIED. Before MTL receives the CIED region image, the CIED region is 
cropped, resized, and normalized. CCD = class-agnostic cardiac rhythm device detector, CIED = cardiac implantable electronic device, CR = chest 
radiograph, MTL = multi-task learner, XCID = X-ray cardiac implantable electronic device identification
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The 95% confidence interval (CI) was calculated using 
the bootstrap method with 10000 replicates for the AUC. 
McNemar’s test was used to compare the findings obtained 
with different algorithms [25]. The p values were two-sided, 
and p < 0.05 denoted statistical significance.

RESULTS

Algorithm Architecture
The model architectures for XCID selected in this study 

were the MobileNet backbone trained with transfer learning 
for CCD and the DenseNet backbone trained with transfer 
learning for MTL. The detailed comparative results are 
described in Supplement (Results) and Supplementary 
Tables 2, 3, including accuracy for device identification, 
model group identification, and MRI safety characterization 
using various deep learning architectures.

Performance of XCID
Table 1 and Supplementary Tables 4, 5 show the 

performance of the XCID with internal and external test 
datasets. The accuracies of the manufacturer classification, 
model group identification, and MRI compatibility 
characterization were 99.7% (992/995), 97.2% (967/995), 
and 98.9% (984/995) for the internal test dataset and 
95.8% (2033/2122), 85.4% (1813/2122), and 92.2% 
(1956/2122) for the external test dataset, respectively. The 
performance gap in the accuracy metric was increased in 
the order of manufacturer classification (3.89%), MRI safety 
characterization (6.71%), and model group classification 
(11.8%). Figure 3 shows the confusion matrix for the model 
group classification task in the external test dataset.

Figures 4 and 5 display two sets of exemplary CRs overlaid 
with heatmaps generated using the Grad-CAM method [26]. 
For one input CR, XCID reacted in three different ways to 

conduct the three tasks simultaneously. The MTL focused 
on the electronic circuit regions of CIED pulse generators 
in two slightly distinctive ways to classify the manufacturer 
and the model group, while the model considered the 
overall portrait in distinguishing MRI safety. The tendency 
of XCID to examine the overall portrait for MRI safety 
characterization was consistent with our hypothesis that 
the MTL would require more general features to distinguish 
MRI safety than the other two tasks. In addition, the last 
two rows in Figure 4 suggest that XCID can be performed 
successfully even when CR quality is moderately degraded. 
The failure cases (Fig. 5) implied that the MTL could not 
function when CR showed poor image quality with the 
obscured configuration of a circuit in PG, an over-exposed 
radiograph, over-angled projection of PG, and multiple 

Fig. 3. The confusion matrix of the multi-task learner for the 
model group identification task in the external test data set. 
Diagonal components not displayed in the confusion matrix indicate 
that the external test data set does not contain cardiac implantable 
electronic devices with those model groups.

Table 1. Performance of the Deep Learning Algorithm with Internal and External Test Datasets

Manufacturer
Classification

Model Group 
Identification

MRI Safety (i.e., Compatibility) 
Characterization

Dataset*
  number of CRs

Internal
995

External
2122

Internal
995

External
2122

Internal
995

External
2122

AUROC 
  (95% CI)

1.000
NA

0.997
(0.995–0.999)

0.999
(0.999–1.000)

0.963
(0.958–0.971)

0.999
(0.997–1.000)

0.977
(0.972–0.983)

Accuracy, %
  [number of CRs]
  (95% CI)

99.7
[992/995]

(99.1–99.9)

95.8
[2033/2122]
(94.9–96.6)

97.2
[967/995]

(96.0–98.1)

85.4
[1813/2122]
(83.9–86.9)

98.9
[984/995]

(98.0–99.5)

92.2
[1956/2122]
(91.0–93.3)

*The internal and external test datasets were obtained from datasets 1 and 2, respectively. AUROC = area under the receiver operating 
characteristic, CI = confidence interval, CR = chest radiograph, NA = not applicable
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overlapping structures with bones and other thoracic 
devices.

Comparative Performance of XCID
Of the three algorithms, XCID performed best with 95.0% 

(95% CI 90.4%–97.8%) accuracy in the manufacturer 

classification (Table 2). The PPMnn and PID showed 91.3% 
(95% CI 85.1%–91.1%) and 80.0% (95% CI 73.8%–97.9%) 
accuracies, respectively. The accuracies of XCID and PPMnn 
were significantly different from those of PID (p < 0.001 
for both). When stratified according to the manufacturer, 
the algorithm accuracy ranged from 77% to 100%. Of 

Original image Manufacturer Model group MR safety

Fig. 4. Representative CRs with successful classification and identification results. The right three columns show the original CRs 
overlaid with heatmaps. The multi-task learner reacts in three different manners for three tasks, resulting in three heatmaps for each CR. CR = 
chest radiograph



1924

Kim et al.

https://doi.org/10.3348/kjr.2021.0201 kjronline.org

the images tested, 76.9% were correctly identified by all 
algorithms. XCID demonstrated a higher accuracy (88.1%; 
141/160) than PPMnn (80.0%; 128/160) in identifying 
model groups with a significant difference (p < 0.001).

DISCUSSION

In this study, we developed and tested a one-step DLA for 
the identification and MRI safety characterization of CIEDs 
in CRs. CaRDIA-X was the first published manual flowchart 

Original image Manufacturer Model group MR safety

Fig. 5. Representative CRs with failure results of MTL. The CRs in the first two rows show obscured or distorted circuits in PGs by the over-
angulated projection of PGs on CRs. The second to fourth rows were over-saturated radiographs that could not be used to classify PGs correctly. 
Overall, PGs with failed classification tended to present with overlapping ribs, scapula, pulmonary consolidations, and calcifications. The result in 
parenthesis indicates a subgroup classified by the MTL. CR = chest radiograph, MTL = multi-task learner, PG = pulse generator, Uncertain = under 
test or not approved as an MRI-compatible device
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approach to classify CIED manufacturers [18]. However, 
new models that are not covered by CaRDIA-X have been 
introduced over the past decade. Recently, PPMnn and 
PID algorithms have been developed in different regions 
and architectures. Howard et al. [19] developed a CIED 
identification algorithm with neural networks (PPMnn) 
using 1676 cropped chest radiographs, including five 
manufacturers (Biotronik, Boston Scientific, Medtronic, 
St. Jude, and Sorin) from England. Weinreich et al. [20] 
reported a DLA (PID) that identifies CIED using 3008 
cropped chest radiographs including four manufacturers 
(without Sorin), which was the same as the XCID at the 
Montefiore Medical Center in the United States. A study 
that used a dataset (n = 500) from another single center 
in New York evaluated the accuracy of the manufacturer 
classification using these algorithms. The overall accuracy 
of PID was 89%. PPMnn showed a 71% accuracy, which was 
lower than that of the manual assessment using CaRDIA-X 
(85%) [25]. Our study included the development and 
external testing of the DLA with 12042 consecutive chest 
radiographs since 2014, when the MRI-conditional CIED 
was approved and had started being widely used to develop 
and test XCID. In contrast with the research conducted 
by Howard et al. [19], with data consisting of different 
CIEDs in equal proportions, our data reflected the actual 
prevalence of different CIEDs in the institution-centered 
market. The CIED market share at a single institution varies 
with the device type and the region [27], likely resulting 
in a lack of availability of Boston Scientific devices in the 
XCID training set and a resulting low accuracy of this subset 
[25]. The gaps in AUC and the accuracy of the model group 
identification in the internal and external test sets were 
relatively more prominent than those of the manufacturer 
classification and MRI compatibility characterization 
(Table 1). The main reason for this could be that the model 
group identification had performed an external test for an 
independent imbalanced dataset (Supplementary Table 1) 

with multiclass classification for “26 subgroups” compared 
with the other two tasks [28-30]. Further multicenter 
research with data augmentation and temporal and 
geographic validation is needed to overcome these gaps 
[31].

Our one-step DLA started from a whole DICOM image, not 
a cropped image converted to a PNG file (used in PPMnn 
and PID), to determine whether a CIED was present and the 
PG location. Nevertheless, the overall results of XCID were 
not inferior for the manufacturer classification and superior 
for the model group identification to PPMnn. XCID was 
developed and tested for device identification into a single 
step from the entire CR and stored as a DICOM file used 
in picture archiving and communication systems (PACSs) 
without any additional manipulation or designation of a 
region of interest. This means that XCID may be directly 
applied to PACS without errors during CR manipulation 
in the practice of personnel unfamiliar with CIED. To be 
approved as a medical device software and used in clinical 
practice, the user interface for XCID can be embedded into 
PACS to analyze the CRs.

This tool would be helpful for physicians and radiologists 
who are not familiar with CIEDs, as well as for emergency 
patients with CIEDs and dedicated cardiologists using CRs, 
which are the most basic initial assessments in hospitals. 
Only an industry-employed allied professional (IEAP) 
would be able to communicate with the CIED using bulky 
portable programmers. Knowing which programmer to use 
would save critical time [32]. This may not only facilitate 
decision-making for MRI acquisition and rapid interrogation 
of a device in an emergency, but it would also help in the 
provision of emergency treatment, such as anti-tachycardia 
pacing [16,33,34]. This can avoid delays in calibrating the 
devices and reduce hospital costs, other indirect patient 
expenditures, and service costs for device manufacturers 
because IEAP visits can be avoided. Contact-free rapid 
identification of CIEDs can be useful in healthcare crises 

Table 2. Accuracy of Algorithms Classifying Manufacturer
Manufacturer Number XCID PPMnn PacemakerID

Biotronik   40 92.5 (37) 92.5 (37) 80.0 (32)
Boston scientific   40 90.0 (36) 100 (40) 77.5 (31)
Medtronic   40 100 (40) 85.0 (35) 80.0 (32)
St. Jude   40 97.5 (39) 87.5 (34) 82.5 (33)

Total 160
95.0 (152)

95% CI: 90.4–97.8
91.3 (146)

95% CI: 85.8–95.1
80.0 (128)

95% CI: 73.0–85.9

Data are % with the case number in parentheses. CI = confidence interval, PPMnn = pacemaker identification with neural networks, XCID = 
X-ray cardiac implantable electronic device identification
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such as the COVID-19 pandemic [34]. Regarding the fatal 
complications of misjudgment, DLAs including XCID should 
be improved and applied to the standard workflow. The 
final clearance should be provided prudently by physicians 
having the needed relevant information. Based on the 
successful and failed classification results (Figs. 4, 5), 
clearer demonstrations of PGs in CRs without overlapping 
or oversaturation would attain higher accuracy and more 
reliable results from XCID.

This study had some limitations. Our dataset did not 
include multiple heterogeneous sources of CRs with CIEDs. 
We obtained datasets from two medical centers using 
different reconstruction methods, partly overcoming the 
limitations of a single-center study. This could be a reason 
why the external test study revealed slightly lower accuracy 
than that achieved during DLA development. XCID cannot 
identify devices not listed in Supplementary Table 1, such 
as CIEDs made by MicroPort (formerly LivaNova and ELA/
Sorin). The training dataset had a class imbalance because 
its origin was consecutive Real-Real-real-world data 
and reflected regional market shares. However, software 
engineering will allow continuous augmentation because 
the proposed MTL of XCID requires less than 7 minutes 
to train with more than 8000 images. Extending the 
capability of XCID requires only 20 additional examples 
per new device. Further research is warranted to determine 
the applicability of XCID to prospectively collected large 
multi-institutional balanced datasets. For the MRI safety 
characterization, we did not consider the models of leads 
in the XCID. It is important to note that the CIED lead tips 
are unaffected by static magnetic fields, as they contain 
no ferromagnetic materials. This negates the possibility of 
the lead becoming dislodged and failing to capture [35,36]. 
However, the radiofrequency field may generate heat energy, 
particularly at the lead tips, which can result in myocardial 
tissue damage [37]. Nevertheless, there have been 
negligible effects on post-MRI troponin concentrations; 
there have been few participants with increased troponin 
concentrations in animal and human studies [38-41]. 
Furthermore, when the MRI-conditional PG is inserted 
or replaced, the cardiologist and IEAP tend to use MRI-
conditional leads. Therefore, we decided that it would be 
acceptable to consider models of the PG only for MRI safety 
characterization during DLA development.

In conclusion, XCID may be used for detection, 
manufacturer and model identification, as well as MRI 
safety characterization of CIED on CRs with remarkable and 

consistent performance. Further studies are warranted to 
guarantee the safe use of XCID in clinical practice.

Supplement

The Supplement is available with this article at  
https://doi.org/10.3348/kjr.2021.0201.
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