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ABSTRACT

Metal ion binding was previously shown to desta-
bilize IRE-RNA/IRP1 equilibria and enhanced IRE-
RNA/eIF4F equilibria. In order to understand the rel-
ative importance of kinetics and stability, we now
report rapid rates of protein/RNA complex assem-
bly and dissociation for two IRE-RNAs with IRP1,
and quantitatively different metal ion response kinet-
ics that coincide with the different iron responses in
vivo. kon, for FRT IRE-RNA binding to IRP1 was eight
times faster than ACO2 IRE-RNA. Mn2+ decreased
kon and increased koff for IRP1 binding to both FRT
and ACO2 IRE-RNA, with a larger effect for FRT IRE-
RNA. In order to further understand IRE-mRNA reg-
ulation in terms of kinetics and stability, eIF4F kinet-
ics with FRT IRE-RNA were determined. kon for eIF4F
binding to FRT IRE-RNA in the absence of metal ions
was 5-times slower than the IRP1 binding to FRT IRE-
RNA. Mn2+ increased the association rate for eIF4F
binding to FRT IRE-RNA, so that at 50 �M Mn2+ eIF4F
bound more than 3-times faster than IRP1. IRP1/IRE-
RNA complex has a much shorter life-time than the
eIF4F/IRE-RNA complex, which suggests that both
rate of assembly and stability of the complexes are
important, and that allows this regulatory system to
respond rapidly to change in cellular iron.

INTRODUCTION

Iron responsive elements (IREs) are cis-acting mRNA stem-
loop structures that specifically bind cytoplasmic iron regu-
latory proteins (IRP1, IRP2) (1–4). An IRE is a ∼30 nu-
cleotide structure folded into two RNA helices that are

separated by a mid helix bulge cytosine residue and by a
six nucleotide loop of the sequence 5′-CAGUGX-3′ (C-G
triloop pair and X is usually a pyrimidine) (2,5–9) (Figure
1). The two IRPs, which are highly conserved themselves,
bind IRE-RNA structures in a variety of animal mRNAs
that appeared at various times during evolution (10) and
have been extensively characterized (11–15). The name IRE
(iron responsive element) was developed based on effects of
increasing iron in animals or in cultured cells of animals on
IRE-mRNA translation or degradation (11,12); IRE-RNA
regulating translation is in the 5′ noncoding (UTR) region
of the mRNAs. Iron regulatory effects measured were entry
of IRE-RNA into polysomes and protein accumulation and
more recently changes in RNA mobility with cell extracts.
Models that developed reflected iron induced protein degra-
dation of both IRP repressors and Fe-S cluster insertion to
IRP1, but there has been no mechanistic information on
whether and how Fe2+ changed the IRE-RNA complex sta-
bility or turnover needed to free the IRE-mRNAs for trans-
lation (11–15).

The first committed step in protein synthesis is the bind-
ing of the 5´ mRNA cap (m7GpppN, where N represents
any nucleotide) to eIF4E, the small subunit of eIF4F.
eIF4G, the large subunit of eIF4F, recruits additional initia-
tion factors including eIF4A. eIF4A is the RNA-dependent
ATPase that unwinds secondary structure within the 5´
noncoding region to allow 40S ribosomal scanning. Non-
coding mRNA structure can make a major contribution to
protein synthesis rates and gene expression in eukaryotic
cells. An example is the ability of IRE-RNA to bind, com-
petitively, two regulatory proteins: IRE-RNA binds both
the generic protein synthesis enhancer, eIF4F (16), and a
specific protein synthesis inhibitor, IRP (17).

Recently, we observed (16,17) metal ions (Fe2+ and Mn2+)
binding to IRE-RNA, which decreased IRP1/IRE-RNA
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Figure 1. IRP1 binding to FRT IRE-RNA. In the figure, the RNA he-
lix (space-filling model) from RNA/protein crystal structures (32) has
bulge bases C8 and triloop bases A15 and G16 flipped out of the he-
lix and making deep contacts in protein pockets; A15 and G16 involve
some of the same protein contacts as the [4Fe-4S] cluster in the non-
IRE binding/cytoplasmic aconitase fold of the protein. Phylogenetically
conserved IRE-RNA sequences for FRT-IRE and ACO2 IRE RNAs are
shown above the structure. Bases in red are flipped out from stacked (A15,
G16) or disordered (C8) configurations, based on solution NMR of the
free FRT RNA (37). AUG, underlined, in the ACO2 IRE-RNA is the
translation initiator codon. FRT IRE-RNA is the evolutionary progenitor
IRE found in lower invertebrates, while ACO2 appeared first in chordates
(10). The figure was graciously prepared by Dr Suranjana Haldar who used
PDB 2IPY and PYMOL.

binding and increased protein synthesis initiation factor
eIF4F/IRE-RNA binding. Our working model (16) sug-
gested that eIF4F competes with IRP1 for IRE-RNA bind-
ing. Metal ions directly modulate the function of many
RNA classes, e.g. rRNA (18), tRNA (19,20), ribozymes
(21–25) and riboswitches in bacterial mRNAs, where met-
als contribute both to RNA function and to metal sens-
ing in bacteria (22,26–29), and possibly in hammerhead,
mammalian mRNAs (30). Transition metal ion-RNA com-
plexes involve both electrostatic and coordination complex
interactions. The ferritin (FRT) IRE-RNA binds metal ions
(Mg2+) with a 1:2 stoichiometry (31,32); Mg2+ also binds to
many rRNAs, tRNAs, riboswitches and ribozymes. In ad-
dition, the IRE-RNA also binds shape-specific metal com-
plexes (1,10-phenanthrolene and Ru(tpy)bpy) and other
small molecules at even more specific sites (33–35).

The effect of Fe2+ and Mn2+ was much larger for FRT
IRE-RNA/IRP binding than for mitochondrial aconitase
(ACO2) IRE-RNA/IRP (17). All IRE-RNAs share loop se-
quences and a stem bulge but have primary sequences and
base pairs that are specific to each IRE-mRNA (Figure 1).
Biologically, manganese homeostasis may have crossover
points with iron homeostasis, exemplified by DMT 1 trans-
port of both Mn2+ and Fe2+, in animals and yeast (36). We
use Mn2+ as a biochemical model for air-sensitive Fe2+.

FRT IRE-RNA conformation changes when IRP1 binds,
based on comparison of solution nuclear magnetic reso-
nance (NMR) of the free IRE-RNA, the crystal struc-
ture of the FRT IRE-RNA/IRP complex (32,37) and flu-
orescence of 2-aminopurine IRE-RNA (16). In the IRE-
RNA terminal loop, for example, conserved tri-loop bases
A15 and G16 and helix bulge base C8 are flipped out and
a large surface of the IRE-RNA remains exposed in the
RNA protein complex (Figure 1), even though IRP ‘foot-
prints’ indicate protection of the entire IRE-RNA (38);
IRE-RNA folding must create ‘protected’/solvent inac-
cessible regions of the IRE-RNA structure. Important as
RNA/protein binding equilibria are, cells must respond
rapidly to changes in metabolism and the environment,
which makes IRP1/IRE-RNA turnover kinetics likely to be
a more sensitive regulatory target. Recently (16), we have
shown that eIF4F competes with binding of IRP1 to IRE-
RNA. The ability to form a repressor (IRP1/IRE) or ac-
tivator (eIF4F/IRE) complex will be influenced by the ki-
netics of protein binding and how that binding is affected
by metal ions. We now report the kinetics of IRE-RNA
binding to both IRP1 and eIF4F. At low metal ion con-
centration, IRP1/IRE-RNA binding is fast and turnover
of the complex is rapid as compared to eIF4F/IRE-RNA.
At higher Mn2+, eIF4F association rates increased rela-
tive to IRP1. The IRP1/IRE-mRNA complex had a much
shorter life-time than the eIF4F/IRE-mRNA suggesting
IRP1 responds more quickly to metal ion concentrations
and eIF4F/IRE stability is important for assembly of the
pre-initiation complex.

MATERIALS AND METHODS

Preparation of binding protein and RNA

Isolation of recombinant rabbit IRP1 from yeast used meth-
ods previously described in (39), except that washed cells
grown in minimal medium with 2% (w/v) dextrose were in-
oculated into medium containing 2% (w/v) raffinose, and
then induced for 16 h in a large volume of medium with
2% (w/v) raffinose and 2% (w/v) galactose. Only a Ni-
chelate column was used to purify the protein, eliminat-
ing the heparin-agarose step used before, and recombinant
IRP1 was dialyzed against 20 mM Tris pH 7.9, 50 mM
KCl, 1 mM EDTA with 10% (v/v) glycerol and 2% (v/v)
2-mercaptoethanol added for storage. Based on binding sto-
ichiometry and known IRE-RNA concentrations ∼85% of
the IRP protein was active in IRE-RNA binding. eIF4F was
purified from rabbit reticulocyte lysate as described previ-
ously (40).

Fluorescein labeled RNA oliogonucleotides (FIIRE-
RNA), ferritin IRE-RNA and mitochondrial aconitase
IRE-RNA were purchased from Genelink (Hawthorne, NY,
USA) and, after dissolving, were melted and reannealed as
described in (17,41), by heating, in 40 mM HEPES/KOH,
pH 7.2, to 85˚C for 15 min with slow cooling to 25˚C. The
concentrations of FRT IRE-RNA and ACO2 IRE-RNA
were determined spectrophotometrically by measuring the
absorbance at 260 nm and using the absorbance of 40 �g/ml
RNA as equal to 1 A260/ml. The concentration of protein
was determined by a Bradford assay with bovine serum
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albumin as standard (42) using a Bio-Rad protein assay
reagent (Bio-Rad Laboratories, CA, USA).

Stopped-flow anisotropy measurements

Stopped-flow anisotropy measurements for the binding of
FIIRE-RNA and IRP1 protein were performed on an OLIS
RSM 1000 stopped-flow system with a 1-ms dead time. The
excitation and emission wavelengths for fluorescein labeled
FRT IRE-RNA and ACO2 IRE-RNA (FIIRE-RNA) were
490 nm and 520 nm, respectively. The temperature of the
flow-cell and solution reservoir was maintained at 25◦C un-
less otherwise stated. IRP1 binding induced an increase in
FIIRE-RNA anisotropy. After rapid mixing of 0.1 �M (0.05
�M final) FIIRE-RNA with varying concentrations (0.05
�M–1 �M final) of IRP1 protein, the time course of the
anisotropy change was recorded by computer data acquisi-
tion. All measurements were performed in titration buffer,
40 mM HEPES/H+, pH 7.2, 1 mM MgCl2, 100 mM KCl,
5% (v/v) glycerol and 2% (v/v) 2-mercaptoethanol. In each
experiment, 1000 pairs of data were recorded and sets of
data from 5 to 7 shots were averaged to improve the signal-
to-noise ratio. Each averaged set of stopped-flow anisotropy
data was then fitted to nonlinear analytical equations using
Global analysis software provided by OLIS.

For Mn2+ effects, MnCl2 was added to both RNA and
protein solutions, at the same concentration, and the solu-
tions were incubated separately for 15 min before adding to
titration buffer containing the same metal ion concentration
as the RNA and protein solutions. Experiments were per-
formed as described above. Data were evaluated by fitting
to the single and double exponential functions as described
previously (43) and further analyzed as described below.

Stopped-flow fluorescence measurements

As described elsewhere (44,45) RNA binding induced a de-
crease in initiation factor fluorescence. eIF4F was excited
at 295 nm and the fluorescence (voltage) was measured af-
ter passing a 324 nm cut-on filter. A reference photomulti-
plier was used to monitor fluctuations in the lamp inten-
sity. The temperature of the flow cell and solution reser-
voir was maintained using a temperature controlled circu-
lating water bath. FRT IRE-RNA binding induced a de-
crease in eIF4F fluorescence. After rapid mixing of 0.1 �M
(final) eIF4F with 0.1, 0.2 and 0.5 �M (final) of FRT IRE-
RNA, the time course of the fluorescence intensity change
was recorded by computer data acquisition. Fluorescence
measurements from 5 to 7 shots were averaged to optimize
the signal-to-noise ratio. Data were evaluated by fitting to
the single- and double-exponential functions as described
previously (46,47). We further observed the effects of Mn2+

(5, 25 and 50 �M final) on the binding rates of eIF4F (0.1
�M final) to FRT IRE-RNA (0.1, 0.2 and 0.5 �M final) was
carried out under the same conditions as described above.

Measurements of dissociation rate constants

To measure the dissociation rate constants of the pre-
formed IRE-RNA/IRP1 complexes, RNA and protein
mixtures were incubated in titration buffer for 15 min at

25˚C to ensure complex equilibrium. Dissociation of pre-
formed IRE-RNA/IRP1 complex was followed by measur-
ing the decrease in anisotropy of FIIRE-RNA when equal
volumes of the FIIRE-RNA/IRP1 complex and buffer
alone or buffer containing 50 �M Mn2+ were mixed in
the stopped-flow cell. The concentrations of the FRT IRE-
RNA or ACO2 IRE-RNA and IRP1 protein in the solu-
tion were 0.05 �M and 1 �M, respectively, after mixing.
The dissociation rates were determined for the relaxation
experiment from the fits of the nonlinear analytical equa-
tions using Global analysis software provided by OLIS.

Analysis of stopped-flow kinetic data

Stopped-flow data for the binding of FRT IRE-RNA or
ACO2 IRE-RNA with IRP1 protein were analyzed us-
ing Global analysis software as described previously (43).
Data from the anisotropy experiments were fitted to the
single- and double-exponential functions. Fitted curves cor-
respond to the following single-exponential equation

rt = �r exp(−kobs.t) + rf (1)

where rt is the observed anisotropy at any time, t, and rf
is the final value of anisotropy, �r is the amplitude and
kobs is the observed first order rate constant. The double-
exponential equation is

rt = �r1 exp(−kobs1. t) + �r2 exp(−kobs2.t) + rf (2)

where �r1 and �r2 are the amplitudes for the first and sec-
ond components of the reaction with observed rate con-
stants kobs1 and kobs2, respectively. The residuals were mea-
sured by the differences between the calculated fit and the
experimental data. The observed rate constants were fur-
ther analyzed as relaxation experiments to give kon and koff
from the equation kobs = kon [IRP1] + koff. A plot of kobs ver-
sus [IRP1] at varying IRP1 concentrations was used to give
kon (slope) and koff (intercept). For dilution experiments of
the IRE-RNA/IRP1 complex, the koff value was obtained
from the previously determined Keq values and using KD
= koff/kon gives kobs = koff ([IRP1]/KD +1). The life-time
for the eIF4F/FRT IRE-RNA and IRP1/FRT IRE-RNA
complexes were calculated using equation (48), 1/� = kon
[IRE-RNAfinal + Proteinfinal] + koff.

RESULTS

IRP1 associates about eight times faster with ferritin IRE-
RNA than with mitochondrial aconitase IRE-RNA

FRT and ACO2 IRE-RNA bind IRP1 with different affini-
ties, based on our earlier solution and gel shift studies as
well as gel shift studies of others (15,17,31,32). The IRP1
binding affinity for FRT IRE-RNA was higher than ACO2
IRE-RNA. The stopped-flow anisotropy data (Figure 2)
show that the kon of FRT IRE-RNA is about 8-fold faster
than the kon of the ACO2 IRE-RNA binding to IRP1. Data
for the binding of FIIRE-RNA to IRP1 were plotted as
anisotropy versus time (Figure 2 A and B). The residuals
representing the deviation between the calculated and ex-
perimental data indicate that the single-exponential func-
tion fits the points over the entire time course of the mea-
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surements. Further, the concentration dependence of the re-
action rate was determined to distinguish between a single,
bimolecular, binding step and a more complex mechanism
such as a fast binding followed by a conformational change.
The data fit a one-step reaction mechanism described in
Equation (3), where kon and koff are the association and dis-
sociation rate for the interactions of IRP1 with IRE-RNA.

IRP + IRE-RNA
kon�
koff

IRE-RNA • IRP (3)

The observed rate constant (kobs) is predicted to be a lin-
ear function of IRP1 concentration as shown in Equation
(4),

kobs = kon[IRP1] + koff (4)

where the rates of fluorescence anisotropy change for FRT
or ACO2 FIIRE-RNA increased with increasing IRP1 con-
centrations (Figure 2A and B). The linear plot of [IRP1]
versus kobs, shown in Figure 2C, was used to obtain values
of kon and koff from the slope and the y-intercept, respec-
tively. The kon for FRT IRE-RNA was about 8-fold faster
than the kon for ACO2 IRE-RNA binding to IRP1 (Table
1).

The dissociation rate, koff, for IRP1 was similar for ferritin
and mitochondrial aconitase IRE-RNAs

The koff values for the binding of the two IRE-RNAs with
IRP1 showed little difference (Table 1), which contrasts with
the kon rate. The Kd values, calculated using the equation,
Kd = koff/kon, showed a 9-fold greater affinity for FRT
IRE-RNA (calculated Kd = 15.5 ± 0.5 nM) compared to
ACO2 IRE-RNA (calculated Kd = 136 ± 2.9 nM) with
IRP1. These results are consistent with the FRT and ACO2
IRE-RNA binding to IRP1 experiments in the fluorescence
steady-state, where binding differed by 9-fold. The Kd values
calculated from the kinetic constants computed here agree
well with the Kd value obtained by steady-state equilibrium
method (17).

Mn2+, a transition metal and Fe2+ surrogate, decreases asso-
ciation rates and increases dissociation rates of ferritin and
mitochondrial aconitase IRE-RNAs with IRP1

In equilibrium measurements, we observed that metal ions
destabilized the IRE-RNA/IRP1 complex (17). Kinetic
data now show that the major effect of metal ions is on the
association rates. Kinetic plots for the effect of Mn2+ on the
binding kinetics of FRT IRE-RNA and ACO2 IRE-RNA
with IRP1 are shown in Figure 3A and B; Mn2+ was used, as
before, as an metal ion which could be studied in air and had
effects similar to Fe2+, which had to be studied anerobically
(17). Plots of the observed rate constant versus IRP1 con-
centration are shown for FRT and ACO2 IRE-RNAs in the
presence of Mn2+ (Figure 3C and D). In the presence of 50
�M Mn2+, the association rate constant (kon) for the bind-
ing of FRT and ACO2 IRE-RNA with IRP1 decreased 6.2-
and 4.8-fold, respectively. In addition, metals ions increased
the dissociation (koff) rate of IRP1 for FRT IRE-RNA 2-
fold and 1.1-fold increase for ACO2 IRE-RNA (Table 3).
The combined effects of Mn2+ on the IRP1 association and

Figure 2. IRP1 binds IRE-RNA in a one-step, bimolecular reaction. Vary-
ing concentrations (0.05, 0.2, 0.5 and 1 �M final) of IRP1 were mixed
with 50 nM (final) of (A) FIFRT IRE-RNA and (B) FIACO2 IRE-RNA
in 40 mM HEPES/H+, pH 7.2, 100 mM KCl, 5% glycerol and 2% 2-
mercaptoethanol at 25◦C. Excitation and emission wavelength were 490
nm and 520 nm, respectively. The –– represents the fitted curve for a single-
exponential function. Residuals for the corresponding single- and double-
exponential fits at 1000 nM of IRP1 are shown in the lower panels. (C) The
observed rate constant for the anisotropy change of FRT IRE-RNA (––
•––) and ACO2 IRE-RNA (––©––) is plotted as a function of increasing
concentrations of IRP1 protein. Data points in the plot of kobs versus IRP1
concentration were obtained from three independent experiments and the
average value of the experimental data is reported. Extrapolation (see the
text) gives koff.

dissociation rates were larger for the FRT IRE-RNA (Ta-
ble 2), which parallels the selective effects of metal ions on
equilibrium measurements of IRP binding to the two IRE-
RNAs we observed previously (17).

The effect of Mn2+ on dissociation of pre-formed FRT
and ACO2 IRE-RNA/IRP1 complexes was explored, by
measuring the anisotropy of the relaxation reaction when
equal volumes of either FRT IRE-RNA/IRP1 or ACO2
IRE-RNA/IRP1 were rapidly mixed with 50 �M Mn2+ in
the solution buffer. The kinetic traces of the dissociation
reactions initiated by the 2-fold dilution followed single-
exponential kinetics (Figure 4). The dissociation rates for
the two IRE-RNA/IRP1 complexes obtained by diluting
with buffer in the absence of Mn2+ were smaller and simi-
lar to each other for the two IRE-RNAs (koff = 8.3 ± 0.4
s−1 for FRT and 9.1 ± 0.6 s−1 for ACO2 IRE-RNA/IRP1
complex) and to the dissociation rate determined from
concentration-dependent reaction kinetics (koff = 6.2 ± 0.3
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Table 1. Ferritin IRE-RNA binds IRP1 faster than mitochondrial aconitase IRE-RNA

FRT IRE-RNA ACO2 IRE-RNA

kon (�M−1 s−1) 400 ± 7.3 51.5 ± 1.8
koff (s−1) 6.2 ± 0.3 7.0 ± 0.4
Kd (nM)a 15.5 ± 0.5 136 ± 2.9
Kd (nM)b 14.2 ± 0.3 129 ± 3.3

akoff/kon.
bKd values from equilibrium measurements (17). Errors are standard deviation (SD).

Table 2. Mn2+a slows IRP binding to and increases IRP dissociation from IRE-RNAs

FRT IRE-RNA-Mn2+
FRT IRE-RNA
Mn/controlc ACO2 IRE-RNA-Mn2+

ACO2 IRE-RNA
Mn/controlc

kon (�M−1 s−1) 65 ± 2.7 0.20 10.7 ± 0.7 0.21
koff (s−1) 12 ± 0.5 2.0 8.0 ± 0.4 1.1
Kd (nM)b 227 15.9 737 5.7

a(50 �M).
bKd values obtained from equilibrium measurements (17) were similar to those computed from the kon and koff values.
cRatio of value in the presence of Mn2+/value in the absence of Mn2+. Errors are SD.

Table 3. Mn2+ slows IRP binding to and increases IRP dissociation from IRE-RNAs

Mn2+ �M kon koff Kd
a

FRT IRE-RNA ACO2 IRE-RNA FRT IRE-RNA ACO2 IRE-RNA FRT IRE-RNA ACO2 IRE-RNA
(�M−1 s−1) (s−1) (nM)

0 400 ± 7.3 51.5 ± 1.8 6.2 ± 0.3 7.0 ± 0.4 15.5 ± 0.5 136 ± 2.9
5 176 ± 4.3 35.2 ± 1.6 9.7 ± 0.4 7.6 ± 0.3 55 ± 2.7 217 ± 7.6
25 104 ± 3.5 17 ± 1.2 11.7 ± 0.3 7.8 ± 0.3 112.5 ± 4.1 458 ± 9.4
50 65 ± 2.7 10.7 ± 0.7 12.0 ± 0.5 8.0 ± 0.4 185 ± 6.6 727 ± 12

aKd value calculated from koff/kon.

s−1 for FRT and 7.0 ± 0.4 s−1 for ACO2 IRE-RNA/IRP1
complex). In the presence of Mn2+, the dissociation rates for
FRT (koff = 24 ± 1.5 s−1) and ACO2 (koff = 16.4 ± 1.3 s−1)
IRE-RNA/IRP1 complexes increased 3-fold and 2-fold, re-
spectively. Thus, Mn2+ can selectively increase the dissocia-
tion rates of RNA/protein complexes. Since the same pro-
tein has different dissociation rates with two IRE-RNAs
(Figure 4), and since there is evidence that metal ions bind
to the free IRE-RNA, but not to the free IRP1 protein, the
data (Figure 4) suggest that the metal ion binding site is
accessible on the IRE-RNA in the protein/RNA complex
(Figure 1).

K+ can partially substitute for Mn2+ at a concentration 6000-
fold higher

Electrostatic interactions with the phosphate backbone of
RNA can play an important role in determining binding
affinity of proteins and RNA; they are affected by the ionic
strength of the environment. At high ionic strength, shield-
ing will greatly reduce the attractive interactions. Recently,
we have shown (43) that the binding affinity of initiation fac-
tors to mRNAs with internal ribosome entry sites decreases
with increasing ionic strength. For the IRE-RNA/IRP in-
teractions, we observe four effects of changing the ionic
strength between 100 and 300 mM KCl: (i) The associa-
tion rate (kon) decreased 7-fold for FRT IRE-RNA and
3-fold for ACO2 IRE-RNA binding to IRP1 (Figure 5 A

and B, Supplementary Table S1). (ii) The koff for IRP bind-
ing showed little change with either IRE-RNA. (iii) The
ionic strength dependence of Kd values calculated from ki-
netic parameters (kon and koff) at 100 mM KCl was in close
agreement with the values obtained by equilibrium meth-
ods (17). For FRT IRE-RNA binding to IRP1 exhibited
a Kd = 15.5 ± 0.5 nM (Table 1), and Kd = 14.2 ± 0.3
nM from steady-state equilibrium studies (17). Similarly,
for ACO2 IRE-RNA binding to IRP1, the Kd = 136 ± 2.9
nM, koff/kon, again, in good agreement with the Kd = 129
± 3.3 nM obtained by equilibrium measurements (17). (iv)
Kd values for IRP binding increased about 8-fold for FRT
IRE-RNA and 4-fold for ACO2 IRE-RNA over a range of
KCl concentration 100–300 mM, largely due to changes in
the association rate constant (Figure 6). Such results indi-
cate a differential contribution of electrostatics to the in-
teraction of FRT or ACO2 IRE-RNA with IRP1, possibly
related to helix bending or stem interactions. However, the
absence of an effect of ionic strength on dissociation (Sup-
plementary Table S1) indicates that complex stability, which
is similar for these two IRE-RNAs, is based on other non-
electrostatic RNA/protein contacts, likely involving confor-
mational change that is not rate-limiting for association.

Kinetics of eIF4F binding to FRT IRE-RNA

Recently, we showed (16) that eIF4F and IRP1 bind com-
petitively to the FRT IRE-RNA. To further understand the
role of eIF4F in the iron regulatory mechanism, the kinetics
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Figure 3. Kinetics of IRP1 induced FRT IRE-RNA-Mn2+ and ACO2
IRE-RNA-Mn2+ binding. Kinetic trace for the binding of (A) FRT IRE-
RNA and (B) ACO2 IRE-RNA with IRP1 at varying concentration (5, 25
and 50 �M final) of Mn2+. FRT and ACO2 IRE-RNA concentrations were
50 nm (final) and the IRP1 concentration was 1 �M (final). Other condi-
tions were as described in Figure 2. Dependence of kobs on IRP1 concen-
tration for the binding of FRT or ACO2 IRE-RNA as a function of Mn2+

concentration obtained in experiments similar to those shown in Figure 2
at the indicated Mn2+ concentrations, 0.0 (––•––), 5 �M (––©––), 25 �M
(––�––) and 50 �M (––�––), is plotted for (C) FRT IRE-RNA and (D)
ACO2 IRE-RNA with IRP1. Data were fit with Equation (4). Data points
in the plot of kobs versus IRP1 concentration were obtained from three in-
dependent experiments and the average value of the experimental data is
reported. The kon, koff and Kd values at different Mn2+ are shown in Table
3.

of eIF4F binding to FRT IRE-RNA were determined us-
ing stopped flow fluorescence measurements. We chose FRT
IRE-RNA over ACO2 IRE-RNA for the kinetic studies
with eIF4F because FRT IRE-RNA showed a larger effect
of metal ions than ACO2 IRE-RNA. Kinetic plots for the
binding of eIF4F at varying FRT IRE-RNA concentration
were best fit with a single-exponential function (Figure 7A).
Treatment of the data using a double-exponential fit did not
improve the fit. FRT IRE-RNA concentration-dependent
kobs values obtained from kinetic rates were used for de-
termination of kon and koff (Figure 7B). The observed rate
constant increased linearly with an increase in FRT IRE-
RNA concentration (Figure 7B). The kon and koff values for
FRT IRE-RNA/eIF4F complex obtained from the slope
and intercept were 81 ± 3.3 �M−1 s−1 and 4.8 ± 0.3 s−1,
respectively. The life-time of the eIF4F/ FRT IRE-RNA
complex and the IRP1/FRT IRE-RNA complex were cal-
culated from the kinetic measurements as described in Ma-
terials and Methods. The life-time for the eIF4F/FRT IRE-
RNA complex was 18.7 ms as compared to the life-time
of IRP1/FRT IRE-RNA complex of 2.37 ms. The shorter
life-time of IRP1/IRE-RNA complex is consistent with the
need for rapid response to sudden change in cellular iron
level. By contrast, a positive control element eIF4F/IRE-
RNA may stabilize circularized mRNA for formation of the

Figure 4. Mn2+ Inhibits IRE-RNA/IRP binding by changing kon and koff
(A) FRT IRE-RNA IRP1 and (B) ACO2 IRE-RNA?IRP1 complex was
diluted in the stopped-flow cell with an equal volume of titration buffer
alone, curve (1) and (2) 50 �M MnCl2 in titration buffer. The traces were
best fit with the single-exponential function. The concentrations of FRT
IRE-RNA and ACO2 IRE-RNA were 50 nM, and IRP1 was 1 �M after
mixing. Data were averaged from three independent experiments. The koff
value was obtained from the previously (17) determined Keq values and
using KD = koff/kon.

ribosome initiation complex and assembly of this complex
may require a longer life-time.

Mn2+ increases the association rates and decreases the disso-
ciation rates of eIF4F/FRT IRE-RNA complex

We have previously (16) shown that Mn2+ increased the sta-
bility of the eIF4F/IRE-RNA complex. Here we show the
effects of metal ion on the kinetic rates of eIF4F binding to
FRT IRE-RNA. Kinetic plots for the binding of eIF4F with
FRT IRE-RNA at different Mn2+ concentration are shown
in Figure 7C. Plots of the observed rate constant versus
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Figure 5. Ionic strength (K+) effects the kinetic rates for the binding of
IRE-RNA/IRP. Dependence of kobs on IRP1 concentration for the bind-
ing of FRT or ACO2 IRE-RNA as a function of KCl concentration ob-
tained in experiments similar to those shown in Figure 2 at the indicated
KCl concentrations, 100 mM (––•––), 150 mM (––©––), 200 mM (––�––)
and 300 mM (––�––), is plotted for (A) FRT IRE-RNA and (B) ACO2
IRE-RNA with IRP1. Data were fit with Equation (4). The experimental
conditions were the same as described for Figure 2 except at different ionic
strength. Data points in the plot of kobs versus IRP1 concentration were
obtained from three independent experiments and the average value of the
experimental data is reported. The kon, koff and Kd values at different ionic
strength are shown in Supplementary Table S1.

FRT IRE-RNA concentration in the presence of Mn2+ are
shown in Figure 7B. At 50 �M Mn2+ association rate (kon =
228 ± 9.8 �Ms−1) increases 3-fold and the dissociation rate
(koff = 1.8 ± 0.06 s−1) decreases 2.5-fold as compared to
the association and dissociation rates of eIF4F/FRT IRE-
RNA at zero Mn2+ concentration (Table 4). The Kd values,
calculated using the equation, Kd = koff/kon, showed a 7-
fold greater affinity for eIF4F/FRT IRE-RNA (Kd = 7.9
± 0.3 nM) in the presence of 50 �M Mn2+ as compared to

eIF4F/FRT IRE-RNA (Kd = 59 ± 2.4 nM) complex with-
out metal ion. Kd values determined from the kinetics agree
well with the Kd value determined from fluorescence steady-
state measurements in the presence and absence of metal ion
(16). Our results revealed that metal ion increased the asso-
ciation rates of eIF4F binding to FRT IRE-RNA, while de-
creasing the association rates for the IRP1 binding to FRT
IRE-RNA.

DISCUSSION

Binding of IRP1, an IRE-specific repressor, to the single
IRE-RNA in the 5′ UTR of animal mRNAs inhibits trans-
lation by preventing the stable association of the small ri-
bosomal subunit with the mRNA (49). IRE-RNA binds
the translation factor eIF4F, a protein synthesis enhancer
thought to be the rate limiting step in protein synthesis
initiation, in addition to binding IRP1. Increase in the
concentration of cellular iron in the ‘iron pool’, the labile
form of cytoplasmic Fe2+, decreases the number of IRE-
mRNA molecules bound to IRP1 and increases the num-
ber IRE-mRNA molecules bound to eIF4F (16). As a re-
sult, IRE-mRNA translation increases; coincidently prote-
olytic degradation of IRP and iron sulfur cluster assem-
bly an IRP1 increases. The IRP1 binding affinities form
an array with affinities differing as much as 10-fold among
IRE-mRNAs (17). Thus any change in cellular iron con-
centration causes quantitatively different effects on each
member of the IRE-mRNA family. The IRE in each IRE-
mRNA has an individual sequence that is phylogenetically
conserved. Ferritin IRE-RNA, the oldest IRE (10) has the
most stable IRP1 binding. IRE-RNAs have specific helix
sequences but share the terminal loop sequence and a helix
bulge (10) (Figure 1). Fe2+ and Mn2+ destabilize of IRE-
RNA/IRP1 complexes to amplify the IRE-mRNA specific
binding properties and create an array of quantatively dif-
ferent responses to changes in environmental iron (17). Not
only are the equilibrium properties of IRE-RNA/protein
binding specific to each IRE-mRNA, known for decades
(15,41), we now know that the kinetic binding properties of
IRP1/IRE-RNA are also IRE-mRNA specific and rapid.
To respond rapidly to changes in cellular Fe2+, repression
and depression of IRE-mRNA must occur on a relatively
rapid time scale. Modulation of the rates is central to iron
homeostasis.

The rapidity of IRP1 binding to both FRT and ACO2
IRE-RNAs was so high it is close to diffusion limited. Dif-
ference in the very fast association rates largely accounts
for the observed selective binding between FRT and ACO2
IRE-RNA. The mechanism of IRP1 binding to IRE-RNA
is a simple, one-step, bi-molecular reaction that is linearly
dependent on IRP1 concentration when IRP1 is in excess
(Figure 2). A structural explanation for the ionic strength
dependence of the IRP1 associate rate differences between
FRT IRE-RNA and ACO2 IRE-RNA suggests more nu-
merous electrostatic interactions occur in the FRT IRE-
RNA/IRP1 complex than in the ACO2 IRE-RNA/IRP1
complex. However, the dissociation rates have very little
ionic strength dependence which means that IRP1/IRE-
RNA dissociation differs from association. Likely an addi-
tional component contributes to dissociation such as con-
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Figure 6. Metal effects on IRE-RNA/IRP binding kinetics contribute more to specific interactions than to electrostatics: [K+]/[Mn2+] ∼6000 for similar
effects. Values for kon in the presence of K+ or Mn2+ were compared. Very high K+ concentrations are required to achieve effects comparable to Mn2+.
Data were averaged from three independent experiments; K+ at 100 and 200 mM are significantly different (P < 0.01) than 300 mM K+ or 0.05 mM Mn2+.

Table 4. Mn2+ increases eIF4F binding to and decreases eIF4F dissociation from FRT IRE-RNAs

Mn2+ (�M) kon (�M−1 s−1) koff (s−1) Kd (nM)a

0 81 ± 3.3 4.8 ± 0.3 59 ± 2.4
5 119 ± 5.4 3.3 ± 0.2 27.7 ± 1.5
25 159 ± 6.7 2.5 ± 0.1 15.7 ± 0.7
50 228 ± 9.8 1.8 ± 0.06 7.9 ± 0.3

aKd value calculated from koff/kon.

formational change. Stability of the IRE-RNA/IRP1 com-
plex may also be controlled by conformational changes as
reported previously for protein–RNA interactions such as
the ‘lure and lock’ mechanism for the binding of HuD RNA
and U1A protein (43,50). For these RNA-protein interac-
tions, initial binding is due to largely electrostatic inter-
actions between lysine residues and the RNA phosphate
groups followed by a second step of the reaction involv-
ing nearby residues that form hydrogen bonds and/or hy-
drophobic interactions. For IRE-RNA/IRP1 interactions,
the importance of base-pair identity was indicated by base
pair mutations (15) and exemplified by binding differences
between �U6 FRT IRE-RNA and ACO2 IRE-RNA where
only helix base pairs differ (17). Structural support for such
an explanation is provided by the IRP1/FRT IRE-RNA
X-ray crystal structure (32), where the upper helix in the
IRE stem is distorted by a bend (∼20–30o) relative to the
lower stem in the region of the C8, U6 bulge bases. Al-
though similar structural information on the ACO2 IRE-
RNA/IRP1 complex is currently lacking, the structure of
the TfRB IRE-RNA (which like ACO2 IRE-RNA lacks the
U6 bulge) bound to IRP1 revealed a smaller helix distor-
tion (∼8o) (51) than that seen for the FRT IRE-RNA/IRP1
complex. This suggests that the additional U6 bulge in FRT
IRE-RNAs confers increased flexibility between the up-
per and lower stems of IRE-RNAs. Both increased RNA
flexibility and more electrostatic interactions between FRT
IRE-RNA and IRP1 than for ACO2, likely around the C8

protein–RNA sites where the two IRE-RNAs differ most

(Figure 1), could account for the faster association rates of
FRT IRE-RNA.

Metal ions affected both the association and the disso-
ciation rates for IRP1 binding to FRT and ACO2 IRE-
RNA. The metal ion-induced decrease in IRP1/RNA as-
sociation rates was larger for the FRT IRE-RNA, about 6-
fold, compared to the ACO2 IRE-RNA, where the effect
was about 4.8-fold reduction (Tables 2 and 3). Not only
did Mn2+ differentially decrease IRE-RNA/IRP1 associ-
ation rates, Mn2+ differentially increased the dissociation
rates with the larger increase for FRT IRE-RNA compared
to ACO2 IRE-RNA. These results suggest that the inter-
actions with Mn2+ affect the intermediate conformational
change in complex formation and reflect a direct sensing of
the ion by IRE-RNA, analogous to the larger riboswitches.
We reported earlier (17) that metal ions (5 �M Fe2+, Mn2+

and 500 �M Mg2+) lowered the stability of the FRT IRE-
RNA/IRP1 complex; deletion of the U6 bulge greatly re-
duced the effect (17,26–29), suggesting metal binding near
the C8 bulge and the helix bend. Metal ions not only neu-
tralize negative charges and reduce the phosphate repulsion,
transition metal ions including Fe2+, the physiological sig-
nal, form specific coordination complexes with bases that
change conformations in the region of both the C bulge
and the hairpin loop (16). Structural changes in the C bulge
region also change IRE-RNA Tm, nuclease sensitivity and
translation efficiency and affect the hairpin loop as well
(31). Such observations are consistent with an induced fit
model requiring a dynamic bending of the RNA and fur-
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Figure 7. Mn2+ increases the kinetic rates for the binding of eIF4F with
FRT IRE-RNA. (A) Typical time course of the intrinsic protein fluores-
cence intensity of eIF4F (0.1 �M final) decrease caused by binding of FRT
IRE-RNA at varying concentration (0.1, 0.2 and 0.5 �M final). (B) The
observed rate constant for the binding of eIF4F with FRT IRE-RNA is
plotted as a function of the indicated Mn2+ concentrations, 0.0 (––•––), 5
�M (––©––), 25 �M (––�––) and 50 �M (––�––). Data points in the plot
of kobs versus FRT IRE-RNA concentration were obtained from three in-
dependent experiments and the average value of the experimental data is
reported. (C) Kinetic traces for the binding of eIF4F (0.1 �M final) with
FRT IRE-RNA (0.5 �M final) in the presence of varying concentration of
MnCl2 (5, 25 and 50 �M final). The solid line represents the fitted curve
for a single-exponential function. The excitation wavelength was 295 nm.
The signal represents the total fluorescence emission above 324 nm. The
experimental conditions are described in Materials and Methods.

ther suggest that the region near the U6 may be a metal ion
binding site.

Metal ion destabilization of messenger IRE-RNA/IRP1
complexes competes with the stabilization conferred by
the very large number of bonds between the protein and
the RNA and the stability of the RNA fold. Selective,
metal-induced destabilization of FRT and ACO2 IRE-
RNA/IRP1 complexes as well as other selective, metal-
RNA interactions (17,26–29), emphasize the sensitivity of
RNA structure/function to the environment. Based on the
effects of metals on the binding kinetics observed here and
on IRP1 binding equilibria (17,26–29), the conformational
differences between free and bound IRE-RNA (helix bend,
conformation of base in the terminal triloop and helix bulge
(32,37,52)), and metal-RNA interactions (33,35), we sug-
gest that IRE-RNA structures are very small riboswitches
or riboregulators that bind Fe2+ within the physiological
ranges of the labile iron pool concentration (53). The metal-
IRE-RNA complex has a lower affinity for IRP1 (17), and
faster dissociation (Figures 3 and 4) causing release of the
repressor protein. The rapid release of IRP1 allows more
competitive eIF binding and increased translation of the

mRNA (16). Comparing the kinetics between eIF4F bind-
ing and IRP1 binding to IRE-mRNA as a function of Mn2+

concentration suggests that the reaction is largely kineti-
cally controlled in vivo with IRP1 outcompeting eIF4F at
low Fe2+ and the reverse being true at higher Fe2+ concen-
trations. Similarly, the longer life-time of the eIF4F/IRE-
RNA complex at both high and low Mn2+ concentrations
suggests that IRP1 responds more rapidly to cellular Fe2+

concentration changes while eIF4F forms a more stable
platform for ribosome binding. In vivo life-times of the com-
plexes will depend on the cellular concentrations of IRP and
eIF4F and may be influenced by other cellular components.

Riboswitches in eubacteria frequently involve larger
RNA structures that modulate translation initiation (54)
and use metabolites to control the accessibility of the Shine-
Dalgarno sequence and recruitment of 30S ribosomes. By
analogy, we suggest that access to eIFs and ultimately 40S
ribosomes for translation is controlled by the small IRE-
RNA riboregulators through metal binding which influ-
ences association and dissociation of IRE-RNA/protein
complexes and subsequent gene expression.
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